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Preface to the Third English Edition

The present edition is the translation of the fourth Russian edition of 2007, with
the previous three published in 1980, 1989, and 2004. The English translations of
the first two appeared in 1984 and 1996. The third and fourth Russian editions,
extended compared to the second edition, were published in two volumes titled
“Probability-1" and “Probability-2”. Accordingly, the present edition consists of
two volumes: this vol. 1, titled “Probability-1,” contains chapters 1 to 3, and chap-
ters 4 to 8 are contained in vol. 2, titled “Probability-2,” to appear in 2016.

The present English edition has been prepared by translator D. M. Chibisov, Pro-
fessor of the Steklov Mathematical Institute. A former student of N. V. Smirnov, he
has a broad view of probability and mathematical statistics, which enabled him not
only to translate the parts that had not been translated before, but also to edit both
the previous translation and the Russian text, making in them quite a number of cor-
rections and amendments. He has written a part of Sect. 13, Chap. 3, concerning the
Kolmogorov—Smirnov tests.

The author is sincerely grateful to D. M. Chibisov for the translation and scien-
tific editing of this book.

Moscow, Russia AN. Shiryaev
2015

Preface to the Fourth Russian Edition

The present edition contains some new material as compared to the third one. This
especially concerns two sections in Chap. 1, “Generating Functions” (Sect. 13) and
“Inclusion—Exclusion Principle” (Sect. 14).

In the elementary probability theory, dealing with a discrete space of elemen-
tary outcomes, as well as in the discrete mathematics in general, the method of
generating functions is one of the powerful tools of algebraic nature applicable to
diverse problems. In the new Sect. 13, this method is illustrated by a number of
probabilistic-combinatorial problems, as well as by the problems of discrete mathe-
matics like counting the number of integer-valued solutions to linear relations under
various constraints on the solutions or writing down the elements of sequences sat-
isfying certain recurrence relations.
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The material related to the principle (formulas) of inclusion—exclusion is given
undeservedly little attention in textbooks on probability theory, though it is very
efficient in various probabilistic-combinatorial problems. In Sect. 14, we state the
basic inclusion—exclusion formulas and give examples of their application.

Note that after publication of the third edition in two volumes, “Probability-1”
and “Probability-2,” we published the book, “Problems in Probability Theory,” [90]
where the problems were arranged in accordance with the contents of these two vol-
umes. The problems in this book are not only “problems-exercises,” but are mostly
of the nature of “theory in problems,” thus presenting large additional material for a
deeper study of the probability theory.

Let us mention, finally, that in “Probability-1” and “Probability-2” some correc-
tions of editorial nature have been made.

Moscow, Russia A.N. Shiryaev
November 2006

Preface to the Third Russian Edition

Taking into account that the first edition of our book “Probability” was published in
1980, the second in 1989, and the present one, the third, in 2004, one may say that
the editions were appearing once in a decade. (The book was published in English
in 1984 and 1996, and in German in 1988.)

Time has shown that the selection of the topics in the first two editions remained
relevant to this day. For this reason, we retained the structure of the previous edi-
tions, having introduced, though, some essential amendments and supplements in
the present books “Probability-1" and “Probability-2.”

This is primarily pertinent to the last, 8th, chapter (vol. 2) dealing with the theory
of Markov chains with discrete time. This chapter, in fact, has been written anew. We
extended its content and presented the detailed proofs of many results, which had
been only sketched before. A special consideration was given to the strong Markov
property and the concepts of stationary and ergodic distributions. A separate section
was given to the theory of stopping rules for Markov chains.

Some new material has also been added to the 7th chapter (vol. 2) that treats the
theory of martingales with discrete time. In Sect. 9 of this chapter, we state a dis-
crete version of the K. Ito formula, which may be viewed as an introduction to the
stochastic calculus for the Brownian motion, where Ito’s formula for the change of
variables is of key importance. In Sect. 10, we show how the methods of the mar-
tingale theory provide a simple way of obtaining estimates of ruin probabilities for
an insurance company acting under the Cramér—-Lundberg model. The next Sect. 11
deals with the “Arbitrage Theory” in stochastic financial mathematics. Here we state
two “Fundamental Theorems of the Arbitrage Theory,” which provide conditions in
martingale terms for absence of arbitrage possibilities and conditions guaranteeing
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the existence of a portfolio of assets, which enables one to achieve the objected aim.
Finally, Sect. 13 of this chapter is devoted to the general theory of optimal stopping
rules for arbitrary random sequences. The material presented here demonstrates how
the concepts and results of the martingale theory can be applied in the various prob-
lems of “Stochastic Optimization.”

There are also a number of changes and supplements made in other chapters.

We point out in this respect the new material concerning the theorems on mono-
tonic classes (Sect. 2 of Chap. 2), which relies on detailed treatment of the concepts
and properties of “m-A” systems, and the fundamental theorems of mathematical
statistics given in Sect. 13 of Chap. 3.

The novelty of the present edition is also the “Outline of historical development
of the mathematical probability theory,” placed at the end of “Probability-2.”

In a number of sections new problems have been added.

The author is grateful to T. B. Tolosova for her laborious work over the scientific
editing of the book and thanks the Publishing House of the Moscow Center for
Continuous Mathematical Education for the offer of the new edition and the fast
and efficient implementation of the publication project.

Moscow, Russia A.N. Shiryaev
2003

Preface to the Second Edition

In the Preface to the first edition, originally published in 1980, we mentioned that
this book was based on the author’s lectures in the Department of Mechanics and
Mathematics of the Lomonosov University in Moscow, which were issued, in part,
in mimeographed form under the title “Probability, Statistics, and Stochastic Pro-
cesses, I, II” and published by that University. Our original intention in writing the
first edition of this book was to divide the contents into three parts: probability,
mathematical statistics, and theory of stochastic processes, which corresponds to an
outline of a three-semester course of lectures for university students of mathemat-
ics. However, in the course of preparing the book, it turned out to be impossible
to realize this intention completely, since a full exposition would have required too
much space. In this connection, we stated in the Preface to the first edition that only
probability theory and the theory of random processes with discrete time were really
adequately presented.

Essentially all of the first edition is reproduced in this second edition. Changes
and corrections are, as a rule, editorial, taking into account comments made by both
Russian and foreign readers of the Russian original and of the English and German
translations [88, 89]. The author is grateful to all of these readers for their attention,
advice, and helpful criticisms.
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In this second English edition, new material also has been added, as follows:
in Chap. 3, Sect.5, Sects. 7-12; in Chap. 4, Sect. 5; in Chap. 7, Sect. 8. The most
important additions are in the third chapter. There the reader will find expositions of
a number of problems connected with a deeper study of themes such as the distance
between probability measures, metrization of weak convergence, and contiguity of
probability measures. In the same chapter, we have added proofs of a number of
important results on the rate of convergence in the central limit theorem and in
Poisson’s theorem on the approximation of the binomial by the Poisson distribution.
These were merely stated in the first edition.

We also call attention to the new material on the probabilities of large deviations
(Chap. 4, Sect.5), and on the central limit theorem for sums of dependent random
variables (Chap. 7, Sect. 8).

During the last few years, the literature on probability published in Russia
by Nauka has been extended by Sevastyanov [86], 1982; Rozanov [83], 1985;
Borovkov [12], 1986; and Gnedenko [32], 1988. In 1984, the Moscow University
Press published the textbook by Ya. G. Sinai [92]. It appears that these publica-
tions, together with the present volume, being quite different and complementing
each other, cover an extensive amount of material that is essentially broad enough
to satisfy contemporary demands by students in various branches of mathematics
and physics for instruction in topics in probability theory.

Gnedenko’s textbook [32] contains many well-chosen examples, including ap-
plications, together with pedagogical material and extensive surveys of the history
of probability theory. Borovkov’s textbook [12] is perhaps the most like the present
book in the style of exposition. Chapters 9 (Elements of Renewal Theory), 11 (Fac-
torization Identities) and 17 (Functional Limit Theorems), which distinguish [12]
from this book and from [32] and [83], deserve special mention. Rozanov’s text-
book contains a great deal of material on a variety of mathematical models which
the theory of probability and mathematical statistics provides for describing ran-
dom phenomena and their evolution. The textbook by Sevastyanov is based on his
two-semester course at the Moscow State University. The material in its last four
chapters covers the minimum amount of probability and mathematical statistics re-
quired in a 1-year university program. In our text, perhaps to a greater extent than
in those mentioned above, a significant amount of space is given to set-theoretic
aspects and mathematical foundations of probability theory.

Exercises and problems are given in the books by Gnedenko and Sevastyanov at
the ends of chapters, and in the present textbook at the end of each section. These,
together with, for example, the problem sets by A. V. Prokhorov and V. G. and
N. G. Ushakov (Problems in Probability Theory, Nauka, Moscow, 1986) and by
Zubkov, Sevastyanov, and Chistyakov (Collected Problems in Probability Theory,
Nauka, Moscow, 1988), can be used by readers for independent study, and by teach-
ers as a basis for seminars for students.

Special thanks to Harold Boas, who kindly translated the revisions from Russian
to English for this new edition.

Moscow, Russia A.N. Shiryaev
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Preface to the First Edition

This textbook is based on a three-semester course of lectures given by the author
in recent years in the Mechanics—Mathematics Faculty of Moscow State University
and issued, in part, in mimeographed form under the title Probability, Statistics,
Stochastic Processes, I, I by the Moscow State University Press.

We follow tradition by devoting the first part of the course (roughly one semester)
to the elementary theory of probability (Chap. 1). This begins with the construction
of probabilistic models with finitely many outcomes and introduces such funda-
mental probabilistic concepts as sample spaces, events, probability, independence,
random variables, expectation, correlation, conditional probabilities, and so on.

Many probabilistic and statistical regularities are effectively illustrated even by
the simplest random walk generated by Bernoulli trials. In this connection we study
both classical results (law of large numbers, local and integral De Moivre and
Laplace theorems) and more modern results (for example, the arc sine law).

The first chapter concludes with a discussion of dependent random variables gen-
erated by martingales and by Markov chains.

Chapters 2—4 form an expanded version of the second part of the course (second
semester). Here we present (Chap. 2) Kolmogorov’s generally accepted axiomati-
zation of probability theory and the mathematical methods that constitute the tools
of modern probability theory (o-algebras, measures and their representations, the
Lebesgue integral, random variables and random elements, characteristic functions,
conditional expectation with respect to a o-algebra, Gaussian systems, and so on).
Note that two measure-theoretical results—Carathéodory’s theorem on the exten-
sion of measures and the Radon—Nikodym theorem—are quoted without proof.

The third chapter is devoted to problems about weak convergence of probabil-
ity distributions and the method of characteristic functions for proving limit theo-
rems. We introduce the concepts of relative compactness and tightness of families
of probability distributions, and prove (for the real line) Prohorov’s theorem on the
equivalence of these concepts.

The same part of the course discusses properties “with probability 17 for se-
quences and sums of independent random variables (Chap. 4). We give proofs of
the “zero or one laws” of Kolmogorov and of Hewitt and Savage, tests for the con-
vergence of series, and conditions for the strong law of large numbers. The law of
the iterated logarithm is stated for arbitrary sequences of independent identically
distributed random variables with finite second moments, and proved under the as-
sumption that the variables have Gaussian distributions.

Finally, the third part of the book (Chaps. 5-8) is devoted to random processes
with discrete time (random sequences). Chapters 5 and 6 are devoted to the theory
of stationary random sequences, where “stationary” is interpreted either in the strict
or the wide sense. The theory of random sequences that are stationary in the strict
sense is based on the ideas of ergodic theory: measure preserving transformations,
ergodicity, mixing, etc. We reproduce a simple proof (by A. Garsia) of the maxi-
mal ergodic theorem; this also lets us give a simple proof of the Birkhoff-Khinchin
ergodic theorem.
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The discussion of sequences of random variables that are stationary in the wide
sense begins with a proof of the spectral representation of the covariance func-
tion. Then we introduce orthogonal stochastic measures and integrals with respect
to these, and establish the spectral representation of the sequences themselves. We
also discuss a number of statistical problems: estimating the covariance function and
the spectral density, extrapolation, interpolation and filtering. The chapter includes
material on the Kalman—Bucy filter and its generalizations.

The seventh chapter discusses the basic results of the theory of martingales and
related ideas. This material has only rarely been included in traditional courses in
probability theory. In the last chapter, which is devoted to Markov chains, the great-
est attention is given to problems on the asymptotic behavior of Markov chains with
countably many states.

Each section ends with problems of various kinds: some of them ask for proofs
of statements made but not proved in the text, some consist of propositions that will
be used later, some are intended to give additional information about the circle of
ideas that is under discussion, and finally, some are simple exercises.

In designing the course and preparing this text, the author has used a variety
of sources on probability theory. The Historical and Bibliographical Notes indicate
both the historical sources of the results and supplementary references for the mate-
rial under consideration.

The numbering system and form of references is the following. Each section
has its own enumeration of theorems, lemmas and formulas (with no indication of
chapter or section). For a reference to a result from a different section of the same
chapter, we use double numbering, with the first number indicating the number of
the section (thus, (2.10) means formula (10) of Sect. 2). For references to a different
chapter we use triple numbering (thus, formula (2.4.3) means formula (3) of Sect. 4
of Chap. 2). Works listed in the References at the end of the book have the form
[Ln], where L is a letter and 7 is a numeral.

The author takes this opportunity to thank his teacher A. N. Kolmogorov, and
B. V. Gnedenko and Yu. V. Prokhorov, from whom he learned probability theory
and whose advices he had the opportunity to use. For discussions and advice, the
author also thanks his colleagues in the Departments of Probability Theory and
Mathematical Statistics at the Moscow State University, and his colleagues in the
Section on probability theory of the Steklov Mathematical Institute of the Academy
of Sciences of the U.S.S.R.

Moscow, Russia A.N. Shiryaev
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Introduction

The subject matter of probability theory is the mathematical analysis of random
events, i.e., of those empirical phenomena which can be described by saying that:

They do not have deterministic regularity (observations of them do not always
yield the same outcome) whereas at the same time:

They possess some statistical regularity (indicated by the statistical stability of
their frequencies).

We illustrate with the classical example of a “fair” toss of an “unbiased” coin. It
is clearly impossible to predict with certainty the outcome of each toss. The results
of successive experiments are very irregular (now “head,” now “tail”’) and we seem
to have no possibility of discovering any regularity in such experiments. However, if
we carry out a large number of “independent” experiments with an “unbiased” coin
we can observe a very definite statistical regularity, namely that “head” appears with
a frequency that is “close” to %

Statistical stability of frequencies is very likely to suggest a hypothesis about a
possible quantitative estimate of the “randomness” of some event A connected with
the results of the experiments. With this starting point, probability theory postulates
that corresponding to an event A there is a definite number P(A), called the proba-
bility of the event, whose intrinsic property is that as the number of “independent”
trials (experiments) increases the frequency of event A is approximated by P(A).

Applied to our example, this means that it is natural to assign the probability %
to the event A that consists in obtaining “head” in a toss of an “unbiased” coin.

There is no difficulty in multiplying examples in which it is very easy to obtain
numerical values intuitively for the probabilities of one or another event. However,
these examples are all of a similar nature and involve (so far) undefined concepts
such as “fair” toss, “unbiased” coin, “independence,” etc.

Having been invented to investigate the quantitative aspects of “randomness,”
probability theory, like every exact science, became such a science only at the point
when the concept of a probabilistic model had been clearly formulated and axiom-
atized. In this connection it is natural for us to discuss, although only briefly, the

Xiii
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fundamental steps in the development of probability theory. A detailed “Outline of
the history of development of mathematical probability theory” will be given in the
book “Probability-2.”

Probability calculus originated in the middle of the seventeenth century with
Pascal (1623-1662), Fermat (1601-1655), and Huygens (1629-1695). Although
special calculations of probabilities in games of chance had been made earlier, in
the fifteenth and sixteenth centuries, by Italian mathematicians (Cardano, Pacioli,
Tartaglia, etc.), the first general methods for solving such problems were apparently
given in the famous correspondence between Pascal and Fermat, begun in 1654, and
in the first book on probability theory, De Ratiociniis in Aleae Ludo (On Calcula-
tions in Games of Chance), published by Huygens in 1657. It was at this time that
the fundamental concept of “mathematical expectation” was developed and theo-
rems on the addition and multiplication of probabilities were established.

The real history of probability theory begins with the work of Jacob' Bernoulli
(1654-1705), Ars Conjectandi (The Art of Guessing) published in 1713, in which
he proved (quite rigorously) the first limit theorem of probability theory, the law
of large numbers; and of de Moivre (1667-1754), Miscellanea Analytica Supple-
mentum (a rough translation might be The Analytic Method or Analytic Miscellany,
1730), in which the so-called central limit theorem was stated and proved for the
first time (for symmetric Bernoulli trials).

J. Bernoulli deserves the credit for introducing the “classical” definition of the
concept of the probability of an event as the ratio of the number of possible out-
comes of an experiment, which are favorable to the event, to the number of possible
outcomes.

Bernoulli was probably the first to realize the importance of considering infinite
sequences of random trials and to make a clear distinction between the probability
of an event and the frequency of its realization.

De Moivre deserves the credit for defining such concepts as independence, math-
ematical expectation, and conditional probability.

In 1812 there appeared Laplace’s (1749-1827) great treatise Théorie Analytique
des Probabilités (Analytic Theory of Probability) in which he presented his own
results in probability theory as well as those of his predecessors. In particular, he
generalized de Moivre’s theorem to the general (asymmetric) case of Bernoulli trials
thus revealing in a more complete form the significance of de Moivre’s result.

Laplace’s very important contribution was the application of probabilistic meth-
ods to errors of observation. He formulated the idea of considering errors of obser-
vation as the cumulative results of adding a large number of independent elementary
errors. From this it followed that under rather general conditions the distribution of
errors of observation must be at least approximately normal.

The work of Poisson (1781-1840) and Gauss (1777-1855) belongs to the same
epoch in the development of probability theory, when the center of the stage was
held by limit theorems. In contemporary probability theory the name of Poisson is
attributed to the probability distribution which appeared in a limit theorem proved

! Also known as James or Jacques.
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by him and to the related stochastic process. Gauss is credited with originating the
theory of errors and, in particular, justification of the fundamental method of least
squares.

The next important period in the development of probability theory is connected
with the names of P. L. Chebyshev (1821-1894), A. A. Markov (1856—-1922), and
A. M. Lyapunov (1857-1918), who developed effective methods for proving limit
theorems for sums of independent but arbitrarily distributed random variables.

The number of Chebyshev’s publications in probability theory is not large—four
in all—but it would be hard to overestimate their role in probability theory and in
the development of the classical Russian school of that subject.

“On the methodological side, the revolution brought about by Chebyshev was not only
his insistence for the first time on complete rigor in the proofs of limit theorems, . .. but also,
and principally, that Chebyshev always tried to obtain precise estimates for the deviations
from the limiting laws that are available for large but finite numbers of trials, in the form of
inequalities that are certainly valid for any number of trials.”

(A. N. KOLMOGOROV [50])

Before Chebyshev the main interest in probability theory had been in the calcu-
lation of the probabilities of random events. He, however, was the first to realize
clearly and exploit the full strength of the concepts of random variables and their
mathematical expectations.

The leading exponent of Chebyshev’s ideas was his devoted student Markov,
to whom there belongs the indisputable credit of presenting his teacher’s results
with complete clarity. Among Markov’s own significant contributions to probability
theory were his pioneering investigations of limit theorems for sums of dependent
random variables and the creation of a new branch of probability theory, the theory
of dependent random variables that form what we now call a Markov chain.

“Markov’s classical course in the calculus of probability and his original papers, which
are models of precision and clarity, contributed to the greatest extent to the transformation
of probability theory into one of the most significant branches of mathematics and to a wide
extension of the ideas and methods of Chebyshev.”

(S. N. BERNSTEIN [7])

To prove the central limit theorem of probability theory (the theorem on conver-
gence to the normal distribution), Chebyshev and Markov used what is known as
the method of moments. Under more general conditions and by a simpler method,
the method of characteristic functions, the theorem was obtained by Lyapunov. The
subsequent development of the theory has shown that the method of characteristic
functions is a powerful analytic tool for establishing the most diverse limit theorems.

The modern period in the development of probability theory begins with its ax-
iomatization. The first work in this direction was done by S. N. Bernstein (1880—
1968), R. von Mises (1883—-1953), and E. Borel (1871-1956). A. N. Kolmogorov’s
book Foundations of the Theory of Probability appeared in 1933. Here he presented
the axiomatic theory that has become generally accepted and is not only applicable
to all the classical branches of probability theory, but also provides a firm foundation
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for the development of new branches that have arisen from questions in the sciences
and involve infinite-dimensional distributions.

The treatment in the present books ‘“Probability-1" and “Probability-2” is based
on Kolmogorov’s axiomatic approach. However, to prevent formalities and logical
subtleties from obscuring the intuitive ideas, our exposition begins with the elemen-
tary theory of probability, whose elementariness is merely that in the corresponding
probabilistic models we consider only experiments with finitely many outcomes.
Thereafter we present the foundations of probability theory in their most general
form (“Probability-17).

The 1920s and 1930s saw a rapid development of one of the new branches of
probability theory, the theory of stochastic processes, which studies families of ran-
dom variables that evolve with time. We have seen the creation of theories of Markov
processes, stationary processes, martingales, and limit theorems for stochastic pro-
cesses. Information theory is a recent addition.

The book “Probability-2” is basically concerned with stochastic processes with
discrete time: random sequences. However, the material presented in the second
chapter of “Probability-1" provides a solid foundation (particularly of a logical na-
ture) for the study of the general theory of stochastic processes.

Although the present edition of “Probability-1" and “Probability-2” is devoted to
Probability Theory, it will be appropriate now to say a few words about Mathemat-
ical Statistics and, more generally, about Statistics and relation of these disciplines
to Probability Theory.

In many countries (e.g., in Great Britain) Probability Theory is regarded as “inte-
gral” part of Statistics handling its mathematical aspects. In this context Statistics is
assumed to consist of descriptive statistics and mathematical statistics. (Many en-
cyclopedias point out that the original meaning of the word statistics was the “study
of the status of a state” (from Latin status). Formerly statistics was called “political
arithmetics” and its aim was estimation of various numerical characteristics describ-
ing the status of the society, economics, etc., and recovery of various quantitative
properties of mass phenomena from incomplete data.)

The descriptive statistics deals with representation of statistical data (“statistical
raw material”) in the form suitable for analysis. (The key words here are, e.g.: pop-
ulation, sample, frequency distributions and their histograms, relative frequencies
and their histograms, frequency polygons, etc.)

Mathematical statistics is designed to produce mathematical processing of “sta-
tistical raw material” in order to estimate characteristics of the underlying distribu-
tions or underlying distributions themselves, or in general to make an appropriate
statistical inference with indication of its accuracy. (Key words: point and interval
estimation, testing statistical hypotheses, nonparametric tests, regression analysis,
analysis of variance, statistics of random processes, etc.)

In Russian tradition Mathematical Statistics is regarded as a natural part of Prob-
ability Theory dealing with “inverse probabilistic problems,” i.e., problems of find-
ing the probabilistic model which most adequately fits the available statistical data.

This point of view, which regards mathematical statistics as part of probability
theory, enables us to provide the rigorous mathematical background to statistical
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methods and conclusions and to present statistical inference in the form of rigor-
ous probabilistic statements. (See, e.g., “Probability-1,” Sect. 13, Chap. 3, “Fun-
damental theorems of mathematical statistics.”) In this connection it might be ap-
propriate to recall that the first limit theorem of probability theory—the Law of
Large Numbers—arose in J. Bernoulli’s “Ars Conjectandi” from his motivation to
obtain the mathematical justification for using the “frequency” as an estimate of
the “probability of success” in the scheme of “Bernoulli trials.” (See in this regard
“Probability-1,” Sect. 7, Chap. 1.)

We conclude this Introduction with words of J. Bernoulli from “Ars Conjectandi”
(Chap. 2 of Part 4)*:

“We are said to know or to understand those things which are certain and beyond doubt;
all other things we are said merely to conjecture or guess about.

To conjecture about something is to measure its probability; and therefore, the art of con-
Jecturing or the stochastic art is defined by us as the art of measuring as exactly as possible
the probabilities of things with this end in mind: that in our decisions or actions we may be
able always to choose or to follow what has been perceived as being superior, more advan-
tageous, safer, or better considered; in this alone lies all the wisdom of the philosopher and
all the discretion of the statesman.”

To the Latin expression ars conjectandi (the art of conjectures) there corresponds
the Greek expression oToxaoTisxn TExvn (with the second word often omitted).
This expression derives from Greek 076 x0( meaning aim, conjecture, assumption.

Presently the word “stochastic” is widely used as a synonym of “random.” For ex-
ample, the expressions “stochastic processes” and “random processes” are regarded
as equivalent. It is worth noting that theory of random processes and statistics of
random processes are nowadays among basic and intensively developing areas of
probability theory and mathematical statistics.

2 Cited from: Translations from James Bernoulli, transl. by Bing Sung, Dept. Statist., Harvard
Univ., Preprint No. 2 (1966); Chs. 1-4 also available on: http://cerebro.xu.edu/math/
Sources/JakobBernoulli/ars_ sung.pdf. (Transl. 2016 ed.).



Chapter 1
Elementary Probability Theory

We call elementary probability theory that part of probability theory which deals with
probabilities of only a finite number of events.

A. N. Kolmogorov, “Foundations of the Theory of Probability” [51]

1 Probabilistic Model of an Experiment with a Finite
Number of Outcomes

1. Let us consider an experiment of which all possible results are included in a
finite number of outcomes wy, ..., wy. We do not need to know the nature of these
outcomes, only that there are a finite number N of them.

We call wy, . .. ,wy elementary events, or sample points, and the finite set

Q: {wl,...,wN},

the (finite) space of elementary events or the sample space.

The choice of the space of elementary events is the first step in formulating a
probabilistic model for an experiment. Let us consider some examples of sample
spaces.

Example 1. For a single toss of a coin the sample space €) consists of two points:
Q = {H, T},
where H = “head” and T = “tail.”
Example 2. For n tosses of a coin the sample space is
Q={w:w=(a1,...,a,), a; =Hor T}
and the total number N(£2) of outcomes is 2".
© Springer Science+Business Media New York 2016 1
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2 1 Elementary Probability Theory

Example 3. First toss a coin. If it falls “head” then toss a die (with six faces num-
bered 1, 2, 3, 4, 5, 6); if it falls “tail,” toss the coin again. The sample space for this
experiment is

Q = {H1,H2,H3, H4, H5,H6, TH, TT}.

2. We now consider some more complicated examples involving the selection of n
balls from an urn containing M distinguishable balls.

Example 4 (Sampling with Replacement). This is an experiment in which at each
step one ball is drawn at random and returned again. The balls are numbered
1,...,M, so that each sample of n balls can be presented in the form (ay, ..., a,),
where g; is the label of the ball drawn at the ith step. It is clear that in sampling
with replacement each a; can have any of the M values 1, 2, ... , M. The description
of the sample space depends in an essential way on whether we consider samples
like, for example, (4, 1, 2, 1) and (1, 4, 2, 1) as different or the same. It is customary
to distinguish two cases: ordered samples and unordered samples. In the first case
samples containing the same elements, but arranged differently, are considered to
be different. In the second case the order of the elements is disregarded and the two
samples are considered to be identical. To emphasize which kind of sample we are
considering, we use the notation (ay, ... ,a,) for ordered samples and [ay, . .., a,]
for unordered samples.
Thus for ordered samples with replacement the sample space has the form

Q={w:w=(a1,...,ay), a;=1,...,M}

and the number of (different) outcomes, which in combinatorics are called arrange-
ments of n out of M elements with repetitions, is

N(Q) =M". 1)

If, however, we consider unordered samples with replacement (called in combi-
natorics combinations of n out of M elements with repetitions), then

Q={w:w=|[ay,...,a,), a;=1,...,M}.

Clearly the number N(2) of (different) unordered samples is smaller than the num-
ber of ordered samples. Let us show that in the present case

N() = Cyynr 2

where C} = k!/[I!(k — )!] is the number of combinations of k elements, taken / at a
time.

We prove this by induction. Let N(M, n) be the number of outcomes of interest.
It is clear that when k < M we have

N(k,1) = k = Cy.
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Now suppose that N(k, n) = C; 1 for k < M; we will show that this formula con-
tinues to hold when 7 is replaced by n+ 1. For the unordered samples [ay, . . ., a,11]
that we are considering, we may suppose that the elements are arranged in nonde-
creasing order: a; < as < --- < ay,41. Itis clear that the number of unordered sam-
ples of size n + 1 with a; = 1 is N(M, n), the number with a; = 2 is N(M — 1, n),
etc. Consequently

NM,n+1)=NM,n) +NM —1,n)+---+ N(1,n)
= CX4+,£,1 + Clrll471+nfl +ot CZ
= (CX/Itln - C[r\l/[—:}n—l) + (Cx/l—"_—11+n - Cir\l/ltll-i—n—l)

+ot (O —ath+ =t
here we have used the easily verified property
Cl+C=Chyy

of the binomial coefficients C,l{. (This is the property of the binomial coefficients
which allows for counting them by means of “Pascal’s triangle.”)

Example 5 (Sampling Without Replacement). Suppose that n < M and that the
selected balls are not returned. In this case we again consider two possibilities,
namely ordered and unordered samples.

For ordered samples without replacement (called in combinatorics arrangements
of n out of M elements without repetitions) the sample space

Q={w:w= (a1,...,an), ax Fap, k#1L,a;=1,... M},

consists of M(M — 1) ... (M — n + 1) elements. This number is denoted by (M), or
A}, and is called the number of arrangements of n out of M elements.

For unordered samples without replacement (called in combinatorics combina-
tions of n out of M elements without repetitions) the sample space

Q={w:w=|lay,...,a), ax #a, k#1l,a,=1,... .M}

consists of
NQ) = C, 3)

elements. In fact, from each unordered sample [ay,...,a,] consisting of distinct
elements we can obtain n! ordered samples. Consequently

N(Q) -l = (M),

and therefore

The results on the numbers of samples of size n from an urn with M balls are
presented in Table 1.1.
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Table 1.1

With

M" Chtrn-1 replacement
Without

(M), Ch replacement

Ordered | Unordered Sample
© nordere
TAer: Type

For the case M = 3 and n = 2, the corresponding sample spaces are displayed in
Table 1.2.

Table 1.2
L1 1,2 @3 | [1,1] [2,2] [3.3] With
2,1 (2,2) (2,3) [1,2] [1,3] replacement
3.1 32 (33 {2,3]
(1,2) (1.3 (1,21 [1.3] Without
2.1 (2,3 [2, 3] replacement
3,1 (3,2
Sample
Ordered Unordered
Type

Example 6 (Allocation of Objects Among Cells). We consider the structure of the
sample space in the problem of allocation of n objects (balls, etc.) among M cells
(boxes, etc.). For example, such problems arise in statistical physics in studying the
distribution of n objects (which might be protons, electrons, ...) among M states
(which might be energy levels).

Let the cells be numbered 1, 2, ..., M, and suppose first that the objects are dis-
tinguishable (numbered 1, 2, ..., n). Then an allocation of the n objects among the
M cells is completely described by an (ordered) collection (ay,...,a,), where g;
is the index of the cell containing the ith object. However, if the objects are indis-
tinguishable their allocation among the M cells is completely determined by the
unordered set [ay, .. .,a,], where a; is the index of the cell into which an object is
put at the ith step.
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Comparing this situation with Examples 4 and 5, we have the following corre-
spondences:

(ordered samples) < (distinguishable objects),

(unordered samples) < (indistinguishable objects),

by which we mean that to an instance of choosing an ordered (unordered) sample of
n balls from an urn containing M balls there corresponds (one and only one) instance
of distributing n distinguishable (indistinguishable) objects among M cells.

In a similar sense we have the following correspondences:

(sampling with replacement) < (a cell may receive any number> ’

of objects

a cell may receive at most)

(sampling without replacement) <> <one object

These correspondences generate others of the same kind:

indistinguishable objects in the
problem of allocation among cells
when each cell may receive at
most one object

an unordered sample in
sampling without -
replacement

etc.; so that we can use Examples 4 and 5 to describe the sample space for the
problem of allocation distinguishable or indistinguishable objects among cells either
with exclusion (a cell may receive at most one object) or without exclusion (a cell
may receive any number of objects).

Table 1.3 displays the allocation of two objects among three cells. For distin-
guishable objects, we denote them by W (white) and B (black). For indistinguish-
able objects, the presence of an object in a cell is indicated by a +.

The duality that we have observed between the two problems gives us an obvious
way of finding the number of outcomes in the problem of placing objects in cells.
The results, which include the results in Table 1.1, are given in Table 1.4.

In statistical physics one says that distinguishable (or indistinguishable, respec-
tively) particles that are not subject to the Pauli exclusion principle® obey Maxwell—
Boltzmann statistics (or, respectively, Bose—Einstein statistics). If, however, the par-
ticles are indistinguishable and are subject to the exclusion principle, they obey
Fermi—Dirac statistics (see Table 1.4). For example, electrons, protons and neu-
trons obey Fermi—Dirac statistics. Photons and pions obey Bose—Einstein statistics.
Distinguishable particles that are subject to the exclusion principle do not occur in
physics.

3. In addition to the concept of sample space we now introduce the important con-
cept of event playing a fundamental role in construction of any probabilistic model
(“theory”) of the experiment at hand.

* At most one particle in each cell. (Translator).
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Table 1.3
Wh| w]a W B] ++ [+
55
[BIw] ] [ Iws] | [ w]s] ;-
b

8] Tw] [Isw] [ [ i L

mE] @I ]
W (el mEE 2

o . . 1stribu-
Distinguishable Indistinguishable ) Dis :0:
objects objects Kind
of objects

Table 1.4
N{£2) in the problem of placing » objects in M cells
K‘;‘l‘fj:(is Distinguishable | Indistinguishable

Distribution objects objects

Without exclusion M* Man-1 With
{Maxwell- {Bose- replacement
Boltzmann Einstein
statistics) statistics)

With exclusion (M), Chy Without
(Fermi-Dirac replacement
statistics)

Ordered Unordered Sample
samples samples Type
N(€2) in the problem of choosing n balls from an urn
containing M balls

Experimenters are ordinarily interested, not in what particular outcome occurs as
the result of a trial, but in whether the outcome belongs to some subset of the set
of all possible outcomes. We shall describe as events all subsets A < €2 for which,
under the conditions of the experiment, it is possible to say either “the outcome
w € A” or “the outcome w ¢ A.”
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For example, let a coin be tossed three times. The sample space {2 consists of the
eight points
Q = {HHH,HHT,..., TTT}

and if we are able to observe (determine, measure, etc.) the results of all three tosses,
we say that the set
A = {HHH,HHT,HTH, THH}

is the event consisting of the appearance of at least two heads. If, however, we can
determine only the result of the first toss, this set A cannot be considered to be
an event, since there is no way to give either a positive or negative answer to the
question of whether a specific outcome w belongs to A.

Starting from a given collection of sets that are events, we can form new events by

ELIT3

means of statements containing the logical connectives “or,” “and” and “not,” which
correspond in the language of set theory to the operations “union,” “intersection,”
and “complement.”

If A and B are sets, their union, denoted by A U B, is the set of points that belong

either to A or to B (or to both):
AUB={weN:weAorweB}.

In the language of probability theory, A U B is the event consisting of the realization
of at least one of events A or B.

The intersection of A and B, denoted by A N B, or by AB, is the set of points that
belong to both A and B:

AnB={weQ:weAandw e B}.

The event A N B consists of the simultaneous realization of both A and B.
For example, if A = {HH, HT, TH} and B = {TT, TH, HT} then

AUB = {HH HT,TH,TT} (=9Q),
AnB = {TH, HT)}.

If A is a subset of ), its complement, denoted by A, is the set of points of € that
do not belong to A.

If B\A denotes the difference of B and A (i.e., the set of points that belong to B
but not to A) then A = Q\A. In the language of probability, A is the event consisting
of the nonrealization of A. For example, if A = {HH, HT, TH} then A = {TT}, the
event in which two successive tails occur.

The sets A and A have no points in common and consequently A N A is empty. We
denote the empty set by &. In probability theory, & is called an impossible event.
The set €2 is naturally called the certain event.

When A and B are disjoint (AB = @), the union A U B is called the sum of A and
B and written A + B.

If we consider a collection .7, of sets A < {2 we may use the set-theoretic opera-
tors U, M and \ to form a new collection of sets from the elements of 7%); these sets
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are again events. If we adjoin the certain and impossible events {2 and & we obtain a
collection <7 of sets which is an algebra, i.e. a collection of subsets of §2 for which

(1) Qe o,
(2) ifAe o/, Be o/, the sets A U B, A n B, A\B also belong to <.

It follows from what we have said that it will be advisable to consider collections
of events that form algebras. In the future we shall consider only such collections.
Here are some examples of algebras of events:

(a) {9, @}, the collection consisting of €2 and the empty set (we call this the zrivial
algebra);

(b) {A,A, Q, T}, the collection generated by A;

(c) & = {A: A c Q}, the collection consisting of all the subsets of ) (including
the empty set @).

It is easy to check that all these algebras of events can be obtained from the
following principle.
We say that a collection

2 =1{Di, ..., Dy}

of sets is a decomposition of €2, and call the D; the atoms of the decomposition, if
the D; are not empty, are pairwise disjoint, and their sum is {2:

Di+-+D,=Q.

For example, if {2 consists of three points, Q = {1, 2, 3}, there are five different
decompositions:

.@1 = {Dl} with D1 = {1,273},

@2 = {Dl, DQ} with Dl = {1,2}, D2 = {3},
93 = {Dh DQ} with D1 = {1,3}, D2 = {2},
P4 = {D1, Dy} with Dy = {2,3}, Dy = {1};

@5 = {Dl, Dg, Dg} Wlth D1 = {1}, DQ = {2}, Dg = {3}

(For the general number of decompositions of a finite set see Problem 2.)

If we consider all unions of the sets in &, the resulting collection of sets, together
with the empty set, forms an algebra, called the algebra induced by &, and denoted
by «(2). Thus the elements of a(Z) consist of the empty set together with the sums
of sets which are atoms of Z.

Thus if 2 is a decomposition, there is associated with it a specific algebra # =
a(2).

The converse is also true. Let 24 be an algebra of subsets of a finite space ).
Then there is a unique decomposition 2 whose atoms are the elements of %, with
B = a(Z). Infact, let D € % and let D have the property that for every B € £ the
set D n B either coincides with D or is empty. Then this collection of sets D forms
a decomposition 2 with the required property a(2) = 2. In Example (a), Z is the
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trivial decomposition consisting of the single set D; = Q; in (b), 2 = {A, A}. The
most fine-grained decomposition &, which consists of the singletons {w;}, w; € €,
induces the algebra in Example (c), i.e., the algebra of all subsets of (2.

Let 21 and 9, be two decompositions. We say that 2 is finer than &y, and write
D1 < Do, if()é(@l) o Oé(.@g).

Let us show that if {2 consists, as we assumed above, of a finite number of points

w1, .. .,wy, then the number N(.27) of sets in the collection <7 as in Example (c)
is equal to 2V. In fact, every nonempty set A € </ can be represented as A =
{wiy, ..., wi}, where w;; € Q, 1 < k < N. With this set we associate the sequence

of zeros and ones
(0,...,0,1,0,...,0,1,...),

where there are ones in the positions i1, . . . , iy and zeros elsewhere. Then for a given
k the number of different sets A of the form {w;,, ..., w;, } is the same as the number
of ways in which k ones (k indistinguishable objects) can be placed in N positions
(N cells). According to Table 1.4 (see the lower right-hand square) we see that this
number is C¥. Hence (counting the empty set) we find that

N()=1+Cy+-+Cy=(1+1)"=2"

4. We have now taken the first two steps in defining a probabilistic model (“theory”)
of an experiment with a finite number of outcomes: we have selected a sample space
and a collection o7 of its subsets, which form an algebra and are called events.
(Sometimes the pair & = (), <7) is regarded as an experiment.) We now take the
next step, to assign to each sample point (outcome) w; € 2, i = 1,...,N, a weight.
This is denoted by p(w;) and called the probability of the outcome w;; we assume
that it has the following properties:

(a) 0 < p(w;) <1 (nonnegativity),
(b) p(w1) + -+ + p(wy) = 1 (normalization).

Starting from the given probabilities p(w;) of the outcomes w;, we define the
probability P(A) of any event A € <7 by

P@A)= > plw). )

Definition. The “probability space”
(Q, o, P),
where Q0 = {w1,...,wy}, & is an algebra of subsets of 2, and

P={P(A);Aec o},
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is said to specify the probabilistic model (“theory”) of an experiment with a (fi-
nite) space {2 of outcomes (elementary events) and algebra <7 of events. (Clearly,
P({w;}) = p(w;), i = 1,...,N.) A probability space (€2, <7, P) with a finite set 2
is called discrete.

The following properties of probability follow from (4):

P(2) =0, ®)
P(Q) =1, (6)
P(Au B) =P(A) + P(B) — P(A n B). @)
In particular, if A N B = @, then
P(A + B) = P(A) + P(B) ®
and B
P@A) = 1—P(A). 9)

5. In constructing a probabilistic model for a specific situation, the construction of
the sample space 2 and the algebra . of events are ordinarily not difficult. In ele-
mentary probability theory one usually takes the algebra .7 to be the algebra of all
subsets of (2. Any difficulty that may arise is in assigning probabilities to the sample
points. In principle, the solution to this problem lies outside the domain of probabil-
ity theory, and we shall not consider it in detail. We consider that our fundamental
problem is not the question of how to assign probabilities, but how to calculate the
probabilities of complicated events (elements of .7) from the probabilities of the
sample points.

It is clear from a mathematical point of view that for finite sample spaces we can
obtain all conceivable (finite) probability spaces by assigning nonnegative numbers
D1, -, PN, satisfying the condition p; + - - - + py = 1, to the outcomes wy, . . . , wx.

The validity of the assignments of the numbers p1, ..., py can, in specific cases,
be checked to a certain extent by using the law of large numbers (which will be
discussed later on). It states that in a long series of “independent” experiments,
carried out under identical conditions, the frequencies with which the elementary
events appear are “close” to their probabilities.

In connection with the difficulty of assigning probabilities to outcomes, we note
that there are many actual situations in which for reasons of symmetry or homogene-
ity it seems reasonable to consider all conceivable outcomes as equally probable. In
such cases, if the sample space consists of points wy, . . . ,wy, with N < o0, we put

p(wi) = -+ =plwy) = 1/N,

and consequently
P(A) = N(A)/N (10)

for every event A € o/, where N(A) is the number of sample points in A.
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This is called the classical method of assigning probabilities. It is clear that in
this case the calculation of P(A) reduces to calculating the number of outcomes be-
longing to A. This is usually done by combinatorial methods, so that combinatorics,
dealing with finite sets, plays a significant role in the calculus of probabilities.

Example 7 (Coincidence Problem). Let an urn contain M balls numbered
1,2,...,M. We draw an ordered sample of size n with replacement. It is clear
that then

Q={w:w=(a1,...,ay), a; =1, ..., M}

and N(Q2) = M". Using the classical assignment of probabilities, we consider the
M" outcomes equally probable and ask for the probability of the event

A={w:w=(ai,...,a,), a; # a;, i #j},

i.e., the event in which there is no repetition. Clearly N(A) = M(M — 1) --- (M —
n + 1), and therefore

P(A)_(ZZ”_<1—A14) (1-54)--(1—";41). (11)

This problem has the following striking interpretation. Suppose that there are n
students in a class and that each student’s birthday is on one of 365 days with all
days being equally probable. The question is, what is the probability P, that there are
at least two students in the class whose birthdays coincide? If we interpret selection
of birthdays as selection of balls from an urn containing 365 balls, then by (11)

(365),
365"

P, =1

The following table lists the values of P, for some values of n:

n 4 16 22 23 40 64
P, 0.016| 0.284| 0.476| 0.507| 0.891| 0.997

For sufficiently large M
M), " k 1S 1n(n—1)
1 - Y (1ff)~ff k=2
o8 3 = 215 (1- 7 W 2 M~ 2
k=1 k=1
hence iy
Py(n)=1— (Mzn ~1— e (=Pu(n), M— o

The figures below present the graphs of Psgs(n) and Psgs(n) and the graph of

their difference. The graphs of Psgs(n) and its approximation Psgs(rn) shown in the
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left panel practically coincide. The maximal difference between them in the interval
[0, 60] equals approximately 0.01 (at about n = 30).

1k 0.01F
0.8 F 0,008 £
0.6 F 0,006
04F 0,004 F
0.2F 0,002
0" 10 20 30 40 50 60 n 710 20 30 40 50 60 n
Graph of P3¢5(n) and Pses(n) Graph of P3e5(n) — P3es(n)

It is interesting to note that (unexpectedly!) the size of class in which there is
probability % of finding at least two students with the same birthday is not very

large: only 23.

Example 8 (Prizes in a Lottery). Consider a lottery that is run in the following
way. There are M tickets numbered 1,2,...,M, of which n, numbered 1,...,n,
win prizes (M > 2n). You buy n tickets, and ask for the probability (P, say) of
winning at least one prize.

Since the order in which the tickets are drawn plays no role in the presence or
absence of winners in your purchase, we may suppose that the sample space has the
form

O={w:w=][ay,...,an], ax Za, k#1,a;=1,..., M}.

By Table 1.1, N(Q2) = C};. Now let
Ag={w:w=lar,...,a], ax #a, k#1lL,a,=n+1,... M}

be the event that there is no winner in the set of tickets you bought. Again by
Table 1.1, N(Ag) = Cj},_,,. Therefore

P(ao) — e — L

LA Y R S SO
M M—-1 M—-n+1
and consequently

P=1P(A0)=1(1]CI> <1M”_1>~--(1M_’;+1>.

If M = n? and n — o0, then P(Ay) — e~ ! and

P—>1-—e¢'~0632

The convergence is quite fast: for n = 10 the probability is already P = 0.670.
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6. PROBLEMS
1. Establish the following properties of the operators N and U:
AUB=BuUA, AB=BA (commutativity),
Au(BuUC)=(AuB)uC, A(BC)=(AB)C (associativity),
ABuUC)=ABUAC, Au (BC)=(AuUB)AuC) (distributivity),
AUA=A, AA=A (idempotency).
Show also the following De Morgan’s laws:
AUB=AnB, AB=AUB.
2. Let ) contain N elements. Show that Bell’s number By of different decompo-
sitions of {2 is given by the formula

1 J- kN
By=¢1) T (12)
k=0
(Hint: Show that
N—1
By = ) Ck_,Bi, where Bg=1,
k=0

and then verify that the series in (12) satisfy the same recurrence relations.)
3. For any finite collection of sets A1, ...,A,,

PAju---UA,) <P(A1) + -+ P(A)).

4. Let A and B be events. Show that AB U BA is the event in which exactly one of
A and B occurs. Moreover,

P(AB U BA) = P(A) + P(B) — 2P(AB).
5. LetAq,...,A, be events, and define Sy, S1, ..., S, as follows: So = 1,

S,:ZP(Aklm---mAk,), 1<r<n,
J;

where the sum is over the unordered subsets J, = [kq,...,k] of {1, ...,n},
ki # kj, i # j.
Let B,, be the event in which exactly m of the events Ay, ...,A, occur si-

multaneously. Show that

In particular, for m = 0

P(Bo)=1—S1+S;—---+S,.
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Show also that the probability that at least m of the events Ay, . .., A, occur
simultaneously is

P(B,) + -+ P(B,) = an (_1)r7mc:n:115r.

r=m

In particular, the probability that at least one of the events A1, ..., A, occurs is
P(Bi)+---+P(B,) =8 —Ss+---FS,.

Prove the following properties:
(a) Bonferroni’s inequalities: for any k = 1,2, ... such that 2k < n,

S1—SQ+"'_S21¢§P(UAI') <S1—S8So+ -+ So_1;

i=1

(b) Gumbel’s inequalities:

n R
S
P(UAi)g m"il, m=1,...,n,
r=1 Cnfl

where

1<ii<...<im<n

(c) Frechét’s inequalities:

m Slﬂ
(UA) m“f e m=1,...,n—1.
Cn 1 Cn—l

6. Show that P(A n B n C) > P(A) + P(B) + P(C) — 2 and, by induction,

P(QA,) ZP —(n—1).

7. Explore the asymptotic behavior of the probabilities Py (n) in Example 7 under
various assumptions about n and M (for example: n = xM, M — o0, or n =
xvVM, M — oo, where x is a fixed number). Compare the results with the local
limit theorem in Sect. 6.

2 Some Classical Models and Distributions

1. Binomial distribution. Let a coin be tossed n times and record the results as an
ordered set (ay,...,a,), where a; = 1 for a head (“success”) and a; = 0 for a tail
(“failure”). The sample space is

={w:w="(ay,...,ay), a; =0,1}.
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To each sample point w = (ay, ..., a,) we assign the probability (“weight”)

p(w) = p=iq" ==,
where the nonnegative numbers p and ¢ satisfy p + ¢ = 1. In the first place, we
verify that this assignment of the weights p(w) is consistent. It is enough to show
that 3 _,p(w) = 1.
Consider all outcomes w = (ay,...,a,) for which > .a; = k, where k =
0,1,...,n. According to Table 1.4 (allocation of k indistinguishable objects over
n places) the number of these outcomes is C¥. Therefore

D pw) = Z Cr'¢" ™ = +q" =1
k=0

we

Thus the space (2 together with the collection .7 of all its subsets and the proba-
bilities P(A) = >} ., p(w), A € & (in particular, P({w}) = p(w), w € ), defines
a discrete probabilistic model. It is natural to call this the probabilistic model for n
tosses of a coin. This model is also called the Bernoulli scheme.

In the case n = 1, when the sample space contains just the two points w = 1
(“success”) and w = 0 (“failure™), it is natural to call p(1) = p the probability of
success. We shall see later that this model for n tosses of a coin can be thought of as
the result of n “independent” experiments with probability p of success at each trial.

Let us consider the events
Ay ={w:w=(a1,...,ay), a1+ - +a, =k}, k=0,1,...,n,
containing exactly k successes. It follows from what we said above that
P(A)) = Cp'q"™, (1)

and >/ P(Ay) = 1.

The set of probabilities (P(Ao), ..., P(A,)) is called the binomial distribution
(the probability distribution of the number of successes in a sample of size n). This
distribution plays an extremely important role in probability theory since it arises in
the most diverse probabilistic models. We write P, (k) = P(A;), k = 0,1, ..., n.
Figure 1 shows the binomial distribution in the case p = % (symmetric coin) for
n = 5,10, 20.

We now present a different model (in essence, equivalent to the preceding one)
which describes the random walk of a “particle.”

Let the particle start at the origin, and after unit time let it take a unit step upward
or downward (Fig. 2).

Consequently after n steps the particle can have moved at most n units up or
n units down. It is clear that each path w of the particle is completely specified
by a vector (ay,...,a,), where a; = +1 if the particle moves up at the ith step,
and @; = —1 if it moves down. Let us assign to each path w the weight p(w) =
p’ @ g (@) where v(w) is the number of +1’s in the sequence w = (a1, . . ., a,),
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P(k) P, (k)
0.3 il 0.3 n=10
0.2 0.2
0.1 | 0.1 I ‘
1 | . |
0123435 k 0123454678910 Kk
P(k)
0.3 n =20
0.2
"Ll H“Hh
l | l l
>
12345678910 k
Fig. 1 Graph of the binomial probabilities P, (k) for n = 5, 10, 20
w
t +—»
n

Fig. 2

ie,v(w) =[(a1 + - + ay) + n]/2, and the nonnegative numbers p and g satisfy
p+qg=1

Since Y} _, p(w) = 1, the set of probabilities p(w) together with the space 2 of
paths w = (ay,...,a,) and its subsets define an acceptable probabilistic model of
the motion of the particle for n steps.

Let us ask the following question: What is the probability of the event A; that
after n steps the particle is at a point with ordinate £? This condition is satisfied by
those paths w for which v(w) — (n — v(w)) =k, i.e.,

n+k

v(w) = 5 k=-n-n+2,....n

The number of such paths (see Table 1.4) is C,(ln+k)/ 2, and therefore
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P(Ak) _ Cr(ln+k)/2p(n+k)/2q(n7k)/2.
Consequently the binomial distribution (P(A_,),...,P(Ao),...,P(A,)) can be
said to describe the probability distribution of the position of the particle after n
steps.
Note that in the symmetric case (p = ¢ = %) when the probabilities of the
individual paths are equal to 27",

P(Ay) = C{mt/2 27,

Let us investigate the asymptotic behavior of these probabilities for large n.
If the number of steps is 2n, it follows from the properties of the binomial coef-
ficients that the largest of the probabilities P(Ay), |k| < 2nis

P(Ao) = C3, 272",
From Stirling’s formula (see formula (6) below)
nl ~A2mne "n".*

Consequently
n (271)' ~ 22n . 1

= ()2 Jn

1
v’
Figure 3 represents the beginning of the binomial distribution for 2n steps of a
random walk (in contrast to Fig. 2, the time axis is now directed upward).

and therefore for large n

P(Ao) ~

Fig. 3 Beginning of the binomial distribution

* The notation f(n) ~ g(n) means that f(n)/g(n) — 1 asn — .
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2. Multinomial distribution. Generalizing the preceding model, we now suppose
that the sample space is

Q={w:w=(a1,...,an), ai="by,...,b},

where b1, ..., b, are given numbers. Let v;(w) be the number of elements of w =
(ai,...,a,) thatare equal to b;, i = 1, ..., r, and define the probability of w by

vy (w) .

plew) = “

v,
- p )

where p; > 0 and p; + - - - + p, = 1. Note that

Mpw) = D Caln..m)pipl,

weN n1>0, >0,
{”1+ st np=n }
where C,(ny,...,n,) is the number of (ordered) sequences (ai,...,a,) in which

b1 occurs ny times, ..., b, occurs n, times. Since n; elements b; can be allocated
among n positions in Cy;' ways; no elements by among n — np positions in C,2 |
ways, etc., we have

C”(nl’ T ’n") = C'ylll ’ Czinl e CZL(111+"'+nr—l)
_ n! (n—n)! .
Coml(n—ny)! nol(n—ny —no)!
n!
B I’l1! s I’lr!'
Therefore
— nl! 1 ny __ n __ 1
ZP(UJ)_ 2 n|.”n]p1'”pr_(p1+"’+pr) =4
weN {HI?LO"J}I’WZO.} : re
ni+---+n.=n

and consequently we have defined an acceptable method of assigning probabilities.
Let
Apy,om, = {w: 1(w) =ny,..., 1 (w) =nt.
Then
P(Anl,-..,nr) = C,,(nl,. -wnr)qu cepy (2)
The set of probabilities
{P(An,....n)}

is called the multinomial (or polynomial) distribution.
We emphasize that both this distribution and its special case, the binomial distri-
bution, originate from problems about sampling with replacement.

3. The multidimensional hypergeometric distribution occurs in problems that
involve sampling without replacement.
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Consider, for example, an urn containing M balls numbered 1, 2, ..., M, where
M balls have the color b1, ..., M, balls have the color b,,and M1 +-- -+ M, = M.
Suppose that we draw a sample of size n < M without replacement. The sample
space is

Q={w:w=_(ar,...,an), ax #ap, k#1l,a;,=1, ..., M}

and N(Q2) = (M),. Let us suppose that the sample points are equiprobable, and find
the probability of the event B,, ., in which n; balls have color by, ..., n, balls
have color b,, where n1 + - - - + n, = n. It is easy to show that

N(Bnl,...,n,.) = Cn(i’l1, e 7nr)(M1)n1 e (Mr)n,a

and therefore
P, )= YBnon) _ Cit, - Cyi, 3)
1yeeeslly N(Q) C;lll
The set of probabilities {P (B, ... )} is called the multidimensional hypergeo-
metric distribution. When r = 2 it is simply called the hypergeometric distribution
because its “generating function” is a hypergeometric function.
The structure of the multidimensional hypergeometric distribution is rather com-

plicated. For example, the probability

Ci C?
PBun,) = —5—2, m+ny=n My +My=M, 4)
Cy
contains nine factorials. However, it is easily established that if M, M; — o0 in such
a way that M1 /M — p (and therefore My /M — 1 — p) then

P(Buyny) = Col o™ (1= p)". ©)

In other words, under the present hypotheses the hypergeometric distribution is
approximated by the binomial; this is intuitively clear since when M and M; are
large (but finite), sampling without replacement ought to give almost the same result
as sampling with replacement.

Example. Let us use (4) to find the probability of picking six “lucky” numbers in
a lottery of the following kind (this is an abstract formulation of the “Sportloto,”
which was well known in Russia in 1970s—80s):

There are 49 balls numbered from 1 to 49; six of them are lucky (colored red,
say, whereas the rest are white). We draw a sample of six balls, without replacement.
The question is, What is the probability that all six of these balls are lucky? Taking
M =49, M, = 6, n; = 6, ny = 0, we see that the event of interest, namely

Bg,o = {6 balls, alllucky}

has, by (4), probability
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4. The numbers n! increase extremely rapidly with n. For example,

10! = 3,628, 800,
15! = 1,307, 674, 368, 000,

and 100! has 158 digits. Hence from either the theoretical or the computational point
of view, it is important to know Stirling’s formula,

nl = 27Tn(Z)nexp<192”n>, 0<6, <1, (6)

whose proof can be found in most textbooks on mathematical analysis.
5. PROBLEMS

1. Prove formula (5).

2. Show that for the multinomial distribution {P(A,, ., )} the maximum proba-
bility is attained at a point (kq, . .., k,) that satisfies the inequalities np; — 1 <
k<@m+r—Dp,i=1....r

3. One-dimensional Ising model. Consider n particles located at the points 1, 2,

., n. Suppose that each particle is of one of two types, and that there are n;
particles of the first type and ns of the second (ny + ny = n). We suppose that
all n! arrangements of the particles are equally probable.

Construct a corresponding probabilistic model and find the probability of
the event A, (m11, mi2, ma1, Maz) = {vi1 = mi1, ..., vag = maa}, where v;;
is the number of particles of type i following particles of type j (i, j = 1, 2).

4. Prove the following equalities using probabilistic and combinatorial argu-
ments:

i ck=2m,
k=0

Z(C]n()2 = C3,,
nka_ fn—lv m2”+1a

=m(m—1)2""2 m>2,

m

kCk = nCt1

n—1»

Crr?_zcj n— k7

WhereOgmgn,nggnandwesetC{=Of0rj<00rj>l.
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5. Suppose we want to estimate the size N of a population without total counting.
Such a question may be of interest, for example, when we try to estimate the
population of a country, or a town, etc.

In 1786 Laplace proposed the following method to estimate the number N of
inhabitants of France.

Draw a sample of size M, say, from the population and mark its elements.
Then return them into the initial population and assume that they become “well
mixed” with unmarked elements. Then draw n elements from the “mixed”
population. Suppose there are X marked elements among them.

Show that the corresponding probability Py ».,{X = m} is given by the for-
mula for the hypergeometric distribution (cf. (4)):

n n—m
CMCNfM

PN,M;n{X = m} = Cn
N

For fixed M, n and m find N maximizing this probability, i.e., find the “most
likely” size of the whole population (for fixed M and n) given that the number
X of marked elements in the repeated sample is equal to m.

Show that the “most likely” value (to be denoted by N)is given by the formula
(with [ - ] denoting the integral part):

N = [Mnm™].

The estimator N for N obtained in this way is called the maximum likelihood
estimator.
(This problem is continued in Sect. 7 (Problem 4).)

6. (Compare with Problem 2 in Sect. 1.) Let € contain N elements and let d (N)
be the number of different decompositions of € with the property that each
subset of the decomposition has odd number of elements. Show that

d(1)

1, d2)=1, d3)=2,
d(4): )

1 2
d(5) =12, d(6) =37

and, in general,

i a(”)xn sinhx __ 1’

=e x| < 1.
n!

n=1

3 Conditional Probability: Independence

1. The concept of probabilities of events lets us answer questions of the following
kind: If there are M balls in an urn, M; white and M black, what is the probabil-
ity P(A) of the event A that a selected ball is white? With the classical approach,
P(A) = M1/M.
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The concept of conditional probability, which will be introduced below, lets us
answer questions of the following kind: What is the probability that the second ball
is white (event B) under the condition that the first ball was also white (event A)?
(We are thinking of sampling without replacement.)

It is natural to reason as follows: if the first ball is white, then at the second step
we have an urn containing M — 1 balls, of which M; — 1 are white and M> black;
hence it seems reasonable to suppose that the (conditional) probability in question
is(My —1)/(M —1).

We now give a definition of conditional probability that is consistent with our
intuitive ideas.

Let (), <7, P) be a (discrete) probability space and A an event (i.e. A € &).

Definition 1. The conditional probability of event B given that event A, P(A) > 0,
occurred (denoted by P(B|A)) is

e))

In the classical approach we have P(A) = N(A)/N(§?), P(AB) = N(AB)/N(),
and therefore
N(AB)
N(4) -
From Definition 1 we immediately get the following properties of conditional
probability:

P(B[A) = 2

P(A]A) = 1,
P(2]4) =0,
P(B|A) =1, B2A,

P(By + By | A) = P(B1| A) + P(B2| A).

It follows from these properties that for a given set A the conditional probability
P(-|A) has the same properties on the space (d N A, & n A), where & N A =
{BnA: Be 4}, that the original probability P(-) has on (Q, &).

Note that

P(B|A) +P(B|A) = 1;

however in general

P(B|A) + P(B|A) # 1,

P(B|A) + P(B|A) # 1.
Example 1. Consider a family with two children. We ask for the probability that
both children are boys, assuming

(a) that the older child is a boy;
(b) that at least one of the children is a boy.
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The sample space is
Q) = {BB, BG, GB, GG},

where BG means that the older child is a boy and the younger is a girl, etc.
Let us suppose that all sample points are equally probable:

P(BB) = P(BG) = P(GB) = P(GG) = 1.

Let A be the event that the older child is a boy, and B, that the younger child
is a boy. Then A U B is the event that at least one child is a boy, and AB is the
event that both children are boys. In question (a) we want the conditional probability
P(AB|A), and in (b), the conditional probability P(AB|A U B).

It is easy to see that

P(AB|A) = Pééf)) -4
P(AB|A U B) = Fm -4- ;
4

2. The simple but important formula (3), below, is called the formula for total prob-
ability. It provides the basic means for calculating the probabilities of complicated
events by using conditional probabilities.

Consider a decomposition 2 = {Ay,...,A,} withP(A;) > 0,i=1,...,n(such
a decomposition is often called a complete set of disjoint events). It is clear that

B=BA; +---+BA,

and therefore

But
P(BA:) = P(B|A;) P(A)).

Hence we have the formula for total probability:
P(B) = ) P(B|A;) P(4)). (€)
i=1

In particular, if 0 < P(A4) < 1, then
P(B) = P(B|A)P(A) + P(B|A)P(A). “4)

Example 2. An urn contains M balls, m of which are “lucky.” We ask for the prob-
ability that the second ball drawn is lucky (assuming that the result of the first
draw is unknown, that a sample of size 2 is drawn without replacement, and that
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all outcomes are equally probable). Let A be the event that the first ball is lucky, and
B the event that the second is lucky. Then

m(m—1
P(BA) M(Mfl)) m—1

P(B|A) = = =
S
__ m(M—m)
P(B MM —1 m
P8 1) - o) - Mo -
M

and

P(B) = P(B|A)P(A) + P(B\Z)P )
m—1 m m M—m m

M1 M M-1 M M

It is interesting to observe that P(A) is precisely m/M. Hence, when the nature
of the first ball is unknown, it does not affect the probability that the second ball is
lucky.

By the definition of conditional probability (with P(A) > 0),

P(AB) = P(B|A)P(A). (5)

This formula, the multiplication formula for probabilities, can be generalized (by
induction) as follows: If Ay, ..., A,_; are events with P(A; ---A,_1) > 0, then

P(Ay---A,) =P(A1)P(A3|Ay) - -PA, |A1 - Auq) (6)

(here Ay - A, =A1nAs - N Ay).

3. Suppose that A and B are events with P(A) > 0 and P(B) > 0. Then along with
(5) we have the parallel formula

P(AB) = P(A|B) P(B). @)

From (5) and (7) we obtain Bayes’s formula

P(A|B) = (®)
If the events Ay, ...,A, form a decomposition of €2, (3) and (8) imply Bayes’s
theorem:

P(A;) P(B|A;)
Y1 P(A)P(BIA)

j=1

P(A;|B) =

€))

In statistical applications, Aq,...,A, (A1 + -+ + A, = ) are often called
hypotheses, and P(A;) is called the prior (or a priori)* probability of A;. The condi-

* Apriori: before the experiment; aposteriori: after the experiment.
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tional probability P(A; | B) is considered as the posterior (or the a posteriori) prob-
ability of A; after the occurrence of event B.

Example 3. Let an urn contain two coins: A1, a fair coin with probability % of falling
H; and A, a biased coin with probability % of falling H. A coin is drawn at random
and tossed. Suppose that it falls head. We ask for the probability that the fair coin
was selected.

Let us construct the corresponding probabilistic model. Here it is natural to take
the sample space to be the set 2 = {A;H, A;T, AoH, A;T}, which describes all
possible outcomes of a selection and a toss (A;H means that coin A; was selected
and fell heads, etc.) The probabilities p(w) of the various outcomes have to be as-
signed so that, according to the statement of the problem,

P(A1) = P(42) = 5

and

PH|A:) = 1, PH|A2) = 3.

With these assignments, the probabilities of the sample points are uniquely deter-
mined:

P(AiH) = 1, PAIT) =1, P(AH) =1}, P(AT)=1

Then by Bayes’s formula the probability in question is

P(A,)P(H|A;) 3
P(A1[H) = P(A1)P(H|A) + P(A) P(H|Ay) 5

and therefore
P(A2|H) = 2.

4. In certain sense, the concept of independence, which we are now going to in-
troduce, plays a central role in probability theory: it is precisely this concept that
distinguishes probability theory from the general theory of measure spaces.

If A and B are two events, it is natural to say that B is independent of A if knowing
that A has occurred has no effect on the probability of B. In other words, “B is
independent of A” if

P(B|A) = P(B) (10)
(we are supposing that P(A) > 0).
Since
_ P(AB)
it follows from (10) that
P(AB) = P(A) P(B). (11)

In exactly the same way, if P(B) > 0 it is natural to say that “A is independent of
B if
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P(A|B) = P(A).

Hence we again obtain (11), which is symmetric in A and B and still makes sense
when the probabilities of these events are zero.
After these preliminaries, we introduce the following definition.

Definition 2. Events A and B are called independent or statistically independent
(with respect to the probability P) if

P(AB) = P(A) P(B).

In probability theory we often need to consider not only independence of events
(or sets) but also independence of collections of events (or sets).
Accordingly, we introduce the following definition.

Definition 3. Two algebras «7; and <% of events (or sets) are called independent or
statistically independent (with respect to the probability P) if all pairs of sets A; and
Ao, belonging respectively to o) and <7, are independent.

For example, let us consider the two algebras
JZ{1 = {Alagla @’ Q} and % = {A2>X2a @7 Q},

where A; and A, are subsets of 2. It is easy to verify that <7} and .o% are indepen-
dent if and only if A; and A5 are independent. In fact, the independence of <7 and
a7y means the independence of the 16 pairs of events A; and Ay, A1 and Ag, ...,
and Q2. Consequently A; and A5 are independent. Conversely, if A; and A5 are inde-
pendent, we have to show that the other 15 pairs of events are independent. Let us
verify, for example, the independence of A; and A,. We have

P(A4142) = P(A1) = P(A142) = P(A1) — P(41) P(42)

= P(A1) - (1 — P(A2)) = P(A1) P(A2).
The independence of the other pairs is verified similarly.

5. The concept of independence of two sets (events) or two algebras of sets can be
extended to any finite number of sets or algebras of sets.

Definition 4. We say that the sets (events) A1, ..., A, are mutually independent or
statistically independent (with respect to the probability P) if forany k = 1,....,n
and1§i1<i2<~--<ik§n

P(A;, ...A;) =P(A;) ... P(4,). (12)

e
Definition 5. The algebras <71, ..., of sets (events) are called mutually inde-
pendent or statistically independent (with respect to the probability P) if any sets
A1, ...,A, belonging respectively to &7, . . ., <7, are independent.
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Note that pairwise independence of events does not imply their independence. In
fact if, for example, 2 = {w1, w2, ws,w,} and all outcomes are equiprobable, it is
easily verified that the events

A= {w,wa}, B={wi,wz}, C={w,wi}
are pairwise independent, whereas
P(ABC) = 1 # (3)* = P(A) P(B) P(C).

Also note that if
P(ABC) = P(A) P(B)P(C)

for events A, B and C, it by no means follows that these events are pairwise indepen-
dent. In fact, let  consist of the 36 ordered pairs (i,;), where i, j = 1,2, ..., 6 and
all the pairs are equiprobable. Then if A = {(i, j): j =1, 2 or5}, B = {(i,j): j =
4, 50r6}, C = {(i,j): i +j =9} we have

P(AC) = 55 # 1« = P(A)P(0),
P(BC) = {5 # 15 = P(B)P(C),

but also
P(ABC) = . = P(A) P(B) P(C).

6. Let us consider in more detail, from the point of view of independence, the clas-
sical discrete model (2, <7, P) that was introduced in Sect. 2 and used as a basis for
the binomial distribution.

In this model

Q={ww= (a1,...,ay), a;=0,1}, ' ={A:A<Q}

and
p(w) _ pZa,-qn—Za;. (13)

Consider an event A < (). We say that this event depends on a trial at time £ if it
is determined by the value a; alone. Examples of such events are

Av={w:aq =1}, A= {w:a =0}.

Let us consider the sequence of algebras ., %, . . . , oy, where <} = {Ay, Ay,
@, 1} and show that under (13) these algebras are independent.
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It is clear that

PA) = > plw)y= > pg

{w: =1} {w: =1}
=p Z pa1+~~+ak71+ak+1+~~+an

(@150 s @1, A 15050

n—1
% q(ﬂ—l)—((ll+"'+ak—1+ak+1+"'+an) =p Z CZ.L, 1, (n=1)—1 _

1Pq D,

=0

and a similar calculation shows that P(A;) = ¢ and that, for k # [,

P(AcA) =p*, P(AcA) =pq, P(AA) =pqg, PAA) =4¢>

It is easy to deduce from this that <% and 7 are independent for k # [.

It can be shown in the same way that <7} , 2%, . . . , 7, are independent. This is the
basis for saying that our model (€2, <7, P) corresponds to “n independent trials with
two outcomes and probability p of success.” James Bernoulli was the first to study
this model systematically, and established the law of large numbers (Sect. 5) for
it. Accordingly, this model is also called the Bernoulli scheme with two outcomes
(success and failure) and probability p of success.

A detailed study of the probability space for the Bernoulli scheme shows that it
has the structure of a direct product of probability spaces, defined as follows.

Suppose that we are given a collection (Q, %1,P1),..., (2, %y, P,) of dis-
crete probability spaces. Form the space @ = Q; x Qg x -+ x €, of points
w = (ai,...,a), where a; € Q;. Let o/ = %1 ® --- ® B, be the algebra of
the subsets of {2 that consists of sums of sets of the form

A:Bl XBQX"'XBn

with B; € %,. Finally, for w = (ay,...,a,) take p(w) = p1(a1)---pn(a,) and
define P(A) for the set A = B; X By X -+ x B, by

P(A) = > pi(ar)...pu(an).

{a1€B1,...,a,€B,}

It is easy to verify that P(€2) = 1 and therefore the triple (2, <7, P) defines a
probability space. This space is called the direct product of the probability spaces
(1, %1,P1),..., (2, B, Py).

We note an easily verified property of the direct product of probability spaces:
with respect to P, the events

Ay ={w:a; €B1}, ..., A, = {w: a, € B,},

where B; € %;, are independent. In the same way, the algebras of subsets of (2,
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ﬂl = {Ali Al = {w: ay EBl}, B1 € %1},

are independent.
It is clear from our construction that the Bernoulli scheme

(Q, o, P)withQ = {w: w= (a1, ..., ay), a; =0or 1},
o =1{A: A C Q}and p(w) = p=%ig" =%

can be thought of as the direct product of the probability spaces (£2;, %;, P;), i = 1,
2,...,n, where

Qi = {071}5 @i = {{0}7 {1}7 g, Qi}a
P.({1}) =p,  Pi({0}) =¢q.
7. PROBLEMS

1. Give examples to show that in general the equations
A)
A)

P(B|A) + P(
P(B|A) + P(

=1,

B|
B|

are false.

2. An urn contains M balls, of which M are white. Consider a sample of size n.
Let B; be the event that the ball selected at the jth step is white, and Ay the
event that a sample of size n contains exactly k white balls. Show that

P(B;[Ac) = k/n

both for sampling with replacement and for sampling without replacement.
3. LetAq,...,A, be independent events. Then

P (OA,) =1- ﬁp(gl)

4. Let Ay,...,A, be independent events with P(A;) = p;. Then the probability
Py that neither event occurs is

n

PO = H(l —p,‘).

i=1

5. Let A and B be independent events. In terms of P(A) and P(B), find the prob-
abilities of the events that exactly k, at least k, and at most k of A and B occur
(k=0,1,2).
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6.

7.

Fig. 4

9.

10.

11.
12.

13.

14.

15.
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Let event A be independent of itself, i.e., let A and A be independent. Show
that P(A) is either O or 1.

Let event A have P(A) = 0 or 1. Show that A and an arbitrary event B are
independent.

Consider the electric circuit shown in Fig. 4. Each of the switches A, B, C, D,
and E is independently open or closed with probabilities p and g, respectively.
Find the probability that a signal fed in at “input” will be received at “output.”
If the signal is received, what is the conditional probability that E is open?

A B
input E >—~oulpul
(‘\1)0
Let P(A + B) > 0. Show that
P(4)
PA|A+B) = =21 .
Al ) P(A) + P(B)

Let an event A be independent of events B,,, n > 1, such that B, n B; = &,
i # j. Then A and Ule B, are independent.

Show thatif P(A| C) > P(B|C) and P(A | C) > P(B| C), then P(A) > P(B).
Show that

P(A|B) = P(A|BC) P(C|B) + P(A|BC) P(C|B).

Let X and Y be independent binomial random variables with parameters
(n,p).* Show that

k ~m—k
Cn Cn
m 9
C2n

PX=k|X+Y=m)= k=0,1,...,min(m,n).

Let A, B, C be pairwise independent equiprobable events such that AnBNC =
@. Find the largest possible value of the probability P(A).

Into an urn containing one white ball another ball is added which is white
or black with equal probabilities. Then one ball is drawn at random which
occurred white. What is the conditional probability that the ball remaining in
the urn is also white?

* See (2) in the next section. Translator.
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4 Random Variables and Their Properties

1. Let (2, 7, P) be a discrete probabilistic model of an experiment with a finife
number of outcomes, N(Q2) < oo, where 7 is the algebra of all subsets of 2. We
observe that in the examples above, where we calculated the probabilities of various
events A € 7, the specific nature of the sample space {2 was of no interest. We
were interested only in numerical properties depending on the sample points. For
example, we were interested in the probability of some number of successes in a
series of n trials, in the probability distribution for the number of objects in cells,
etc.

The concept “random variable,” which we now introduce (later it will be given a
more general form), serves to define quantities describing the results of “measure-
ments” in random experiments.

Definition 1. Any numerical function § = £(w) defined on a (finite) sample space
Q is called a (simple) random variable. (The reason for the term “simple” random
variable will become clear after the introduction of the general concept of random
variable in Sect. 4, Chap. 2).

Example 1. In the model of two tosses of a coin with sample space 2 = {HH, HT,
TH, TT}, define a random variable £ = £(w) by the table

w HH| HT| TH| TT
£(w) 2 1 1 0

Here, from its very definition, £(w) is nothing but the number of heads in the
outcome w.

Another extremely simple example of a random variable is the indicator (or char-
acteristic function) of aset A € o :

§=I(w),

where*
1, weA,
Ia(w) = {0, w ¢ A.

When experimenters are concerned with random variables that describe observa-
tions, their main interest is in the probabilities with which the random variables take
various values. From this point of view they are interested, not in the probability dis-
tribution P on (2, <), but in the probability distribution over the range of a random
variable. Since we are considering the case when (2 contains only a finite number
of points, the range X of the random variable ¢ is also finite. Let X = {x1, ..., X},
where the (different) numbers x1, ..., x,, exhaust the values of £.

* The notation I(A) is also used. For frequently used properties of indicators see Problem 1.
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Let 2 be the collection of all subsets of X, and let B € 2". We can also interpret
B as an event if the sample space is taken to be X, the set of values of .
On (X, Z7), consider the probability P¢(-) induced by & according to the formula

P¢(B) = P{w: {(w)e B}, Be XZ.
It is clear that the values of this probability are completely determined by the prob-
abilities

Pe(x;) = P{w: E(w) = x;}, x€eX.

The set of numbers {P¢(x1), ..., Pe(xn)} is called the probability distribution
of the random variable &.

Example 2. A random variable ¢ that takes the two values 1 and 0 with probabilities
p (“success”) and ¢ (“failure”), is called a Bernoulli* random variable. Clearly

Pe(x) =p¢**, x=0,1. (1)

A binomial (or binomially distributed) random variable & is a random variable
that takes the n + 1 values 0,1, ..., n with probabilities

Pe(x) =Cpq"™, x=0,1,...,n. 2)

Note that here and in many subsequent examples we do not specify the sample
spaces (2, <7, P), but are interested only in the values of the random variables and
their probability distributions.

The probabilistic structure of the random variables ¢ is completely specified by
the probability distributions {P¢(x;), i = 1, ..., m}. The concept of distribution
function, which we now introduce, yields an equivalent description of the proba-
bilistic structure of the random variables.

Definition 2. Let x € R. The function
Fe(x) = P{w: §(w) < x}

is called the distribution function of the random variable &.

Clearly
Fe(x) = >, Pe(x)
{i: x<x}
* We use the terms “Bernoulli, binomial, Poisson, Gaussian, ..., random variables” for what are
more usually called random variables with Bernoulli, binomial, Poisson, Gaussian, ..., distribu-

tions.
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and
Pe(x;) = Fe(xi) — Fe(xi —),

where Fe(x—) = limy 4, Fe(y).
If we suppose that x; < x3 < - -+ < X,,, and put F¢(xo) = 0, then

Pg(x,‘) = F&(X,‘) — Fg(x,‘_l), i= 1, ce., M.

The following diagrams (Fig. 5) exhibit P¢(x) and F¢(x) for a binomial random
variable.

Py(x)
™
-~ e
2L —
q — pﬂ
o 1 2 n
F¢(x)
l———— e ———— -
|E.D
| |
! |
LU
|
|
I
!
qﬂ
) VS = il
0 1 2 n

Fig. 5

It follows immediately from Definition 2 that the distribution function F¢ =
F¢(x) has the following properties:

(1) Fe(—0) =0, Fe(+0) = 1;
(2) Fe(x) is continuous on the right (F¢(x+) = Fe¢(x)) and piecewise constant.

Along with random variables it is often necessary to consider random vectors
¢ = (&,...,&) whose components are random variables. For example, when we
considered the multinomial distribution we were dealing with a random vector v =
(vi,...,v;), where v; = v;(w) was the number of elements equal to b;, i = 1,...,7,
in the sequence w = (ay, ..., a).

The set of probabilities

Pe(x1, ..., x) =Pl{w: & (w) =x1, ..., &(w) = x},
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where x; € X, the range of &;, is called the probability distribution of the random
vector £, and the function

Fe(x1, ..., x) =Pl{w: &(w) <x1, .0, & (w) < x},

where x; € R!, is called the distribution function of the random vector & =

(517 L) fr)

For example, for the random vector v = (v1, ..., v,) mentioned above,
PV(n17 IREN] nr) = Cn(nl, ey I’lr)pql .. p;lr
(see (2), Sect. 2).

2.Let &, ..., & be a set of random variables with values in a (finite) set X < R!.
Let 2 be the algebra of all subsets of X.

Definition 3. The random variables &1, ..., & are said to be (mutually) indepen-
dent if

Pl&o =x1, ..., & =x} =P{& =x} P{{ =x}
for all x1, ..., x, € X; or, equivalently, if

P{ieBr, ..., eB} =P{&eBi}---P{{ eB}
forall By, ..., B, e 2.

We can get a very simple example of independent random variables from the
Bernoulli scheme. Let

Q:{w:w:(ah"'7an)7ai:071}7 p(w):pxaiqn_zai
and &(w) = g; forw = (a1, ..., a,), i = 1, ..., n. Then the random variables
&1, &, ..., &, are independent, as follows from the independence of the events

Ay ={w:a; =1}, ..., A, = {w: a, = 1},
which was established in Sect. 3.

3. We shall frequently encounter the problem of finding the probability distributions
of random variables that are functions f (&1, ..., &) of random variables &1, ..., &,.
For the present we consider only the determination of the distribution of a sum
¢ = £ + n of random variables.

If ¢ and 7 take values in the respective sets X = {x1,...,x} and ¥ =
{¥1, ..., yi}, the random variable { = £ + 7 takes values in the set Z = {z: z =
Xi+y,i=1,...,k j=1,..., l}. Then it is clear that

P(z) =P{{=z} =P{{+n=2} = Y P{E=x, =y}

{G,)): xityj=z}
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The case of independent random variables ¢ and 7 is particularly important. In
this case

P{§ = xi, n =y} = P{§ = xi} P{n =y},

and therefore

k
PC(Z) = Z z 7} y] Z Z _xz) 3)

{G@0): Xi+y.f=2}

for all z € Z, where in the last sum P, (z — x;) is taken to be zero if z — x; ¢ Y.
For example, if £ and 7 are independent Bernoulli random variables, taking the
values 1 and 0 with respective probabilities p and ¢, then Z = {0, 1, 2} and

Pc(1) = Pe
P¢(2) = Pe(1) n(l) p’.

It is easy to show by induction that if &1, &s,. .., &, are independent Bernoulli
random variables with P{&; = 1} = p, P{& = 0} = ¢, then the random variable
¢ =& + - + &, has the binomial distribution

Pc(k) = Cip* g™, k=0,1,...,n )

4. We now turn to the important concept of the expectation, or mean value, of a
random variable.

Let (2, <7, P) be a (discrete) probability space and £ = £(w) a random variable
with values in the set X = {x1, ..., x¢}. f we putA; = {w: E=x}, i=1, ...,k
then £ can evidently be represented as

k
w) = D xl(Ay), )
i=1

where the sets A1, ..., Ay form a decomposition of €2 (i.e., they are pairwise disjoint
and their sum is €2; see Subsection 3 of Sect. 1).

Let p; = P{¢ = x;}. It is intuitively plausible that if we observe the values of
the random variable £ in “n repetitions of identical experiments,” the value x; ought
to be encountered about p; n times, i = 1, ..., k. Hence the mean value calculated
from the results of n experiments is roughly

1
;[”Plh + - px] = ZP[XL

This discussion provides the motivation for the following definition.
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Definition 4. The expectation® or mean value of the random variable £ = ZLI X;
I(4;) is the number

k
E& =) xPA). 6)
i=1

Since A; = {w: &{(w) = x;} and P¢(x;) = P(A;), we have

k
E& =) xiPe(x). (7)

i=1
Recalling the definition of F¢ = F¢(x) and writing
AFg(x) = Fe(x) — Felx—),

we obtain P¢ (x;) = AF¢(x;) and consequently

k
EE = inAFg(xi>. (8)

i=1

Before discussing the properties of the expectation, we remark that it is often
convenient to use another representation of the random variable &, namely

where By + -+ + B; = €, but some of the x; may be repeated. In this case E ¢

can be calculated from the formula ZJI _1 % P(B;), which differs formally from (6)
because in (6) the x; are all different. In fact,

Z xiP(B) = x; Z P(Bj) = x; P(A))

U x=xi} {t xf =xi}
and therefore 1 )
DA P(B) = > xP(A)).
j=1 i=1
5. We list the basic properties of the expectation:

(1) If€ > 0 then E€ > 0.

(2) E(a& +bn) = aEE + bEn, where a and b are constants.
(3) If§ = nthenEE > En.

@) [EEI <EI].

* Also known as mathematical expectation, or expected value, or (especially in physics) expecta-
tion value. (Translator of 1984 edition).
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(5) If € and n are independent, then EEn = EE - E.
6) (E|&n|)? < EE2 - En? (Cauchy-Bunyakovskii inequality).*
(7) If€ = I(A) then E € = P(A).

Properties (1) and (7) are evident. To prove (2), let

§= inI(Ai)a n= Z)’./I(Bj)-

Then
aE + b?] = (IZ)C,'I(Ai N Bj) + beJI(A, M Bj)
i,j i,J
= (ax; + by)I(A; 0 By)
i,J
and

E(a& + bn) = Z(ax,- + by;) P(A; N B))
iJ
= > ax; P(A;) + ) by; P(B))
i J
= ain P(A;) +b2yj P(B;)) =aE¢+bEn.
i J

Property (3) follows from (1) and (2). Property (4) is evident, since

Bl = | Xx Pa)] < Y lvl P(a) = Ee]

To prove (5) we note that

eor =€ (Nui) ) (Lwis)

= sziyjI(Ai M B]) = inyj P(Al M B])
ij i,J
= inyj P(A;) P(B))
J

i,j

_ (inm») (SwP) ~EcEn

37

where we have used the property that for independent random variables the events

Ai={w: {(w) =x} and B;={w:n(w) =y}
are independent: P(A; n B;) = P(4;) P(B,)).

* Also known as the Cauchy—Schwarz or Schwarz inequality. (Translator of 1984 edition).
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To prove property (6) we observe that
€ =Yx71A), n* =y 1(B)
i J

and

E¢® =) 5 PA), En*=)P(B).
i J

Let E€2 > 0, En? > 0. Put

I3 .
vEe T Ep

Since 2|¢77| < €2 + 772, we have 2E |£7j] < E£€2 + E#? = 2. Therefore E |€7| < 1
and (E[¢n])* <EE*-En?.

However, if, say, E£? = 0, this means that ), x? P(4;) = 0 and consequently
the mean value of £ is 0, and P{w: £(w) = 0} = 1. Therefore if at least one of
E &2 or En? is zero, it is evident that E |¢n] = 0 and consequently the Cauchy—
Bunyakovskii inequality still holds.

£ =

Remark. Property (5) generalizes in an obvious way to any finite number of ran-
dom variables: if &1, ..., & are independent, then

E& & =E& - ES,.
The proof can be given in the same way as for the case r = 2, or by induction.

Example 3. Let ¢ be a Bernoulli random variable, taking the values 1 and 0 with
probabilities p and g. Then

E€=1-P{¢=1}+0-P{&=0} =p.

Example 4. Let &y, ..., & be n Bernoulli random variables with P{§, = 1} =
p, P{& =0} =¢q,p+q =1 Thenif

Sp=&+ - +&

we find that
ES, =np.

This result can also be obtained in a different way. It is easy to see that E S,
is not changed if we assume that the Bernoulli random variables &1, ..., £, are
independent. With this assumption, we have according to (4)

P(S, = k) = Ckp*q" %, k=0,1,...,n
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Therefore
n n
ES, = >, kP(S, = k) = > kCip*q"™
k=0 k=0
n

n!
Z k- pkqn—k
= K(n—k)!

o " (n_1)| - o
,npkgl (k_1)!((n_1)_(k_1))!pk 1q( )= (k—1)

- (n—1)! 1 _(n—1)—I
=np Z P4 = np.
= M((n—1) =)

However, the first method is more direct.

6. Let & = > xil(A;), where A; = {w: {(w) = x;i}, and let ¢ = @({(w)) be a
function of {(w). If B; = {w: ¢(&(w)) = y;}, then

p(¢(w)) = Zyjl(Bj%

and consequently

Ev =) %PB) = yPs(). 9)
j j

But it is also clear that

P(EW)) = D px)I(A).
Hence, along with (9), the expectation of the random variable ¢ = (&) can be
calculated as

Ep(6) = ) o(xi)Pe(x)-

7. The important notion of the variance of a random variable ¢ indicates the amount
of scatter of the values of £ around E €.

Definition 5. The variance of the random variable £ (denoted by Var &) is
Var¢ = E(¢ — E€)?

The number o = ++/Var¢ is called the standard deviation (of ¢ from the mean
value E &).

Since

E(€—E¢)* =E(&* - 26-E¢ + (EE)?) = EE* — (E¢)?,
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we have

Var¢ = E€2 — (E€)2.
Clearly Var ¢ > 0. It follows from the definition that

Var(a + b¢) = b?> Varé, where a and b are constants.

In particular, Vara = 0, Var(b§) = b? Var €.
Let £ and 7 be random variables. Then

Var(€ +1) = E((€ —E&) + (n —En))®
= Var{ + Varn+ 2E(§ —E¢&)(n— En).

Write
Cov(§, n) =E(—E&)(n—En).

This number is called the covariance of & and 7. If Var £ > 0 and Varn > 0, then

Cov(¢,n)
vVar - Varn

is called the correlation coefficient of £ and 7. It is easy to show (see Problem 7
below) that if p(£, n) = +1, then £ and 7 are linearly dependent:

p(&;m) =

n=a&+b,

witha > 0if p(§, n) = landa < 0if p(&, ) = —1.
We observe immediately that if £ and n are independent, so are £ — E¢ and
n — En. Consequently by Property (5) of expectations,

Cov(&, m) =E(—EE)-E(n—En) =0.
Using the notation that we introduced for covariance, we have
Var(€ + n) = Var + Varn + 2 Cov (€, n); (10)

if & and 7 are independent, the variance of the sum £ + n is equal to the sum of the
variances,

Var(€ + n) = Var€ + Varn. (11)

It follows from (10) that (11) is still valid under weaker hypotheses than the in-
dependence of £ and 7). In fact, it is enough to suppose that ¢ and 7 are uncorrelated,
ie., Cov(&, ) =0.

Remark. If ¢ and 7 are uncorrelated, it does not follow in general that they are
independent. Here is a simple example. Let the random variable « take the values
0, w/2 and 7 with probability % Then £ = sina and 7 = cos «a are uncorrelated;
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however, they are stochastically dependent (i.e., not independent with respect to the
probability P):

Ple=1,n=1}=0+#§5=P{¢=1}P{n=1}.

Properties (10) and (11) can be extended in the obvious way to any number of
random variables:

Var (Z g,) = Z Var & + 2 Z Cov(&, &). (12)

i=1 i=1 i>j

In particular, if &1, ..., &, are pairwise independent (pairwise uncorrelated is suffi-

cient), then
Var (Z f,) = Z Var¢&;. (13)
i=1

i=1
Example 5. If ¢ is a Bernoulli random variable, taking the values 1 and 0 with
probabilities p and g, then

Varé = E(¢ —E&)? =E(€—p)® = (1 —p)’p +p*q = pq.

It follows that if &, ..., &, are independent identically distributed Bernoulli ran-
dom variables, and S, = &1 + - - - + &, then

Var S, = npq. (14)

8. Consider two random variables ¢ and 7). Suppose that only £ can be observed. If ¢
and 7 are correlated, we may expect that knowing the value of ¢ allows us to make
some inference about the values of the unobserved variable 7.

Any function f = f(£) of £ is called an estimator for . We say that an estimator
[* = f*(&) is best (or optimal) in the mean-square sense if

E(n —f*(€)* = inf E(n —f(€))%.

Let us show how to find the best estimator in the class of linear estimators () =
a + b¢. Consider the function g(a, b) = E(n — (a + b€))?. Differentiating g(a, b)
with respect to a and b, we obtain

W = —2E[n— (a + b&)],
6g(af;, R

whence, setting the derivatives equal to zero, we find that the best mean-square
linear estimator is A*(£) = a* + b*¢, where

~ Cov(&,n)



42 1 Elementary Probability Theory

In other words,

Ky Cov(&,n) _
(€)= En+ Var € € —EQ). (16)

The number E(n — \*(€))? is called the mean-square error of estimation. An
easy calculation shows that it is equal to

Cov?(&,m)

A% = E(y — X*(€))? = Varn -~

= Varn-[1-p*(& n)]. (A7)

Consequently, the larger (in absolute value) the correlation coefficient p(&, )
between £ and 7, the smaller the mean-square error of estimation A*. In particular,
if |p(&, n)| = 1 then A* = 0 (cf. Problem 7). On the other hand, if £ and 7 are
uncorrelated (p(&, ) = 0), then A*(§) = En, i.e., in the absence of correlation
between £ and 7 the best estimate of 7 in terms of £ is simply E 7 (cf. Problem 4).

9. PROBLEMS.
1. Verify the following properties of indicators Iy = I4(w):
Ip=0, Io=1, Ii+Iz=1,
Lap = Ia - I,

Iaop = Iy + Ip — Iyp.

The indicator of | J;_; A; is 1 —[]_,(1 — I4,), the indicator of | J'_, A; is
[T, (1 — L4,), the indicator of >} | A;is >, I4,, and
Inpp = (Ia —Ip)? =1y + Iz (mod 2),
where A AB is the symmetric difference of A and B, i.e., the set (A\B) U (B\A).
2. Let&q, ..., &, be independent random variables and
gmin = min(fl» sy fn)v gmax = max(fl, ey gn)
Show that
n n
P{émin > x} = [ [P{& > 5}, Plémax <3} = [ [P{& <.
i=1 i=1

3. Let&y,. .., &, be independent Bernoulli random variables such that
P{¢ =0} =1—-XNA, P{{=1}=NA,

where nand \; > 0,i = 1,...,n, are fixed and A > 0 is a small number.
Show that

n

P{&+ - +&=1}= <Z>\i>A+0(A2),

i=1

P&+ +& > 1} = 0(A?).
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4. Show that inf o, -, E(¢ — @)? is attained for a = E £ and consequently

inf E(¢—a)? = Var.

—00<a<xo

5. Let £ be a random variable with distribution function F¢(x) and let m, be a
median of Fe(x), i.e., a point such that

Felme—) <} < Fe(m,).

Show that
inf E|¢—al=E|¢—m,|

—o0<a<oo

6. Let P¢(x) = P{{ = x} and F¢(x) = P(§ < x}. Show that

Pagip(x) = Pe (x — b),

a

Fagip(x) = F (x — b)

a

fora > 0and —o0 < b < 0. If y > 0, then

Fea(y) = Fe(++/y) — Fe(—Y) + Pe(—/).

Let £ = max(¢, 0). Then

0, x <0,
F5+(x) = Fg(O), )CZO,
Fe(x), x>0.

7. Let £ and n be random variables with Varé > 0, Varn > 0, and let p =
p(&, n) be their correlation coefficient. Show that |p| < 1.If |p| = 1, there are
constants a and b such that 7 = a€ + b. Moreover, if p = 1, then

n—En §—-E¢

vVarn  4/Var

(and therefore a > 0), whereas if p = —1, then

n—En _ §-E¢
v/ Varn v/ Var €

(and therefore a < 0).
8. Let £ and 7 be random variables with E{ = Enp = 0, Var{ = Varn = 1 and
correlation coefficient p = p(&, 7). Show that

E max(£2, n%) <1+ /1 — p2.
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9. Use the equation
n n
Indicator of UA,- = H(l —1L,)
i=1 i=1

to prove the formula P(By) = 1 — S + So + - - - £ S, in Problem 4 of Sect. 1.

10. Let &1, ..., &, be independent random variables, 1 = ¢1(&1, ..., &) and
w2 = ©2(&+1, - - -, &), functions respectively of &1, ..., & and Eyq, - .-y Ep-
Show that the random variables ¢, and (5 are independent.

11. Show that the random variables &1, ..., &, are independent if and only if

Fepg, (01, -0y Xn) = Fey (x1) -+ Fe, ()
forall xq, ..., x,, where Fe, ¢ (x1, ..., %) = P{& <x1, ..., & < x,}.

12. Show that the random variable £ is independent of itself (i.e., £ and & are
independent) if and only if £ = const.

13. Under what conditions on £ are the random variables ¢ and sin £ independent?

14. Let £ and 7 be independent random variables and 1 # 0. Express the proba-
bilities of the events P{&n < z} and P{¢/n < z} in terms of the probabilities
Pe(x) and P,y (y).

15. Let &, n, ¢ be random variables such that || < 1, || < 1, |¢| < 1. Prove the
Bell inequality:

|E€C—En¢| <1-Eén.

(See, e.g., [46].)

16. Let k balls be independently thrown into n urns. (Each ball falls into any
specific urn with probability 1/n.) Find the expectation of the number of
nonempty urns.

5 The Bernoulli Scheme: I—The Law of Large Numbers

1. In accordance with the definitions given in Sect. 2, Subsection 1, forn = 1,2, ...,
a triple

(U, ,,P,) with Q, ={w: w= (a1,...,a,), a; = 0,1},

(M
h={A:AcQ}, Pu({w}) =p™q"™>" (¢=1-p)

is called a (discrete) probabilistic model of n independent experiments with two
outcomes, or a Bernoulli scheme.

In this and the next section we study some limiting properties (in a sense de-
scribed below) for Bernoulli schemes. These are best expressed in terms of random
variables and of the probabilities of events connected with them.
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We introduce random variables &,1, . . ., &, by taking &,;(w) = a;, i = 1,...,n,
where w = (ay,...,a,). As we saw above, the Bernoulli variables ,;(w) are inde-
pendent and identically distributed:

Pn{gni = ]-} =D, Pn{gni = O} =4dq, i = 17 AR

It is natural to think of &,; as describing the result of an experiment at the ith stage
(or at time i).
Let us put S,,0(w) = 0 and

Snk:§n1+"'+§nk7 k:L...,l’l.

For notational simplicity we will write S, for S,,,. As we found above, E, S, = np
and consequently

S,
E, " =p. @)
n

In other words, the mean value of the frequency of “success,” i.e., S,/n, coincides
with the probability p of success. Hence we are led to ask how much the frequency
S,/n of success differs from its probability p.

We first note that we cannot expect that, for a sufficiently small € > 0 and for
sufficiently large n, the deviation of S, /n from p is less than ¢ for all w, i.e., that

Sn(w)

n

—p‘ <e we, 3)
In fact, when 0 < p < 1,
S N
Pn{n zl} = Pn{gnl :17‘-~7§nn:1}:pa
Sy n
Pn{n :O} = Pn{fnl =0,~-,§nn=0}=q,

whence it follows that (3) is not satisfied for sufficiently small € > 0.

We observe, however, that for large n the probabilities of the events {S,/n = 1}
and {S,/n = 0} are small. It is therefore natural to expect that the total probability
of the events for which |[S,(w)/n] — p| > € will also be small when # is sufficiently
large.

We shall accordingly try to estimate the probability of the event

{o‘}: ‘[Sn(w)/n] _p‘ > 8}'
Forn > 1and 0 < k < n, write

) = Cipta
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Then
S

P,,{
n

”—p‘ze}= > Pk )
{k: [(k/n)—p|=e}

It was proved by J. Bernoulli that, as n — o0, the expression in the right-hand side
and hence the probability in the left-hand side tend to 0. The latter statement is
called the law of large numbers.

The analytic proof of this statement is rather involved, and we will prove that

Sﬂ
—p‘>€}—>0 as n— ®))

Pn{
n

by probabilistic methods. For this purpose we will use the following inequality,
which was established by Chebyshev.

Chebyshev’s (Bienaymé-Chebyshev’s) inequality. Ler (2, <7, P) be a (discrete)
probability space and § = £(w) a nonnegative random variable defined on (2, o).
Then

P{{=¢e} <E¢/e (6)

foralle > 0.

PROOF. We notice that
§=C8(E=e)+ &l <e) 28l =e) = el§ =),
where I(A) is the indicator of A. Then, by the properties of the expectation,
E¢>cEI(>e)=cP(>¢),

which establishes (6).
O

Corollary. [f¢ is any random variable defined on (2, o), we have for € > 0,

P{I¢| > e} < E[¢l/e,

P{lé] > e} = P{¢? > %} <E&?/e%,
P{l¢ — E¢| > &} < Varg/e?,

P (¢ —E¢|/+/Varg > ¢) < 1/2%.

(The last inequality represents the form in which Chebyshev obtained the in-
equality in his paper [16].)

Now we turn again to the probability space (1). Take £ = S, /n in the next-to-last
of inequalities (7). Then using (14) of Sect. 4, we obtain

p (|5 o | o Varu(Sa/n) _ Var,S, _ npg _ pg
N ep < = = = =<
n g? n2e2 n2¢2  pe?

)

= _pl>
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Therefore

Sy Pq 1

P, {22 —pl>el <L < , 8
{n p‘_g}_n€24n€2 ®

and, since € > 0 is fixed, this implies the law of large numbers (5).

Y

np — ne o np + ne

Fig. 6

It is clear from (4) and (5) that

P,(k) - 0, n— 0. ©))
{k: |(k/n)—plze}

We can clarify this graphically in the following way. Let us represent the bino-
mial distribution {P,(k), 0 < k < n} as in Fig. 6.

Then as n increases the graph spreads out and becomes flatter. At the same time
the sum of P, (k) over k, for which np — ne < k < np + ne, tends to 1.

Let us think of the sequence of random variables S,o, Sy1, - - - , Sun as the path of
a wandering particle. Then (9) has the following interpretation.

Let us draw lines from the origin of slopes kp, k(p+¢), and k(p —¢). Then on the
average the path follows the kp line, and for every € > 0 we can say that when 7 is
sufficiently large there is a large probability that the point S, specifying the position
of the particle at time 7 lies in the interval [n(p — ), n(p + €)]; see Fig. 7.

The statement (5) goes by the name of James Bernoulli’s law of large numbers.
We may remark that to be precise, Bernoulli’s proof consisted in establishing (9),
which he did quite rigorously by using estimates for the “tails” of the binomial prob-
abilities P, (k) (for the values of k for which |(k/n) — p| > ¢). A direct calculation
of the sum of the tail probabilities of the binomial distribution >} .|/, —pj>e Pn(k)
is rather difficult problem for large n, and the resulting formulas are ill adapted for
actual estimates of the probability with which the frequencies S,/n differ from p
by less than . Important progress resulted from the discovery by de Moivre (for
p= %) and then by Laplace (for 0 < p < 1) of simple asymptotic formulas for
P, (k), which led not only to new proofs of the law of large numbers but also to
more precise statements of both local and integral limit theorems, the essence of
which is that for large n and at least for k ~ np,

1
\/2mnpq

P(k) ~ e—(k—np)2/(2npq)’
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S,
kip + €)

Fig. 7

and

1 e\/n/pq
> Py(k) ~ Vor
{k: |(k/m)—p| <} T J=en/nlpg

2. The next section will be devoted to precise statements and proofs of these results.
For the present we consider the question of the real meaning of the law of large
numbers, and of its empirical interpretation.

Let us carry out a large number, say N, of series of experiments, each of which
consists of “n independent trials with probability p of the event C of interest.” Let
Si /n be the frequency of event C in the ith series and N. the number of series in
which the frequency deviates from p by less than e:

e 2y,

N. is the number of i’s for which |(S! /n) — p| < e.
Then by the law of large numbers
N./N ~ P (10)
where P, = P, {|(S}/n) — p| < &}.

3. Let us apply the estimate obtained above,

g

to answer the following question that is typical of mathematical statistics: what is
the least number n of observations which guarantees (for arbitrary 0 < p < 1) that

S 1
— > = 2 <
n p' N 6} Pulk) < 4ne?’ (in
ke (/m—pl><)

S

|

"—p'<5}>1—a, 12)
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where « is a given number (usually small)? (Here and later we omit the index »n of
P and the like when the meaning of the notation is clear from the context.)
It follows from (11) that this number is the smallest integer n for which

S 1
n )
T 42w

13)

For example, if & = 0.05 and € = 0.02, then 12500 observations guarantee that
(12) will hold independently of the value of the unknown parameter p.

Later (Subsection 5, Sect. 6) we shall see that this number is much overstated;
this came about because Chebyshev’s inequality provides only a very crude upper
bound for P{|(S,/n) — p| > €}.

4. Let us write

Cln, <) — {w S"fl‘”) —p’ < s} .

From the law of large numbers that we proved, it follows that for every € > 0 and
for sufficiently large n, the probability of the set C(n, €) is close to 1. In this sense it
is natural to call paths (realizations) w that are in C(n, €) typical (or (n, €)-typical).

We ask the following question: How many typical realizations are there, and what
is the weight p(w) of a typical realization?

For this purpose we first notice that the total number N(2) of points is 2", and
that if p = 0 or 1, the set of typical paths C(n, €) contains only the single path
(0,0, ...,0)or (1,1,...,1). However, if p = % it is intuitively clear that “almost
all” paths (all except those of the form (0,0, ..., 0) or (1,1,...,1)) are typical and
that consequently there should be about 2" of them.

It turns out that we can give a definitive answer to the question when 0 < p < 1;
it will then appear that both the number of typical realizations and the weights p(w)
are determined by a function of p called the entropy.

In order to present the corresponding results in more depth, it will be helpful to
consider the somewhat more general scheme of Subsection 2 of Sect.2 instead of
the Bernoulli scheme itself.

Let (p1,p2,---,pr) be a finite probability distribution, i.e., a set of nonnegative
numbers satisfying p; + - - - + p, = 1. The entropy of this distribution is

H = _ZPiIngia 14
i=1

with 0 -log 0 = 0. It is clear that H > 0, and H = 0 if and only if every p;, with one
exception, is zero. The function f(x) = —xlogx, 0 < x < 1, is convex upward, so
that, as we know from the theory of convex functions,

flo) o f) (M) .

r r
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Consequently

,
+ .+ + .+
H= —ZPi logp; < —r- LR g <p1 Pr> =logr.
P r r

In other words, the entropy attains its largest value for p; = --- = p, = 1/r (see
Fig. 8 for H = H(p) in the case r = 2).

If we consider the probability distribution (p1, pa, . .., p,) as giving the probabil-
ities for the occurrence of events A1,As,...,A,, say, then it is quite clear that the
“degree of indeterminacy” of an event will be different for different distributions.
If, for example, p; = 1, po = --- = p, = 0, it is clear that this distribution does
not admit any indeterminacy: we can say with complete certainty that the result of
the experiment will be A;. On the other hand, if p; = --- = p, = 1/r, the distri-
bution has maximal indeterminacy, in the sense that it is impossible to discover any
preference for the occurrence of one event rather than another.

H(p)

Fig. 8 The function H(p) = —plogp — (1 — p) log(1 — p)

Consequently it is important to have a quantitative measure of the indeterminacy
of different probability distributions, so that we may compare them in this respect.
As we will see, such a measure of indeterminacy is successfully provided by the
entropy; it plays an important role in statistical mechanics and in many significant
problems of coding and communication theory.

Suppose now that the sample space is

Q={w:w=(a1,...,an), ai=1,...,r}

and that p(w) = pi*“ .- i) where v;(w) is the number of occurrences of i in
the sequence w, and (p1, ..., p,) is a probability distribution.
Fore > 0andn =1,2,...,letus put

M—Pi

Cn, €) = {w

<eg, i—l,...,r}.

.

n

It is clear that
vi(w)
n

—Di

P(C(n, €)) > 1~ Z P{
i=1




5 The Bernoulli Scheme: I—The Law of Large Numbers 51

and for sufficiently large n the probabilities P{|(v;(w)/n) — p;| > ¢} are arbitrarily
small when 7 is sufficiently large, by the law of large numbers applied to the random

variables )
1, a =1,

&(w) = k=1,....n.
0) ak7éi7

Hence for large n the probability of the event C(n, ¢) is close to 1. Thus, as in the
case n = 2, a path in C(n, ¢) can be said to be typical.
If all p; > 0, then for every w € 2

p(w) = exp {nkZl <vk;w) 10gpk> } :

Consequently if w is a typical path, we have

zr} (—vkiw)logpa —H <~ Z

k=1 k=1

Vi (W 4
w@) g < —e > logpr

k=1

— Pk

It follows that for typical paths the probability p(w) is close to e~ and—since, by
the law of large numbers, the typical paths “almost” exhaust {2 when n is large—
the number of such paths must be of order ", These considerations lead us to the
following proposition.

Theorem (Macmillan). Letp; > 0, i = 1,...,r,and 0 < € < 1. Then there is an
ng = no(e; p1, - - ., pr) such that for all n > ng

(a) en(H—E) < N(C(I’l, 51)) < en(H-‘rs);
(b) e "H+e) < p(w) < e =2 we C(n, &);
() P(C(n,e1))= > plw) —1, n—> oo,

weC(n,e1)

where

g1 is the smaller of € and 5/ {—2 Z logpk} .

k=1

PROOF. Conclusion (c) follows from the law of large numbers. To establish the
other conclusions, we notice that if w € C(n, ;) then

npr —en < v (w) <npp+en, k=1,...,r,
and therefore

p(w) = exp{— Y vclogpi} < exp{—n ). pilogpr — e1n Y log pi}
< exp{—n(H — 3¢)}.
Similarly
p(w) > exp{—n(H + 3¢)}.

Consequently (b) is now established.
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Furthermore, since

P(C(n, 1)) > N(C(n, e1)) - min p(w),

weC(n,e1)
we have
P(C(n,e1)) L _ n(H+(1/2)e)
N(C(n, 1)) = — - p(w) = enErame €

weC(n,e1)
and similarly

P(C(n,e1))

werg(gﬁl)p(m

N(C(n, e1)) = > P(C(n, e1))e" = 1/22),

Since P(C(n, 1)) — 1, n — oo, there is an ny such that P(C(n, €1)) > 1 —¢
for n > nq, and therefore

N(C(n, e1)) > (1 — ) exp{n(H — 1)}
= exp{n(H —¢) + (ine +log(1 — ¢))}.
Let n5 be such that
%nﬁ +log(l—¢)>0

for n > ny. Then when n > ng = max(ny, ng) we have
N(C(n, 1)) > e"H=e)

This completes the proof of the theorem.
|

5. The law of large numbers for Bernoulli schemes lets us give a simple and elegant
proof of the Weierstrass theorem on the approximation of continuous functions by
polynomials.

Let f = f(p) be a continuous function on the interval [0, 1]. We introduce the
polynomials

n k B
B.(p) = > f <n) g, q=1-p, (15)
k=0

which are called Bernstein’s polynomials after the inventor of this proof of Weier-
strass’s theorem.

If &, ..., & is a sequence of independent Bernoulli random variables with
P{¢ =1} =p, P{¢, =0} =qgand S, =& + - + &, then

er (%) .0
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Since the function f = f(p), being continuous on [0,1], is uniformly continuous, for
every ¢ > 0 we can find § > 0 such that [f(x) — f(y)| < € whenever |x —y| <. Tt
is also clear that this function is bounded: |f(x)| < M < o0.

Using this and (8), we obtain

é;PUﬁ—f<ﬁ)]dw%“*

© 3 ()|

{k:| (k/n)—p| <6}

+ ) P(p) —f <z> ‘ g

{k:|(k/n)—p|>6}

f(p) — Bulp)| =

2M M
2 k n—k —
§€+2M Cnp <€+m—€+m.
{k:| (k/n)—p|>5}

Hence for Bernstein’s polynomials (15)

lim max If(p) — B.(p)| =0,

n—0o0 0<p<
which is the conclusion of the Weierstrass theorem.

6. PROBLEMS

1. Let £ and n be random variables with correlation coefficient p. Establish the
following two-dimensional analog of Chebyshev’s inequality:

1
P{l¢ —E¢| > ey/Varor |y — En| > ey/Varn} < S+ V1= p2).
(Hint: Use the result of Problem 8 of Sect. 4.)

2. Letf = f(x) be a nonnegative even function that is nondecreasing for positive
x. Then for a random variable £ with |{(w)| < C,

Ef(§) —f(e)
P >el> ——r 2
In particular, if f(x) = x2,
E¢? Var
B = <pe-Eg=q < YL
3. Let&y,. .., &, be asequence of independent random variables with Var §; < C.

Then
G+--+& E&G+-+6)

n n

26}3(2- (16)
ne

g
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(Inequality (16) implies the validity of the law of large numbers in more gen-
eral contexts than Bernoulli schemes.)

4. Let &, ..., &, be independent Bernoulli random variables with P{¢; = 1} =
p > 0,P{¢& = —1} = 1—p. Derive the following Bernstein’s inequality: there
is a number a > 0 such that

P{ % —(2p — 1)‘ > 5} < 2e_‘”52"7
where S, =&+ -+ &, and e > 0.
5. Let £ be a nonnegative random variable and @ > 0. Find sup P{x > a} over
all distributions such that:
(1) E¢ =20;
(i) E€ = 20, Var & = 25;
(iii)) E& = 20, Var £ = 25 and £ is symmetric about its mean value.

6 The Bernoulli Scheme: II—Limit Theorems (Local,
de Moivre-Laplace, Poisson)

1. As in the preceding section, let

Sn:€1+"'+£n-

Then g
E—==p, (1)
n
and by (14) of Sect. 4
2
Sn
E ( —p> _ P )
n n

Formula (1) implies that % ~ p, where the precise meaning of the equivalence
sign ~ has been provided by the law of large numbers in the form of bounds for

probabilities P{ S}—l — p‘ > 5}. We can naturally expect that the “relation”

o ©

’
n n

obtainable apparently as a consequence of (2), can also receive an exact probabilistic
meaning by treating, for example, the probabilities of the form

"—p‘<x pq}’ x € R,
n

{15

n

or equivalently
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S, —ES,

P{m <"}

(since E S,, = np and Var S,, = npq).
If, as before, we write

forn > 1, then

S, —ES, <
v/ Var$§,

d
We set the problem of finding convenient asymptotic formulas, as n — oo, for
P, (k) and for their sum over the values of k that satisfy the condition on the right-
hand side of (4).
The following result provides an answer not only for these values of k (that is,
for those satisfying |k — np| = O(,/npq)) but also for those satisfying |k — np| =

o(npq)*/3.

< } _ Pu(k). 4
{k: |(k—np)//npq| <x}

Local Limit Theorem. Let 0 < p < 1; then

1
\/2mnpq

uniformly in k such that |k — np| = o(npq)*®, more precisely, as n — o

P, (k) ~ o~ (k—np)*/(2npq) 5)

Py (k)

ey N0 ©)

sup T
{k: k=np|<e(m)} | 2rnpq

where p(n) = o(npq)?/>.

THE PROOF depends on Stirling’s formula (6) of Sect. 2
n!=+2mne”"n"(1 + R(n)),

where R(n) — 0 asn — o0.
Then if n — o0, k — o0, n — k — o0, we have

r n!
G = = k)!
7 V2 e n" 1+ R(n)
N \/mefkkk ce= (=) (n — )=k (1 + R(k))(1 + R(n — k))
1 .1+5(n,k,n—k)

k(-1 (G 0-5"™
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where ¢ = &(n, k, n — k) is defined in an evident way and ¢ — 0 asn — oo,
k — o0, n—k — o0.
Therefore

Py(k) = Goplq"™" = —(1+e).

Write p = k/n. Then

"0 e (3) (155) 009
= ﬁexp{klogl’; +(nk)1og1_§} C(1+¢)

- mexp{n [ilogng <l—i>log1:2]}(l+€)

L e aH@)( te),

A/ 2mnp(1l — p)

where 1
H(x) :xlog;7 + (1 —x)log 1 —*

We are considering values of & such that |k — np| = o(npq)?/®, and consequently
p—p—0,n— 0.

Since, for0 < x < 1,

1—
H’()c):logf—log1 al
1 1

H' _ -
&)=<+
1 1
H"(x) = -5+

if we write H(p) in the form H(p + (p — p)) and use Taylor’s formula, we find that
asn — o

H(p) = H(p) + H'(p)(p — p) + 3H"(p)(p — p)* + O(Ip — pI*)

5 (3 2 o-pr+ 00—
Consequently
1 no. 2 N 3
Pul) = o {qu(p —p)? +n0(p — pl >} (1+2)
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”(p_p)2_”<k_p>2_(k_”p)2.

Notice that

2pq 2pg \n 2npq
Therefore
1 2
P,(k) = ————e k=) /) (1 4 /(n k., n—k
() = e (1+€'(n, k, n = K)),
where

Lt e(n, ke n—K) = (14 (n, k, n— K)) expln O(p — p*)} &7

~
\
=

and, as is easily seen,
sup |¢'(n, k, n — k)| = 0, n— o0,

if the sup is taken over the values of k for which

k—np| < ¢(n), @(n) = o(npg)*®.

This completes the proof. o

Corollary. The conclusion of the local limit theorem can be put in the following
equivalent form: For all x € R* such that x = o(npq)l/ﬁ, and for np + x./npq an
integer from the set{0, 1, ..., n},

1 2
Pn — - x /2 7
(np + x\/npq) \/We ’ @
i.e.,asn— o,
P,(np + x\/npq
sup (1—5/2) — 10, ©
v WM} | e
16

where ¥ (n) = o(npq)

We can reformulate these results in probabilistic language in the following way:

P{Sk =k} ~ e CTPE0D | = o(upg)*?, (9)

\/2mnpgq
Sy —np } 1 —x2/2 1/6
P =xb ~ e , x=o(n . 10
{ Vnpq V2mnpq (ra) (1o

(In the last formula np + x,/npq is assumed to have one of the values 0, 1,...,n.)

If we put & = (k — np)/ /npq and Aty = 11 — t, = 1/,/npq, the preceding
formula assumes the form

S, —np Aty _e
PJ{= = b~ —e"%2 4 = o(npg)". 11
{ i k} or « = o(npq) (11
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It is clear that At = 1/,/npg — 0 and the set of points {#;} as it were “fills” the
real line. It is natural to expect that (11) can be used to obtain the integral formula

_ 1 b
P{a<S" npgb}~fe_x2/2dx, —w<a<b<ow.
A/ npq V21 Ja

Let us now give a precise statement.

2.For —0 <a <b < wlet

P,(a,b] = Z Py(np + x\/npq),

a<x<b

where the summation is over those x for which np + x,/npq is an integer.
It follows from the local theorem (see also (11)) that for all # defined by k =
np + ty/npq and satisfying |t;| < T < oo,

ll(np+tk\/np ) ﬁ 7lk/2|: +€(tk,l’l)], (12)
where
sup |e(t,n)| = 0, n— 0. (13)
[t <T

Consequently, if a and b are given so that —T < a < b < T, then

DT Pulnp + tey/npg) = ). e”f/2+ DT el n \ﬁ o /2

a<t;,<b a<tk<b a<t;,<b 2

_ E f e Pax + RV (@, b) + RP (0, b),  (14)

where

RV(a, b) = 3] Bt g L J ’ 2 gy
V2T V2T J, ’

a<ty<b
Aty 2
R®(a, b) = Z e(ty, n)—=e /2,
a<n<b V2r

From the standard properties of Riemann sums,

sup  |RV(a,b)| -0, n— 0. (15)
—T<a<b<T
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It also clear that

sup  |RY(a, b)|

—T<a<b<T
2
< sup |e(t, n)|- Z e Tl
| <T [0 < (16)
< sup |e(te, )]
n|<T

1 2
—x*/2 (1) ,
X e dx+ su R,/ (a, b 0
[v% J—T —Tgagbg' ( )]

where the convergence of the right-hand side to zero follows from (15) and from

1 1 © P
— 2 < f e P dx =1, 17
V2 J_ V2T a7

the value of the last integral being well known. We write

D (x) e 2 .

1
N vV 27T J—OO
Then it follows from (14)—(16) that

sup  |Py(a,b] — (®(b) — ®(a))] > 0, n— oo. (18)
—T<a<b<T

We now show that this result holds for 7 = oo as well as for finite 7. By (17),

corresponding to a given £ > 0 we can find a finite 7 = T'(¢) such that

T
- —2%/2 4 _1

e x> 1 E. (19)
V2T J—T 4

According to (18), we can find an N such that for all n > N and T = T'(¢) we have

sup  |Pu(a,b] — (®(b) — ®(a))| < is. (20)
—T<a<b<T

It follows from this and (19) that
P,(~T,T]>1—1i¢,
and consequently
Py(—0, T] + Py(T, ) < L,
where P,(—0, T] = limg| o P,(S, T] and P, (T, o) = limgpo Py(7T, S].
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Therefore for —c0 <a < T < T <b< w0,

SR
P,(a, b] — \/?f e /2 dx

T
gw(Tﬂ—Vz e 12 dx
+|Py(a, _T]_\/T?J e dx| + P,(T, b] — \ﬁf /2 dx
§i + P,(—o0, T]+—J **/de—kP(T o0)

J /2 gy < 15—% 15—:—1—15%—15 E.
ez 427 TR TR

By using (18) it is now easy to see that P, (a, b] tends to ®(b) — ®(a) uniformly
for —o0 < a < b < oo.

Thus we have proved the following theorem.

De Moivre-Laplace Integral Theorem. Ler 0 < p < 1,

P,(k) = Ckp*q" %, P,(a, b] = Z P,(np + x\/npq).

a<x<b

Then

1 (" .-
a, b| — — e /2 dx
Py(a, b] 5 )

In probabilistic language (21) can be stated in the following way:

sup
—w<a<b<oo

—0, n-— o. 1)

sup
—o0<a<b<o0

— 0, n— oo.

P{a<S"_ES"< } J *X/Q dx
v/ Vars§, V2T

It follows at once from this formula that

HA<&§BL—F<i%Z)—®(i%Z>}»Q 22)

as n — o0, whenever —o0 < A < B < o0.

Example. A true die is tossed 12000 times. We ask for the probability P that the
number of 6’s lies in the interval (1800, 2100].
The required probability is

1k 5 12000—k
ey am(D) ()
1800<k<2100
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An exact calculation of this sum would obviously be rather difficult. However,
if we use the integral theorem we find that the probability P in question is approxi-

mately (n = 12000, p = &, a = 1800, b = 2100)

2100 — 2000 > 1800 — 2000

4/12000- & - 2 4/12000- & - 2

~ ©(2.449) — B(—4.898) ~ 0.992,

= ®(V/6) — d(—26)

where the values of ©(2.449) and ®(—4.898) were taken from tables of ®(x) (this
is the normal distribution function; see Subsection 6 below).

3. We have plotted a graph of P,(np+x,/npq) (with x assumed such that np+x,/npq
is an integer) in Fig. 9.

Then the local theorem says that the curve (1/+/27npg)e* /2 provides a close
fit to P, (np + x,/npq) when x = o(npq)*/®. On the other hand the integral theorem
says that

P,(a, b] = P{a\/npq < S, — np < b\/npq}
= P{np + a/npg < S, < np + b\/npq}

is closely approximated by the integral (1/+/27) SZ e /2 dx.

P(np + x\/n}x;)‘

1 2
- .._.'h‘-‘-“‘-“"- ——— e_x‘lllz
- S W/ 2mnpg
// \\
// \\
N N SR R SR S EA SR S SR E R I
0
Fig. 9
We write s
n — np
F, = P,(—© =P
) = Palee ( {M—D
Then it follows from (21) that
sup |F,(x) — ®(x)] > 0, n— oo. (23)

—o0<x<00
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It is natural to ask how rapid the approach to zero is in (21) and (23), as n — 0.
We quote a result in this direction (a special case of the Berry—Esseen theorem: see
Sect. 11 in Chap. 3):

(24)

Fig. 10

It is important to recognize that the order of the estimate (1/,/mpg) cannot be
improved; this means that the approximation of F,(x) by ®(x) can be poor for values
of p that are close to 0 or 1, even when 7 is large. This suggests the question of
whether there is a better method of approximation for the probabilities of interest
when p or ¢ is small, something better than the normal approximation given by the
local and integral theorems. In this connection we note that for p = % say, the
binomial distribution {P,(k)} is symmetric (Fig. 10, left). However, for small p the
binomial distribution is asymmetric (Fig. 10, right), and hence it is not reasonable to
expect that the normal approximation will be satisfactory.

4. It turns out that for small values of p the distribution known as the Poisson distri-
bution provides a good approximation to {P,(k)}.
Let k ok n—k
Pu(k) = {Cnp g, k=0,1,...,n,
0, k=n+1n+2,...,

and suppose that p is a function p(n) of n.

Poisson’s Theorem. Let p(n) — 0, n — 0, in such a way that np(n) — X\, where
A>0.Thenfork =1,2,...,

P,(k) = m, n— oo, 25)
where

A=A
Tk = A )

k=0,1,.... (26)

THE PROOF is extremely simple. Since p(n) = (A/n) 4+ o(1/n) by hypothesis,
foragivenk =0,1, ... and n — o0,
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Pn(k) = Cﬁpkqnik

S e G RSO

nn—1)-(n—k+1) [2+o<i)]k

:n(l’l—1>""1k(n_k+1)[}\+0(1)]k_))\k, n— o,

A 1 n—k
[1—+0<>] - n—om,
n n

which establishes (25). o

But

and

The set of numbers {7y, k = 0,1,...} defines the Poisson probability distribu-
tion (my > 0, Y,;7 , m = 1). Notice that all the (discrete) distributions considered
previously were concentrated at only a finite number of points. The Poisson dis-
tribution is the first example that we have encountered of a (discrete) distribution
concentrated at a countable number of points.

The following result of Prokhorov exhibits the rate of convergence of P, (k) to 7y
asn — oo: if np(n) = A > 0, then

DTIPa(k) — | < 28 min(2, A). 27
k=0 n

The proof of a somewhat weaker result is given in Sect. 12, Chap. 3.

5. Let us return to the de Moivre—Laplace limit theorem, and show how it implies
the law of large numbers. Since

(el

it is clear from (21) that for e > 0

S, —np
npq

n
SE }7
pq

Sn 1 e~/n/pq
P{_p‘<5}_J e Pdv—0, n—>o, (28
n V21 J_e\/ulp

whence

S
"—p‘ﬁe}—ﬂ, n— o,

p{|

which is the conclusion of the law of large numbers.
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From (28)
S 1 EM 2
n 27 J—er/njpq

whereas Chebyshev’s inequality yielded only
Sn
=)o

n ne?’
It was shown in Subsection 3 of Sect.5 that Chebyshev’s inequality yielded the
estimate

n2 e (=m()

for the number of observations needed for the validity of the inequality

—p‘gs}zl—a.

Thus with ¢ = 0.02 and o = 0.05, 12500 observations were needed. We can now
solve the same problem by using the approximation (29).
We define the number k() by

1 (M,
_— X2 =1—
e X .
V2 Jk(a)
Since e4/(n/pq) > 2e+/n, if we define n as the smallest integer satisfying
2e/n > k(a) (30)

we find that

S”—p‘ﬁs}%l—a. a3

p{*

We find from (30) that the smallest integer n > ny () with

k2(a)]

4e2

na(a) = [

guarantees that (31) is satisfied, and the accuracy of the approximation can easily be
established by using (24).

Taking € = 0.02, o = 0.05, we find that in fact 2500 observations suffice, rather
than the 12500 found by using Chebyshev’s inequality. The values of k(«) have
been tabulated. We quote a number of values of k(«) for various values of «:

o 0,50 03173 0,10 0,05 0,0454 0,01 0,0027
k(a) 0,675 1,000 1,645 1,960 2,000 2,576 3,000
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6. The function

D(x /2 g, (32)

1 X
== e
V2 )
which was introduced above and occurs in the de Moivre—Laplace integral theorem,
plays an exceptionally important role in probability theory. It is known as the normal
or Gaussian distribution function on the real line, with the (normal or Gaussian)
density

42
e /2 xeR.

1
p(x) = E

_} _e—xl-'2
[ 1
[ 1
[
-+
. =0 »
| I o T1 1 " x
-3 =2 —1 1
0.67 1.96 2.58

Fig. 11 Graph of the normal probability density ¢(x)

We have already encountered (discrete) distributions concentrated on a finite or
countable set of points. The normal distribution belongs to another important class
of distributions that arise in probability theory. We have mentioned its exceptional
role; this comes about, first of all, because under rather general hypotheses, sums
of a large number of independent random variables (not necessarily Bernoulli vari-
ables) are closely approximated by the normal distribution (Sect. 4, Chap. 3). For the
present we mention only some of the simplest properties of ¢(x) and ®(x), whose
graphs are shown in Figs. 11 and 12.

The function p(x) is a symmetric bell-shaped curve, decreasing very rapidly
with increasing |x|: thus ¢(1) = 0.24197, ¢©(2) = 0.053991, ©(3) = 0.004432,
©(4) = 0.000134, ¢(5) = 0.000016. Its maximum is attained at x = 0 and is equal
to (2m)~ /2 ~ 0.399.

The curve ®(x)=(1/v2m) {* e~""/2dt approaches 1 very rapidly as x increases:
®(1) = 0.841345, ®(2) = 0.977250, ®(3) = 0.998650, ®(4) = 0.999968,
®(4.5) = 0.999997.

For tables of ¢(x) and ®(x), as well as of other important functions that are used
in probability theory and mathematical statistics, see [11].

It is worth to mention that for calculations, along with ®(x), a closely related
error function
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Fig. 12 Graph of the normal distribution function ®(x)

2 [ 2
erf(x) = —J e " dt, x>0,
VT o
is often used. Obviously, for x > 0,

X

O(x) = %[1 + erf(\/iﬂ, erf(x) = 20(v/2x) — 1.

7. At the end of Subsection 3, Sect.5, we noticed that the upper bound for the
probability of the event {w: |(S,/n) — p| > &}, given by Chebyshev’s inequal-
ity, was rather crude. That estimate was obtained from Chebyshev’s inequality
P{X > ¢} < EX?/e? for nonnegative random variables X > 0. We may, how-
ever, use Chebyshev’s inequality in the form

E X21<
g2k °

P{X > ¢} = P{X* > %) < (33)

However, we can go further by using the “exponential form” of Chebyshev’s in-
equality: if X > 0 and A > 0, this states that

P{X > e} = P{eM > M} <ENX9), (34)
Since the positive number A is arbitrary, it is clear that

P{X>e} < inf EetXe), (35)



6 The Bernoulli Scheme: II—Limit Theorems (Local, de Moivre-Laplace, Poisson) 67
Let us see what the consequences of this approach are in the case when X =

Sﬂ/nv Sn :gl +"‘+£m P(gl = 1) =D P(gl :0) =q,i> L.
Let us set ¢(\) = Ee*ét. Then

p(A) = 1—p+pe
and, under the hypothesis of the independence of &1,&o, ..., &,
EeM = [p(N)]".

Therefore (0 < a < 1)

P {ﬁ > a} < ;\n% Ee)\(S”/n—a) — inf e—n[Aa/n—log e(A/n)]
>

n A>0
_ igg e as—log ()] _ ,—nsupeolas—loge(s)] (36)
Similarly,
S ,
P {n" < a} < e "SUPs<olas—log o (s)] (37)

The function f(s) = as — log[1 — p + pe*] attains its maximum forp < a <1 at
the point so (f'(so) = 0) determined by the equation

%0 = Cl( _p) )
p(l—a)
Consequently,
supf(s) = H(a),
s>0
where

1—
H(a) =alogg—|—(1—a)log1 a
p

is the function that was used in the proof of the local theorem (Subsection 1).
Thus, forp <a <1

P {S > a} < eH@), (38)
n

and therefore, since H(p + x) > 2x2 and 0 < p 4+ x < 1, we have, for ¢ > 0 and
0<p<l,

P{S”—p>8} < e (39)
n

We can establish similarly that fora < p <1

P {S" < a} < e (40)

n
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and consequently, for every e > 0and 0 < p <1,

S, _
P{n—p<—s}<e 2ne’, (41)
Therefore,
S, _
P{n—p‘>5}<2e 2me? (42)

This implies that the number of observations n3(«)) which ensures the validity of
the inequality

Sn—p'SE}Zl—a, (43)

p{

for any 0 < p < 11s given by the formula

mla) = | 5. (44)

2e2

where [x] is the integral part of x. If we neglect “integral parts” and compare n3 ()
with 1 (o) = [(4ae?)~1], we find that

ni(a) 1
ny(a) 2a10g%

1o, alO0.

It is clear from this that when « | 0, an estimate of the smallest number of observa-
tions needed to ensure (43), which can be obtained from the exponential Chebyshev
inequality, is more precise than the estimate obtained from the ordinary Chebyshev
inequality, especially for small a.

Using the relation

_yz/Qdy~71 2y S

1 0
i e ’
V2T J; \V27x
which is easily established with the help of L"Hopital’s rule, one can show that
k*(a) ~ 2log %, a | 0. Therefore,

)

na ()
ns(«@)

-1, «alO0.

Inequalities like (38)—(42) are known as inequalities for the probability of large
deviations. This terminology can be explained in the following way.

The de Moivre-Laplace integral theorem makes it possible to estimate in a sim-
ple way the probabilities of the events {|S, — np| < x/n} characterizing the “stan-
dard” deviation (up to order 4/n) of S, from np, whereas the inequalities (39), (41),
and (42) provide bounds for the probabilities of the events {w: |S, — np| < xn},
describing deviations of order greater than 4/n, in fact of order n.
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We shall continue the discussion of probabilities of large deviations in more gen-
eral situations in Sect. 5, Chap. 4, Vol. 2.

8. PROBLEMS

1. Letn = 100, p = 0.1, 0.2, 0.3, 0.4, 0.5. Using tables (for example, those
in [11]) of the binomial and Poisson distributions, compare the values of the
probabilities

P{lO < S100 < 12}, P{20 < SIOO < 22},
P{33 < S100 < 35}, P{40 < S100 < 42},
P{5O < Si00 < 52}

with the corresponding values given by the normal and Poisson approxima-
tions.
2. Letp = % and Z,, = 2S5, — n (the excess of 1’s over 0’s in n trials). Show that

sup |v/mnP{Zs, = j} — efj2/4”| —0, n— oo
J

3. Show that the rate of convergence in Poisson’s theorem (with p = A\/n) is
given by
Ae=A
k!

222
<z

sup | P, (k) — .
sup (k) .

(It is advisable to read Sect. 12, Chap. 3.)

7 Estimating the Probability of Success in the Bernoulli Scheme

1. In the Bernoulli scheme (2, &7, P) with Q = {w: w = (x1, ..., x,), x; = 0,1)},
o ={A: A< Q}, P{w}) = p(w), where

pw) = p™ig" >,
we supposed that p (the probability of “success”) was known.

Let us now suppose that p is not known in advance and that we want to determine
it by observing the outcomes of experiments; or, what amounts to the same thing, by
observations of the random variables &1, . . ., &,, where £;(w) = x;. This is a typical
problem of mathematical statistics, which can be formulated in various ways. We
shall consider two of the possible formulations: the problem of point estimation and
the problem of constructing confidence intervals.

In the notation used in mathematical statistics, the unknown parameter is denoted
by 6, assuming a priori that 6 belongs to the set © = [0, 1]. The set of objects

& = (dev PO; 0e @) with Pg({w}) = Hzxi(l _ 9)”*EX1
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is often said to be the probabilistic-statistical model (corresponding to “n indepen-
dent trials” with probability of “success” § € ©), and any function 7,, = T, (w) with
values in © is called an estimator.

IfS, =& + -+ & and T} = S,/n, it follows from the law of large numbers
that T* is consistent, in the sense that (¢ > 0)

Po{|T) — 0| > e} >0, n— . (1)
Moreover, this estimator is unbiased: for every 6
Eo T, =0, 2

where Ey is the expectation corresponding to the probability Py.

The property of being unbiased is quite natural: it expresses the fact that any
reasonable estimate ought, at least “on the average,” to lead to the desired result.
However, it is easy to see that 7," is not the only unbiased estimator. For example,
the same property is possessed by every estimator

bixy + -+ byx
Tn: 141 . nn7

where by + - - - + b, = n. Moreover, the law of large numbers (1) is also satisfied
by such estimators (at least if |b;] < K < o0); and so these estimators T}, are just as
“good” as T)*.

By the very meaning of “estimator,” it is natural to suppose that an estimator is
the better, the smaller its deviation from the parameter that is being estimated. On
this basis, we call an estimator T}, efficient (in the class of unbiased estimators 7},) if

Varg T, = inf Vary T,, 0 €6, 3)

where Vary T, is the variance of Ty, i.e., Eg(T,, — 0)2.
Let us show that the estimator 7,*, considered above, is efficient. We have

Vary T* — Varg (Sn> _ Vary S, n9(12— 0) _ 6(1 — 9)' @
n n

n? n
Hence to establish that 7)* is efficient, we have only to show that

(1 — 0)

&)

iITlf Vary T,, >

This is obvious for ¢ = 0 or 1. Let § € (0,1) and
po(x;) = 04(1 — ).

It is clear that Py ({w}) = pg(w), where

po(w) = Hpe(xi)-
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Let us write

Ly(w) = log pg(w)-

Then
Ly(w) = logGin +log(1—6) Z(l —X)
and
0Ly (w) _ Dl —0)
06 6(1—0) "
Since

and since T, is unbiased,

0=Ey T, = Z T,,(OJ)pa (W)v

after differentiating with respect to , we find that

o) o (252) oLy(w)
O:;%:;[MPG(M)ZEG[ o0 ],
. (Z52) 1 anew)
= %}Tnm po(w) = Eg [Tn o0 ] .
Therefore
1= |1, - 0) 2|

and by the Cauchy-Bunyakovskii inequality,

1 < Eo[T, — 6] - E [aL"(w)]z7

00
whence
1
2
— 0% >
E0 [Tn 0] = 1’1(9) ) (6)

where

[ oLg(w)

is known as Fisher’s information.
From (6) we can obtain a special case of the Rao—Cramér inequality for unbiased
estimators 7),:

1
inf Varg T, >

T, T L(0) @
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In the present case
oL@ - [2E-01"  n0(1-0)  n
w0 =8| "5 | =& |55 = Gi-ap - aae

which also establishes (5), from which, as we already noticed, there follows the
efficiency of the unbiased estimator 7* = S, /n for the unknown parameter 6.

2. It is evident that, in considering 7,* as a point estimator for 6, we have intro-
duced a certain amount of inaccuracy. It can even happen that the numerical value
of T calculated from observations of xi, ..., x, differs rather severely from the
true value 6. Hence it would be advisable to determine the size of the error.

It would be too much to hope that T* (w) differs little from the true value 6 for all
sample points w. However, we know from the law of large numbers that for every
0 > 0 the probability of the event {|¢ — T;*(w)| > ¢} will be arbitrarily small for
sufficiently large n.

By Chebyshev’s inequality

Varg T¥  0(1 —0)

Po{|0 — T| > 0} < 52 L= 52

and therefore, for every A > 0,

9(1— 6) 1
Poll0—TF <M/ ——2 3 >1— —.
0{| n|— n } )\2

If we take, for example, A = 3, then with Py-probability greater than 0.8888
(since 1 — (1/3%) = 8 ~ 0.8889) the event

0(1—-20
0 —T7[<3 61 -6)
n
will be realized, and a fortiori the event
3
0—T* < —
0T < 5
since (1 — 6) < 1.
Therefore
3
0—TF < P T*——<0 TF + —— } > (.8888.
{ | xf} { 2v/n "+2\/ﬁ}

In other words, we can say with probability greater than 0.8888 that the exact value
of f isin the interval [T — (3/24/n), T + (3/2+/n)]. This statement is sometimes
written in the symbolic form

G:T;"J_r% (> 88%),

where “ > 88%” means “ in more than 88% of all cases.”
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The interval [T;F — (3/2+/n), T + (3/24/n)] is an example of what are called
confidence intervals for the unknown parameter.

Definition. An interval of the form

[¥1(w), P2(w)]

where 11 (w) and )2 (w) are functions of sample points, is called a confidence inter-
val of reliability 1 — 6 (or of significance level §) if

Po{r(w) <O <¢p(w)} 2194
forall § € ©.
The preceding discussion shows that the interval

A A

*

A L AT
[" NS ”wﬁ]

has reliability 1 —(1/)?). In point of fact, the reliability of this confidence interval
is considerably higher, since Chebyshev’s inequality gives only crude estimates of
the probabilities of events.

To obtain more precise results we notice that

{w: RS 9““’)} = o (T, m) < 0 < (T ),
n
where ¢ = 1 (T, n) and 1o = (T, n) are the roots of the quadratic equation
)\2
(9 - Tn*)2 = 79(1 - 0),

which describes an ellipse situated as shown in Fig. 13.

Fig. 13
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Now let

Then by (24) of Sect. 6

Slip |Fg(x) — @(x)] < m

Therefore if we know a priori that
0<A<HI<1I-A<1,

where A is a constant, then

1
Avn

sup [ Fy(x) — ®(x)] <

and consequently

2
> (20 -1 _—
> (2000~ 1)~ 57
Let A* be the smallest \ for which
2
20(\) — 1) — —— >1— 5%
R - 1) - 57 2 18,

where 0¥ is a given significance level. Putting 6 = 6* — (2/A+/n), we find that \*
satisfies the equation

1
d(N) =1-— 4.
N =1-3
For large n we may neglect the term 2/A+/n and assume that \* satisfies
* ]‘ *

In particular, if A* = 3 then 1 —¢* = 0.9973. ... Then with probability approx-
imately 0.9973

00L=0) _yge 4 [00=0)

n n

@®)



8 Conditional Probabilities and Expectations with Respect to Decompositions 75

or, after iterating and then suppressing terms of order O(n*S/ 4), we obtain

rr o3y TEUZTD g ope gy [TELZTE) ©)

Hence it follows that the confidence interval

% o

has (for large n) reliability 0.9973 (whereas Chebyshev’s inequality only provided
reliability approximately 0.8889).

To illustrate the practical meaning of this result, suppose that we carry out a large
number N of series of experiments, in each of which we estimate the parameter 6
after n observations. Then in about 99.73 % of the N cases the estimate will differ
from the true value of the parameter by at most 2%& (On this topic see also the end
of Sect.5.)

One should remember that the confidence interval (10) is approximate and valid
only for large n. For the construction of the exact confidence interval with appropri-
ate tables and references see [11].

3. PROBLEMS

1. Let it be known a priori that 6 takes values in the set ©¢ < [0, 1]. When does
an unbiased estimator for 6§ exist, taking values only in ©¢?

2. Under the conditions of the preceding problem, find an analog of the Rao—
Cramér inequality and discuss the problem of efficient estimators.

3. Under the conditions of the first problem, discuss the construction of confi-
dence intervals for 6.

4. In addition to Problem 5 in Sect.2 discuss the problem of unbiasedness and
efficiency of the estimator N assuming that N is sufficiently large, N » M, N >»
n. By analogy with the confidence intervals for 8 (see (8) and (9)), construct
confidence intervals [N — a(N), N + b(N)] for N such that

Py, u:nfN —a(N) <N <N+bN)} ~ 1-a,

where « is a small number.

8 Conditional Probabilities and Expectations with Respect
to Decompositions

1. Let (9, o7, P) be a finite probability space and

={Dy, ..., Dy}
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a decomposition of Q (D; € &, P(D;) >0, i=1,...,k,and Dy + -+ -+ Dy = Q).
Also let A be an event from 7 and P(A | D;) the conditional probability of A with
respect to D;.

With a set of conditional probabilities {P(A | D;),i = 1,. .., k} we may associate
the random variable

k
m(w) = > P(A[D)ip, () (1)

(cf. (5) of Sect. 4), that takes the values P(A | D;) on the atoms of D;. To emphasize
that this random variable is associated specifically with the decomposition 2, we
denote it by

P(A]2) or PA|2)(w)

and call it the conditional probability of the event A with respect to the decomposi-
tion 9.

This concept, as well as the more general concept of conditional probabilities
with respect to a o-algebra, which will be introduced later, plays an important role
in probability theory, a role that will be developed progressively as we proceed.

We mention some of the simplest properties of conditional probabilities:

P(A+B|2)=P(A|2)+P(B|2); 2)
if 7 is the trivial decomposition consisting of the single set €2 then
P(A|Q) = P(A). (3)

The definition of P(A | 2) as a random variable lets us speak of its expectation; by
using this, we can write the formula for total probability (see (3), Sect.3) in the
following compact form:

P(A[2) = P(A). )

In fact, since
k

PA|2) :Z (A| D)Ip, (w),

then by the definition of expectation (see (5) and (6), Sect. 4)

k
P(A]2) = Z (A|Di)P(D;) = Z P(AD;) = P(A).
i=1
Now let = n(w) be a random variable that takes the values y1,...,y; with

positive probabilities:
k
= > vilp, (@)
j=1

where D; = {w: n(w) = y;}. The decomposition Z,, = {D1, ..., Dy} is called the
decomposition induced by 7. The conditional probability P(A | 2,,) will be denoted
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by P(A |n) or P(A | n)(w), and called the conditional probability of A with respect to
the random variable 1. We also denote by P(A | = y;) the conditional probability
P(A|D;), where D; = {w: n(w) = y;}.

Similarly, if 11,72, ...,n, are random variables and %, ,,....5, is the decom-
position induced by 11, 12, . . . , N, With atoms

D.Y1,)’2,~~,ym = {w: 771(‘*)) =V nm(w) = ym}u

then P(A | Dy, 1y, ... n,,) Will be denoted by P(A | n1,72, ... ,m,) and called the con-
ditional probability of A with respect to 11, M2, . . ., M-

Example 1. Let £ and 7 be independent identically distributed random variables,
each taking the values 1 and 0 with probabilities p and g. For k = 0, 1, 2, let us find
the conditional probability P(£ + n = k|n) of the event A = {w: & + n = k} with
respect to 7.

To do this, we first notice the following useful general fact: if £ and 7 are inde-
pendent random variables with respective values x and y, then

PE+n=zln=y)=PE+y=2). (5)

In fact,

PE+n=2z|n=y)=

Y
—
=
I
=
o<
)
Il

=P +y=2).

Using this formula for the case at hand, we find that

P(+n=kln) = P{E+n=k[n=0)y-nw)
+P(E+n=kln=1)Iy-1(w)
P& =k)I—0)(w) + P{& =k — 1} -1y (w).

Thus

ql(n—oy (W), k=
P(§ +n= k | 77) = pl{n=0}<w) + q1{77=1}(w)7 k=
pl{n:l}(w)v k=

. (6)

or equivalently

) )
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2. Let £ = £(w) be a random variable with values in the set X = {x1,...,x,}:

!
§= ijIA,»(w)7 Aj = {w: § = x5},
j=1

and let 2 = {Dy,...,D;} be a decomposition. Just as we defined the expectation
of ¢ with respect to the probabilities P(A;),j = 1,...,1,

1
E¢ =) x5P(4)), ®)
j=1

it is now natural to define the conditional expectation of & with respect to & by using
the conditional probabilities P(4;| ), j = 1,...,1. We denote this expectation by
E(|2) or E(¢| 2)(w), and define it by the formula

E(¢|2) = Zx, 4,192). ©)

According to this definition the conditional expectation E(£ | 2)(w) is a random
variable which, at all sample points w belonging to the same atom D;, takes the
same value 25:1 x; P(A; | D;). This observation shows that the definition of E(¢ | 2)
could have been expressed differently. In fact, we could first define E(¢ | D;), the
conditional expectation of & with respect to D;, by

E(¢| D) Zx, AD( [(1,)])’ (10)

and then define .

E(¢|2)(w) = Y E(|Di)lp,(w (11)

i=1
(see the diagram in Fig. 14).

p() — & E¢

1(3-1)

(10)

P(| D) E(¢|D)
l(l) [(11)
P(12) —2— E¢|9)

Fig. 14

It is also useful to notice that E(£ | D) and E(¢ | 2) are independent of the repre-
sentation of &.
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The following properties of conditional expectations follow immediately from
the definitions:

E(a€+bn|2)=aE(|2)+bE(n|2), aandb constants; (12)
E|9) =EE (13)
E(C|2)=C, C constant; (14)

if £ = I4(w) then
E(¢[2) =P(A|2). (15)

The last equation shows, in particular, that properties of conditional probabilities
can be deduced directly from properties of conditional expectations.
The following important property extends the formula for total probability (4):

EE(|2) =E¢. (16)
For the proof, it is enough to notice that by (4)
! l !
EE(|2)=E) 5P| 2) = Y 5EP4;|2) = Y xP(4)) = EC.
j=1 j=1 j=1

Let 9 = {D1,...,Dy} be a decomposition and n = n(w) a random variable.
We say that n is measurable with respect to this decomposition, or Z-measurable,
if 7, < 2, 1i.e.,n = n(w) can be represented in the form

k
n(w) = ZYiID, (w),
i=1
where some y; might be equal. In other words, a random variable is Z-measurable
if and only if it takes constant values on the atoms of 2.

Example 2. If 2 is the trivial decomposition, Z = {1}, then 7 is 2-measurable if
and only if n = C, where C is a constant. Every random variable 7 is measurable
with respect to Z,.

Suppose that the random variable 7 is Z-measurable. Then
E(¢n|2) =nE(£|2) (17)

and in particular

Em|2)=n  (En[2Zy) =n). (18)
To establish (17) we observe that if £ = Z,l'=1 Xila;, then

Ik
&n = Z Z X;yila;p,
j=li=1
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and therefore

I
-~
'M’*

E(n|2) xyi P(A;Di | 2)

\
I

—_
I

—_

Il
M-~
M» i M»

i P(A;D; | Dy)Ip, ()

I
.MN-

~

Il
—

Il
—

x;yi P(A;D; | D;)Ip,(w)

I
-~
M»

xyi P(A; | Di)Ip, (w). 19)

~.

Il
fut

Il
—

On the other hand, since I,QJI, = Ip, and Ip, - Ip, = 0, i # m, we obtain

W)} : LZ x; P(A; | @)1

k i
P LZXJ'P(Alem)} p, ()

E€|2)

Il I
1~ I~
= =
= &
—~
&€
~—
|

which, with (19), establishes (17).

We shall establish another important property of conditional expectations. Let
21 and P, be two decompositions, with ) < Py (P is “finer” than 2;). Then
the following “telescopic” property holds:

E[E(E]22)| 21] = E(§| Z1). (20
For the proof, suppose that
P21 = {D11,...,D1n}, Do = {Day1,...,Da,}.
Then if { = ijl xjly,, we have
E(¢|2:) = Ex, (Aj| Zo),
j=1
and it is sufficient to establish that

E[P(Aj| Z2) | 21] = P(A;| 21). 21
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Since .
P(Aj| Z) = > P(Aj| Dag)lp,,,
g=1

we have

[ (A |@2 |@1 Z A |D2q D2q|@1)

=

P(Aj | D2q) LZ P(D2q | Dlp)]Dlp]

=1

<
Il
—

Ip,, - Z P(Aj |D2q) P(D2q | Dlp)

I
=

p=1 gq=1
m
=D b, D, P4 Do) P(Day | Dyy)
p=1 {q: D2,=Dy,}

P(A;D2) . P(Ds)
Z P(D2q) P(Dlp)

Il
=

Dy, °

b
I

{q: D2y=D1,}

Ip,, - P(Aj| D1y) = P(A; | 21),

1p

|
M=

<
Il
—

which establishes (21).

When Z is induced by the random variables 71,...,7m (i.e., Z = Dy, .. n.)
the conditional expectation E(£| 2, . ) Will be denoted by E(&|n1,...,m),
or E(¢|n1,...,m)(w), and called the conditional expectation of £ with respect to
My oo ke

It follows immediately from the definition of E(¢ | 7)) that if £ and ) are indepen-
dent, then

E(¢[n) = E¢. (22)
From (18) it also follows that
E(nln) =n. (23)

Using the notation E(§ | n) for E(¢| %), formula (16), which restates the for-
mula for total probability (4), can be written in the following widely used form:

EE(¢|n) = E&. 24)

(See also property (27) in Problem 3.)
Property (22) admits the following generalization. Let £ be independent of &
(i.e., for each D; € Z the random variables & and Ip, are independent). Then

E(¢|7) =E¢.
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As a special case of (20) we obtain the following useful formula:

E[E(Em1,7m2) [m] = E(E[m). (25)

Example 3. Let us find E(§ + 7| ) for the random variables £ and 7 considered in
Example 1. By (22) and (23),

E€+nln)=E{+n=p+n.
This result can also be obtained by starting from (8):

2

E(€+nln) = D kP(E+n="kln) =p(l—n)+qn+2pm=p+n.
k=0

Example 4. Let £ and 7 be independent and identically distributed random vari-

ables. Then
&+

E€|E+n) =EM|{+n) = 5 (26)

In fact, if we assume for simplicity that £ and 7 take the values 1,2, ..., m, we
find (1 <k<m, 2<1<2m)

P(f=k7§+77:l) P(f:k777=l_k)

P(=klE+n=1)

P&+n=1) —  PE+n=10
_PE=kPm=1-k _Pu=kPE=1-k
P+n=1) P+n=1)

Pin=k[{+n=1).

This establishes the first equation in (26). To prove the second, it is enough to notice
that

2E(|E+n) =EEIE+n) +EM[E+n) =EE+n[{+n) =E+n.

3. We have already noticed in Sect. 1 that to each decomposition & = {D;, ..., Dy}
of the finite set {2 there corresponds an algebra «(2) of subsets of 2. The converse
is also true: every algebra % of subsets of the finite space ) generates a decompo-
sition (% = a(2)). Consequently there is a one-to-one correspondence between
algebras and decompositions of a finite space €2. This should be kept in mind in con-
nection with the concept, which will be introduced later, of conditional expectation
with respect to the special systems of sets called o-algebras.

For finite spaces, the concepts of algebra and o-algebra coincide. It will turn out
that if 4 is an algebra, the conditional expectation E(¢ | #) of a random variable
& with respect to Z (to be introduced in Sect. 7, Chap. 2) simply coincides with
E(¢] 2), the expectation of £ with respect to the decomposition & such that # =
a(2). In this sense we can, in dealing with finite spaces in the future, not distinguish
between E(£ | #) and E(£ | 2), understanding in each case that E(€ | #) is simply
defined to be E(¢ | 2).



9 Random Walk: [—Probabilities of Ruin and Mean Duration in Coin Tossing 83

4. PROBLEMS.

1. Give an example of random variables ¢ and n which are not independent but
for which

E(¢[n) = ES.

(Cf. (22).)
2. The conditional variance of £ with respect to & is the random variable

Var(¢| 2) = E[(¢ ~ E(£]12))*| 2].

Show that
Var¢ = EVar(¢| 2) + VarE(¢| 2).

3. Starting from (17), show that for every function f = f(n) the conditional ex-
pectation E(£ | n) has the property

E[f(n) E(&[m)] = E[&F(n)]- 27

4. Let ¢ and 7 be random variables. Show that infy E(n — £(£))? is attained for
(&) = E(n]&). (Consequently, the best estimator for n in terms of &, in the
mean-square sense, is the conditional expectation E(7 | £)).

5. Let &y, ..., &,, T be independent random variables, where &1, . . . , &, are iden-
tically distributed and 7 takes the values 1,2,...,n. Show that if S; = & +
-+ + & is the sum of a random number of the random variables, then

E(S:|t) =tE&, Var(S; | 1) = tVar&;

and
ES.=Et E¢, VarS, = E1-Var¢;, + Vart- (E£;)?.

6. Establish equation (24).

9 Random Walk: I—Probabilities of Ruin and Mean
Duration in Coin Tossing

1. The value of the limit theorems of Sect.6 for Bernoulli schemes is not just
that they provide convenient formulas for calculating probabilities P(S, = k) and
P(A < S, < B). They have the additional significance of being of a universal na-
ture, i.e., they remain useful not only for independent Bernoulli random variables
that have only two values, but also for variables of much more general character.
In this sense the Bernoulli scheme appears as the simplest model, on the basis of
which we can recognize many probabilistic regularities which are inherent also in
much more general models.
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In this and the next section we shall discuss a number of new probabilistic regu-
larities, some of which are quite surprising. The ones that we discuss are again based
on the Bernoulli scheme, although many results on the nature of random oscillations
remain valid for random walks of a more general kind.

2. Consider the Bernoulli scheme (2, &7, P), where Q = {w: w = (x1,...,%,), i =
+1}, o/ consists of all subsets of 2, and P({w}) = p*@ ¢« with v(w) =
(X xi + n)/2. Let &(w) = x;, i = 1,...,n. Then, as we know, the sequence
&, ..., & is a sequence of independent Bernoulli random variables,

P&=1)=p, PE&=-1)=q, p+q=1

LetusputSo =0, Sy =& + -+ + &, 1 < k < n. The sequence S, S1, . ..,S,
can be considered as the path of the random motion of a particle starting at zero.
Here Sy11 = Sk + &, i.e., if the particle has reached the point S; at time k, then at
time k + 1 it is displaced either one unit up (with probability p) or one unit down
(with probability g).

Let A and B be integers, A < 0 < B. An interesting problem about this random
walk is to find the probability that after n steps the moving particle has left the
interval (A, B). Tt is also of interest to ask with what probability the particle leaves
(A,B) atAoratB.

That these are natural questions to ask becomes particularly clear if we interpret
them in terms of a gambling game. Consider two players (first and second) who start
with respective bankrolls (—A) and B. If §; = +1, we suppose that the second player
pays one unit to the first; if §; = —1, the first pays the second. Then Sy = &1+ - -+&
can be interpreted as the amount won by the first player from the second (if S; < 0,
this is actually the amount lost by the first player to the second) after k turns.

At the instant k < n at which for the first time Sy = B (S; = A) the bank-roll of
the second (first) player is reduced to zero; in other words, that player is ruined. (If
k < n, we suppose that the game ends at time k, although the random walk itself is
well defined up to time n, inclusive.)

Before we turn to a precise formulation, let us introduce some notation.

Let x be an integer in the interval [A, B] and for 0 < k < nlet §§ = x + Sy,

T =min{0 </ <k: S =Aor B}, (1)

where we agree to take Ty = kif A < §7 < Bforall0 <[ <k

For each kin 0 < k < n and x € [A, B], the instant T}, called a stopping time
(see Sect. 11), is an integer-valued random variable defined on the sample space €2
(the dependence of T; on w is not explicitly indicated).

It is clear that for all [ < k the set {w: T} = I} is the event that the random walk
{87, 0 < i < k}, starting at time zero at the point x, leaves the interval (A, B) at
time /. It is also clear that when [ < k the sets {w: T} = [, S = A} and {w: T} =
I, S} = B} represent the events that the wandering particle leaves the interval (A, B)
at time / through A or B respectively.
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For 0 < k < n, we write

A= Y {wit=1 5 = A},
0<I<k
#= > {w:t=1 8 =B},

0<I<k

2

and let
ax(x) = P(&),  Bilx) = P(%)

be the probabilities that the particle leaves (A, B) through A or B respectively, during
the time interval [0, k]. For these probabilities we can find recurrent relations from
which we can successively determine o (x), . . ., a,(x) and B1(x), ..., B.(x).

Let, then, A < x < B. It is clear that ap(x) = SBo(x) = 0. Now suppose
1 <k < n. Then by (3) of Sect.3

Pr(x) = P(F) = P(A|S1 =x +1)P(& = 1)
+P(F|S1 =x —1)P(& = -1)
PP(Z[$1 = x+1) +qP(%[S1 =x —1). 3)

We now show that
P(%|Si =x+1) =P(#Z]), P(Z|Si=x-1)=P(Z).
To do this, we notice that Z; can be represented in the form
B ={w: (5, x +&, ..., x +& + -+ &) € B,
where By is the set of paths of the form
(6, x+ X1, ., x+x1 4+ +x%)

with x; = +1, which during the time [0, k] first leave (A, B) at B (Fig. 15).

We represent B} in the form B, "' + By*™', where By**" and B! are the
paths in By for which x; = +1 or x; = —1, respectively.

Notice that the paths (x,x + 1,x + 1 4+ x2,...,x + 1 + xp + - -- + x;) in B
are in one-to-one correspondence with the paths

(x+1x+14x,...,x+14+x0,...,x+1+x0+ 4+ x)

in Bf_r% The same is true for the paths in Bxk’x_l. Using these facts, together with
independence, the identical distribution of &1, . . ., &, and (6) of Sect. 8, we obtain
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Fig. 15 Example of a path from the set B}

P(B | 81 =x+1)
=P(% & =1)
=P{(x,x+&,....x+ &+ -+ &) eEB & =1}
=P{(x+1Lx+1+&,....x+1+&+-+&) e BT}
=P{(x+1L,x+1+&,..., x+1+& +-+ & 1) e BT}
= P(#]).

In the same way,
P(#|S} =x—1) = P(%)).
Consequently, by (3), for x € (A, B) and k < n,

Br(x) = pBr—1(x + 1) + gfi—1(x — 1),

where
6i(B)=1, pBA)=0, 0<I<n.
Similarly
ag(x) = pag—1(x + 1) + gag_1(x — 1)
with

a(A)=1, oB)=0, 0<I <n.

“)

®)

(6)

Since ap(x) = Bo(x) = 0, x € (A, B), these recurrent relations can (at least in

principle) be solved for the probabilities

a1 (x),...,au(x) and  Bi(x),...,B.(x).

Putting aside any explicit calculation of the probabilities, we ask for their values for

large n.
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For this purpose we notice that since %;_,; < %5, k < n, we have Bi—1(x) <
Bi(x) < 1.1t is therefore natural to expect (and this is actually the case; see Subsec-
tion 3) that for sufficiently large n the probability 3, (x) will be close to the solution
B(x) of the equation

Bx) =pBx+1) +4gBx—1) M
with the boundary conditions
BB)=1,  B(A)=0 (8)

that result from a formal approach to the limit in (4) and (5).

To solve the problem in (7) and (8), we first suppose that p # g. We see easily
that the equation has the mwo particular solutions a and b(q/p)*, where a and b are
constants. Hence we look for a general solution of the form

B(x) = a+ b(q/p)". ©)

Taking account of (8), we find that forA < x < B

~ (a/p)* — (a/p)*
PO = (@l (10

Let us show that this is the only solution of our problem. It is enough to show
that all solutions of the problem in (7) and (8) admit the representation (9).

Let 3(x) be a solution with 5(A) = 0, 3(B) = 1. We can always find constants
a and b such that

a+bg/p)* = B(A),  a+blg/p)* =BA+1).
Then it follows from (7) that
B(A+2) =a+b(g/p)**”

and generally ~ R
Blx) = a+b(g/p)".
Consequently the solution (10) is the only solution of our problem.
A similar discussion shows that the only solution of

a(x) =pa(x+1)+qga(x—1), xe (A, B), (11)
with the boundary conditions

a(A)=1, «B)=0 (12)

a(x) = % A<x<B. (13)
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Ifp=gq-= %, the only solutions S(x) and «(x) of (7), (8) and (11), (12) are
respectively

—A
B = 5 (14)
and B
—X
alx) = 3 A (15)
We note that
a(x)+ B(x) =1 (16)

for0 <p<1.

We call a(x) and B(x) the probabilities of ruin for the first and second players,
respectively (when the first player’s bankroll is x — A, and the second player’s is
B — x) under the assumption of infinitely many turns, which of course presupposes
an infinite sequence of independent Bernoulli random variables &1, &o, . .., where
& = +11is treated as a gain for the first player, and & = —1 as a loss. The probabil-
ity space (2, 7, P) considered at the beginning of this section turns out to be too
small to allow such an infinite sequence of independent variables. We shall see later
(Sect. 9, Chap. 2) that such a sequence can actually be constructed and that 8(x) and
a(x) are in fact the probabilities of ruin in an unbounded number of steps.

We now take up some corollaries of the preceding formulas.

If we take A = 0, 0 < x < B, then the definition of 5(x) implies that this is
the probability that a particle starting at x arrives at B before it reaches 0. It follows
from (10) and (14) (Fig. 16) that

x/B, p=q=1/2
Bx) = {(q/ﬂ)‘—l ~ (a7
(@pr=1 P74

| -
L

Fig. 16 Graph of §(x), the probability that a particle starting from x reaches B before reaching 0

Now let ¢ > p, which means that the game is unfavorable for the first player,
whose limiting probability of being ruined, namely o = «(0), is given by
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(¢/p)” —1
(a/p)E — (g/p)*

Next suppose that the rules of the game are changed: the original bankrolls of the
players are still (—A) and B, but the payoff for each player is now %, rather than 1

o =

as before. In other words, now let P(& = 1) = p, P(& = —1) = ¢. In this case let
us denote the limiting probability of ruin for the first player by v ;. Then
(a/p)** —1

27 (q/p)? — (g/p)*

and therefore R
(¢/p)” +1

Qi = Q" ————7 > Q,
i (a/p)® + (a/p)*
if g > p.
Hence we can draw the following conclusion: if the game is unfavorable to the
first player (i.e., q > p) then doubling the stake decreases the probability of ruin.

3. We now turn to the question of how fast «,(x) and 3, (x) approach their limiting
values «(x) and 5(x).
Let us suppose for simplicity that x = 0 and put

Qp = Oén<0), ﬂn = 6n<0)a TYn = 1-— (an + ﬂn)

It is clear that
Y =P{A <S8 <B, 0<k<n},

where {A < S; < B, 0 < k < n} denotes the event

ﬂ {A < S, < B}.

0<k<n

Let n = rm, where r and m are integers and

=6t
<2:£m+1+"‘+£2m3

Then if C = |A| + B, it is easy to see that
A<S<B 1<k<m}e{|al<C...|¢|<Cl,

and therefore, since (1, . . ., (, are independent and identically distributed,

W <P{Gl<C . Gl <y =] ]PlGl < €} = (P{lal < cp. (18)
i=1
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We notice that Var (; = m[1 — (p — ¢)?]. Hence, for 0 < p < 1 and sufficiently
large m,

P{IG] < C} <&y, (19)

where £ < 1, since Var (; < C?if P{|¢;| < C} = 1.
If p = 0orp = 1, then P{|(1] < C} = 0 for sufficiently large m, and conse-
quently (19) is satisfied for 0 < p < 1.
It follows from (18) and (19) that for sufficiently large n
Yn <€ (20)
where ¢ = £1/" < 1.
According to (16), a + 8 = 1. Therefore

(a - an) + (B - Bn) = Tn;
and since o > «,,, 8 > 3,, we have

OSC){*OLHS’WLSF:”,
Ogﬂ_ﬁn§7n§€n7 e<l

There are similar inequalities for the differences a(x) — o, (x) and B(x) — B,(x).

4. We now consider the question of the mean duration of the random walk.
Let my(x) = E 1} be the expectation of the stopping time T}, k < n. Proceeding
as in the derivation of the recurrent relations for G (x), we find that, for x € (A, B),

mx) =Et = Y IP(t=10)

1<i<k

= 3 1 [pP( =116 = 1) + qP(t = 1] = ~1)]

1<I<k

= > Pt =1-1)+qP(g_] =1-1)]
1<I<k

= >, (+DpPEm =0 +qP( ] =)
0<i<k—1

=pmg_1(x + 1)+ gmp_1(x — 1)
+ >, PP =0 +4qP(m ) = 1)
0<I<k—1
=pmy_1(x+ 1) + gm_1(x — 1) + L.

Thus, for x € (A,B) and 0 < k < n, the functions my(x) satisfy the recurrent
relations
mp(x) =1+ pmy_1(x+ 1) + gmy—1(x — 1), 21
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with mg(x) = 0. From these equations together with the boundary conditions
mk(A) = mk(B) = 0, (22)

we can successively find mq (x), ..., m,(x).
Since my(x) < my41(x), the limit

m(x) = nli»nolo my(x)

exists, and by (21) it satisfies the equation
m(x) =14 pm(x + 1) + gm(x — 1) (23)
with the boundary conditions
m(A) = m(B) = 0. (24)
To solve this equation, we first suppose that
m(x) < oo, x¢€(A,B). (25)

Then if p # ¢ there is a particular solution of the form x/(¢q — p) and the general
solution (see (9)) can be written in the form

m(x)z_x+a+b(q>x.

pP—9q p
Then by using the boundary conditions m(A) = m(B) = 0 we find that
1

= (B5() + Aa() ~]. 26)

m(x)

where 3(x) and «(x) are defined by (10) and (13). Ifp = g = %, the general solution
of (23) has the form

m(x) = a+bx —x*,

and since m(A) = m(B) = 0 we have
m(x) = (B—x)(x—A). 27

It follows, in particular, that if the players start with equal bankrolls (B = —A),
then
m(0) = B?.

If we take B = 10, and suppose that each turn takes a second, then the (limiting)
time to the ruin of one player is rather long: 100 seconds.

We obtained (26) and (27) under the assumption that m(x) < o, x € (A, B). Let
us now show that in fact m(x) is finite for all x € (A, B). We consider only the case
x = 0; the general case can be analyzed similarly.
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Letp=¢g = % We introduce the random variable S;, = Sy, (w) defined in terms
of the sequence Sy, S1, . . ., S, and the stopping time T, = 1° by the equation

Z (W)= (w)- (28)

The descriptive meaning of Sy, is clear: it is the position reached by the random
walk at the stopping time 7,. Thus, if T, < n, then S;, = A or B; if T, = n, then
A<S, <B.

Let us show that whenp = ¢ = 3,

ES. =0, (29)
ES? =ET,. (30)

To establish the first equation we notice that

T T Z E[Skl{‘fn:k} (w)]

k=0
= D E[Sul g, ()] + Y E[(Sk = Su) gz, 1 ()]
k=0 k=0
= ESy+ D E[(Sk = Si)l(r,—1y ()], 31

k=0

where we evidently have E §,, = 0. Let us show that

ZE Sk = Su)l(z,=xy (w)] = 0.

To do this, we notice that {1, > k} = {A < S; < B,...,A < S; < B} when
0 <k <n. Theevent {A < S; < B,...,A < S, < B} can evidently be written in
the form

{w: (fl,...,fk)EAk}, (32)
where A; is a subset of {—1, +1}*. In other words, this set is determined by just the
values of €1, . .., & and does not depend on &1, . .., &,. Since

{t, =k} = {t, > k—1}\{1, > k},

this is also a set of the form (32). It then follows from the independence of
&, ..., & and from Problem 10 of Sect.4 that for any 0 < k < n the random
variables S, — Sy and I, are independent, and therefore

E[(Ss — Si)(r,=x}] = E[Su — Si] - El{g,—iy = 0.

Hence we have established (29).
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We can prove (30) by the same method:

ES‘%,, = 2 ES}%I{Tn:k} = Z E([Sn + (Sk — Sn>]21{7:,,:k})
k=0 k=0

= 2 [E Sy%I{rn:k} + 2 ESn(Sk — Sn)l{r,l:k}
=0

+E(S) = S0 r,—iy] = ESy — > E(Sy — S0 I, -1
k=0

=n— Y (n—k)P(t, =k) = zn:kP(r,,=k) —E7,.

k=0

Thus we have (29) and (30) whenp = g = % For generalpand g (p +g = 1) it
can be shown similarly that

ES‘rn = (p_CI)'ETna (33)
E[S;, —T.-E&]? = Varg - En,, (34)

where E& =p —¢q, Varé =1— (p — ¢)%

With the aid of the results obtained so far we can now show that lim,,_,, m,(0) =
m(0) < co.

If p =g =1, then by (30)

Et, < max(A?, B?). (35)
If p # g, then by (33),
Al B
Et, < max(|A], B) (36)
lp — 4

from which it is clear that m(0) < co.
We also notice that when p = g = %

Et, = ES%U = A2O¢n + BQﬁn + E[SZI{A<S,,<B}I{Tn:n}]
and therefore
A%a, + B%B, <Et, < A%, + B%B, + maX(AQ, Bz)'yn.

It follows from this and (20) that as n — oo, E 1, converges with exponential rate

to
B A
0) =A%a +B*3 =A% —— —B?>. —— = |AB].
m(0) = A% + B B A 54— A8l
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There is a similar result when p # g:

_ aA+ B

Et, — m(0
(0) g

exponentially fast.

5. PROBLEMS

1. Establish the following generalizations of (33) and (34):

ESt =x +(p—q)ET,
E[S; — T, -E&]? = Varg, - Ety + 4%,

2. Investigate the limits of a(x), 3(x), and m(x) when the level A | —c0.

3. Letp = g = 3 in the Bernoulli scheme. What is the order of E|S,| for large
n?

4. Two players toss their own symmetric coins, independently. Show that the
probability that each has the same number of heads after n tosses is
2720370 (CK)%. Hence deduce the equation »;_,(Cf)? = C3, (see also
Problem 4 in Sect. 2).

Let o, be the first time when the number of heads for the first player coin-
cides with the number of heads for the second player (if this happens within n
tosses; 0, = n + 1 if there is no such time). Find E min(o,, n).

10 Random Walk: II—Reflection Principle—Arcsine Law

1. As in the preceding section, we suppose that &1, &o, ..., &, iS a sequence of
independent identically distributed Bernoulli random variables with

P(gl:]') =D P(glzil) =q,
Sk=&+ " +& 1<k<2n So = 0.

We define
o9n = min{l <k < 2n: S, =0},

putting o, = 0 if S # 0 for 1 < k < 2n.

The descriptive meaning of o9, is clear: it is the time of first return to zero.
Properties of this time are studied in the present section, where we assume that the
random walk is symmetric,i.e.,p = q = 1

5
For 0 < k < n we write
us = P(Sox = 0), Sfox = P(o2, = 2k). e9)

It is clear that ug = 1 and
Ugy = Cgk . 272k.
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Our immediate aim is to show that for 1 < k < n the probability fo is given by

1
Su = oxl2tk-1)- 2
It is clear that
{oon =2k} = {S1 #0,8, #0, ..., So—1 # 0, St = 0}
for 1 < k < n, and by symmetry

for = P{S1 #0, ..., Syt—1 # 0, Sor = 0}
= 2P{S1 > O, ey S2k_1 > O, S2k = 0} (3)

A sequence (S, ...,Sy) is called a path of length k; we denote by Li(A) the
number of paths of length k having some specified property A. Then

S =2 Z Lop(S1>0,...,8% -1 >0,S% =0,

(a2k+17~“gan)

Soki1 = Aoki1s- -y Son = Aopy1 + -+ + Agy) - 27"
= 2Lo(S1 > 0,..., 891 > 0,8y = 0) - 27 % 4)
where the summation is over all sets (agg+1, . .. ,ds,) witha; = £1.

Consequently the determination of the probability fo; reduces to calculating the
number of paths Lgk(Sl >0,...,85%-1>0,5; = 0)

Lemma 1. Let a and b be nonnegative integers,a — b > 0 and k = a + b. Then

—b
Li(S1 > 0,...,8.1>0,S =a—b) = “Tcg. (5)

PROOEF. In fact,

Lk(Sl > 0,...,Sk,1 > 07Sk :a—b)
=L(S1=1,8>0,...,85%_1>0,S =a—>b)
:Lk(Sl = I,Sk :a—b) —Lk(Sl = 1,Sk :a—b;
and3i,2 <i<k—1,suchthat §; <0). (6)
In other words, the number of positive paths (S1,Sa, . .., S) that originate at (1, 1)

and terminate at (k,a — b) is the same as the foral number of paths from (1, 1) to
(k,a — b) after excluding the paths that touch or intersect the time axis.*

* A path (S1,...,S) is called positive (or nonnegative) if all S; > 0 (S; > 0); a path is said to
touch the time axis if §; > O orelse §; < 0, for 1 < j < k, and there is an i, 1 < i < k, such that
Si = 0; and a path is said to infersect the time axis if there are two times i and j such that S; > 0
and §; < 0.
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We now notice that

Li(S1 =1,8 = a—b;3i, 2<i<k—1, suchthat S; <0)
= L(S1 = —1, Sx =a—b), (7

i.e., the number of paths from o = (1,1) to 8 = (k, a —b), which touch or intersect

the time axis, is equal to the total number of paths that connect o* = (1, —1)

with (. The proof of this statement, known as the reflection principle, follows

from the easily established one-to-one correspondence between the paths A =

(S1,---,84,8a+1,---,5) joining o and 3, and paths B = (—S1,...,—S4,Su+1,

..., Sx) joining o* and B (Fig. 17); a is the first point where A and B reach zero.
From (6) and (7) we find

Lk(Sl >0,...,Sk_1>O,Sk=(1—b)

:Lk(S1=1, Sk=a—b)—Lk(S1=—1, Sk=a—b)
a— a a—b a
= Ckf% — Y1 T Tk ok

which establishes (5).
]

Fig. 17 The reflection principle

Turning to the calculation of fo, we find that by (4) and (5) (witha = k, b =
k—1),

fgk = 2L2k(S1 > O, ce ,Sgk_l > O,Sgk = O) . 2721{
= 2Ly 1(S1>0,...,89%1 =1)- 2%
1, 1

— Uy

—2k
T2 gy G T gy

Hence (2) is established.
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We present an alternative proof of this formula, based on the following observa-
tion. A straightforward verification shows that

1
oEl2l=1) = U2(k—1) ~ U2k- 3

At the same time, it is clear that

(0om = 2K} = {oan > 2(k — )}\{oran > 2k,
{o9n > 21} = {S1 #0,...,59 # 0}

and therefore
{o9n = 2k} = {S1 #0,..., 85,1y # O}\{S1 #0,..., 89 # 0}.
Hence
for = P{S1 #0,...,Sou_1) # 0} —P{S1 #0,...,8x # 0},

and consequently, because of (8), in order to show that fo, = (1/2k)u2(k_1) it is
enough to show only that

Lok(S1 #0,...,8% # 0) = Lox(So = 0). 9
For this purpose we notice that evidently
sz(Sl #* O7 . ,SQk #* O) = 2L2k(51 > 07 . ,SQk > 0)

Hence to verify (9) we need only to establish that

2L2k(51 > 0, . ,SQk > 0) = Lgk(Sl > 0, - ,SQk > 0) (10)
and
Loi(S1 > 0,...,8% > 0) = Ly (Sox = 0). (11)
A

Fig. 18
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Now (10) will be established if we show that we can establish a one-to-one cor-

respondence between the paths A = (S7, . .., So) for which at least one S; = 0, and
the positive paths B = (S1, ..., S%).
Let A = (S1,...,S2%) be a nonnegative path for which the first zero occurs

at the point a (i.e., S, = 0). Let us construct the path, starting at (a, 2), (S, +
2,841+ 2,...,82% + 2) (indicated by the broken lines in Fig. 18). Then the path
B=(S1,...,8:-1,8: +2,...,89% + 2) is positive.

Conversely, let B = (S1, ..., So) be a positive path and b the last instant at
which S, = 1 (Fig. 19). Then the path

A= (Sla"'aSbvsbJrl_2a"'aSk_2)

is nonnegative. It follows from these constructions that there is a one-to-one corre-
spondence between the positive paths and the nonnegative paths with at least one
S; = 0. Therefore formula (10) is established.

Fig. 19

We now establish (11). From symmetry and (10) it is enough to show that

Lgk(Sl >0,...,8 > O) +L2k(S1 >0,...,8 >0and 3i, 1 < i < 2k, such that
S; = 0) = Lok (Sox = 0).

The set of paths (So; = 0) can be represented as the sum of the two sets %7 and
%>, where ¢ contains the paths (S, ..., S2) that have just one minimum, and 65
contains those for which the minimum is attained at at least two points.

Let C, € %1 (Fig. 20) and let «y be the minimum point. We put the path C; =
(So,81, . - .,S9%) in correspondence with the path C§ obtained in the following way
(Fig. 21). We reflect (So, S1, . . . ,.S;) around the vertical line through the point /, and
displace the resulting path to the right and upward, thus releasing it from the point
(2k, 0). Then we move the origin to the point (I, —m). The resulting path C§ will
be positive.

In the same way, if C € 6, we can use the same device to put it into correspon-
dence with a nonnegative path C%.

Conversely, let C¥ = (S1 > 0,...,S9% > 0) be a positive path with So; = 2m
(see Fig. 21). We make it correspond to the path C; that is obtained in the following
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Fig. 20

Fig. 21

way. Let p be the last point at which S, = m. Reflect (S, ..., S2,) with respect
to the vertical line x = p and displace the resulting path downward and to the left
until its right-hand end coincides with the point (0, 0). Then we move the origin to
the left-hand end of the resulting path (this is just the path drawn in Fig. 20). The
resulting path C; = (Sp, ..., So) has a unique minimum and So; = 0. A similar
construction applied to paths (S1 > 0,...,8% > 0and 3i, 1 <i < 2k, with S; = 0)
leads to paths for which there are at least two minima and So; = 0. Hence we have
established a one-to-one correspondence, which establishes (11).

Therefore we have established (9) and consequently also the formula fo, =
Ug(k—1) — Uz = (1/2k)ugy_1).

By Stirling’s formula

1
vk’

uy = Ck - 27% ~ k — oo.
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Therefore
k — o0.

1
f 2k ~ Wa
Hence it follows that the expectation of the first time when zero is reached,
namely

E min(oy,, 2n) = 2 2k P(oa, = 2k) + 2nus,
k=1

n
= Z Up(k—1) + 2nuzy,
k=1

can be arbitrarily large.

In fact, 212021 usk—1) = 0, and consequently the limiting value of the mean time
for the walk to reach zero (in an unbounded number of steps) is 0.

This property accounts for many of the unexpected properties of the symmetric
random walk under consideration. For example, it would be natural to suppose that
after time 2n the mean value of the number of zero net scores in a game between two
equally matched players (p = g = %), i.e., the number of instants i at which §; = 0,
would be proportional to 2n. However, in fact the number of zeros has order v/2n
(see (17) in Sect. 9, Chap. 7, Vol. 2). Hence it follows, in particular, that, contrary to
intuition, the “typical” walk (Sp, S1, ..., S,) does not have a sinusoidal character
(so that roughly half the time the particle would be on the positive side and half
the time on the negative side), but instead must resemble a stretched-out wave. The
precise formulation of this statement is given by the arcsine law, which we proceed
to investigate.

2. Let Py, 2, be the probability that during the interval [0, 2n] the particle spends 2k
units of time on the positive side.*

Lemma 2. Let ug = 1 and 0 < k < n. Then
Pok,2n = Uy - Uzp_2k. (12)

PROOF. It was shown above that for = w541y — ua. Let us show that

k
ok = ) for - Ua(k—r). (13)

r=1

* We say that the particle is on the positive side in the interval [m — 1, m] if one, at least, of the
values S,,—1 and S,, is positive.
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Since {So; = 0} < {02, < 2k}, we have

{Sok = 0} = {Sox = 0} n {2y <2k} = D {Soi = 0} N {0 = 21}
1<I<k

Consequently

Uy = P(Sok = 0) = > P(Sy = 0, 03 = 21)

1<I<k

D7 P(Sy = 0] o5 = 20) P03, = 21).
1<i<k

But
P(Sor =0|02, =20) =P(Sox =0[S1 #0,...,89 1 # 0,52 =0)
= P(Sy + (ar41 + -+ &) = 0[S #0,...,891 # 0,59 = 0)
= P(Sar + (§ar41 + -+ + &) = 0] Sy = 0)
= P(&rv1 + -+ & = 0) = P(Sa4—p) = 0).

Therefore
ug = Z P{Sa—1y = 0} P{o2, = 21},

1<I<k

which proves (13).

We turn now to the proof of (12). It is obviously true for k = 0 and k = n. Now
let 1 <k < n— 1. If the particle is on the positive side for exactly 2k < 2n instants,
it must pass through zero. Let 2r be the time of first return to zero. There are two
possibilities: either S; > 0 forall 0 </ < 2r,or §; < Oforall0 < < 2r.

The number of paths of the first kind is easily seen to be

(32Fr) 2207 ot 2ur) = 5 22 ForPaft—r) 2a—r)-

The corresponding number of paths of the second kind is

% ' 22”‘]“2rp2k,2(n7r)'

Consequently, for 1 <k <n-—1,

k k
1 1
P2k,2n = 5 ;erPQ(k—r),Q(n—r) + 5 ;erPW(,Q(n—r)' (14)
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Let us suppose that Poy o,, = Uy - Ugu—2k holds form = 1,...,n — 1. Then we
find from (13) and (14) that

k k
1 1
Poron = sUzn—ok D forltor—2r + 5Uk D forllon—2r—2k
r=1 r=1

1 1
= FUop—2klUok + UAU—2k = U2AU2p—2k-

This completes the proof of the lemma.
O

Now let v(2n) be the number of time units that the particle spends on the positive
axis in the interval [0, 2n]. Then, when x < 1,

1 2
P {2 < 7(2 n) Sx} = Z Pok 2n.
n {k: 1/2<(2k/2n)<x}

Since
1

vk

Ugg ~

as k — oo, we have

1
Poi on = Uslta_jy ~ ——,
2,2 2kU2 (n—k) o /k(n — 1)
ask —-ooandn — k — 0.
Therefore
1 [k K\
Poron — Z [<1>] —0, n— o,

T | n n
{k: 1/2<(2k/2n)<x} {k: 1/2<(2k/2n)<x}
whence

1 dt
P2k,2n_*J 7*07 n — 0.
™

(ks 1/2<(2k/2n)<x} 12 /1(1 = 1)

But, by symmetry,

1
2 Poy o, — 3
{k: k/n<1/2}

and

1 dt 2 1
ff ———— = = arcsiny/x — —.
Thptl—1) ™ 2

Consequently we have proved the following theorem.
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Theorem (Arcsine Law). The probability that the fraction of the time spent by the
particle on the positive side is at most x tends to 2m~ ! arcsin 1/x:

Z Poyon — 21~ ! arcsin y/x. (15)
{k: k/n<x}

We remark that the integrand u(r) = (t(1 — £))~'/? in the integral
1 Jx dt
T Jo A/t(1 —1)

represents a U-shaped curve that tends to infinity as ¢t — O or 1.
Hence it follows that, for large n,

plo< 2@ _Alopfl oGy 1, 1
2n 2 2n 2

i.e., it is more likely that the fraction of the time spent by the particle on the positive
side is close to zero or one, than to the intuitive value %
Using a table of arcsines and noting that the convergence in (15) is indeed quite

rapid, we find that

P {7(22”) < 0.024} ~ 0.1,

n

P{V(Q”) §01} ~ 0.2,
2n

p oG §0.2} ~ 0.3,
2n

Hence if, say, n = 1000, then in about one case in ten, the particle spends only 24
units of time on the positive axis and therefore spends the greatest amount of time,
976 units, on the negative axis.

3. PROBLEMS

1. How fast does E min(o9,, 2n) — 00 asn — o0?

2. Let 1, = min{l < k < n: S = 1}, where we take 1, = 0 if § < 1
for 1 < k < n. What is the limit of Emin(t,, n) as n — oo for symmetric
(p = q = 3) and for asymmetric (p # q) walks?
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3. Using the ideas and methods of Sect. 10, show that the symmetric (p = g =
1/2) Bernoulli random walk {Sy, k < n} with So = 0, Sy = & + -+ + &
fulfills the following equations (N is a positive integer):

P{ max S; > N, S, < N} = P{S, > N},
1<k<n

R

P{max Sk =N} — P{S, = N} + P{S, = N + 1}.

1<k<n

11 Martingales: Some Applications to the Random Walk

1. The Bernoulli random walk discussed above was generated by a sequence
&1, ..., &, of independent random variables. In this and the next section we intro-
duce two important classes of dependent random variables, those that constitute
martingales and Markov chains.

The theory of martingales will be developed in detail in Chapter 7, Vol. 2. Here
we shall present only the essential definitions, prove a theorem on the preservation
of the martingale property for stopping times, and apply this to deduce the “ ballot
theorem.” In turn, the latter theorem will be used for another proof of the statement
(5), Sect. 10, which was obtained above by applying the reflection principle.

2. Let (9, o7, P) be a finite probability space and 21<%> < - -+ < %, a sequence
of decompositions.

Definition 1. A sequence of random variables &1, . . ., &, is called a martingale (with
respect to the decompositions 21 < %o < -+ < Z,) if

(1) & is Dy-measurable,
() E(&k1 | %k) =& 1 <k<n-—1

In order to emphasize the system of decompositions with respect to which the
random variables £ = (&1, .. .,&,) form a martingale, we shall use the notation

&= (& Di)1<i<n, (1)

where for the sake of simplicity we often do not mention explicitly that 1 <k < n.
When % is induced by &1, ..., &, i.e.,

D = Dey,...&00

instead of saying that & = (&, %) is a martingale, we simply say that the sequence
& = (&) is a martingale.
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Here are some examples of martingales.
Example 1. Let 4, . .., n, be independent Bernoulli random variables with
Pl =1) =Pl = —1) =

Sk =1 + e 4 Mk and -@k = ,@nhmﬂlk'

)

N|—=

We observe that the decompositions Z; have a simple structure:
7, ={D",D"},
where Dt = {w:n; = +1}, D7 = {w: m = —1};
Dy ={D"T, D", D", D"},

where D™ = {w:m = +1,m2 = +1}, ..., D77 ={w:m = =1, m2 = —1},
etc.

It is also easy to see that Dy, .., = Ds,.... s,
Let us show that (S, Zk)1<k<» form a martingale. In fact, Sy is Z-measurable,
and by (12) and (18) of Sect. 8

E(Sti1| %) = E(Sk + kv | Z1)
= E(Sk| %) + E(s1 | D) = Sk + Empyr = Sk

If we put So = 0 and take Dy = {2}, the trivial decomposition, then the sequence
(Sks Dr)o<k<n also forms a martingale.

Example 2. Let 7;,...,7, be independent Bernoulli random variables with
P(ni = 1) = p, P(n; = —1) = q. If p # q, each of the sequences £ = (&)
with
a\"
§k=(p> ) & =Sk —k(p—q), where Sp=m+-- +n,

is a martingale.
Example 3. Let 1 be a random variable, 1 < --- < %,, and
& =EMm| Z). 2

Then the sequence & = (&, Zk)1<k<n is a martingale. In fact, it is evident that
E(n| %) is Dy-measurable, and by (20) of Sect. 8

E(&+11%) = E[E(| Zis1) | Zk] = E(n] k) = &-

In this connection we notice that if £ = (&, %) is any martingale, then by (20)
of Sect. 8
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& = E(&r1 | Zk) = E[E(Skr2| Dhr1) | %]
= E(&+2| ) = - = E(& | %) (3)
Consequently the set of martingales & = (&, %) is exhausted by the martingales

of the form (2). (We note that for infinite sequences & = (&, Zk)k>1 this is, in
general, no longer the case; see Problem 6 in Sect. 1 of Chap. 7, Vol. 2.)

Example 4. Let 7y, .. ., 1, be a sequence of independent identically distributed ran-
dom variables, Sy = m1 + -+, and Dy = Ds,, Do = Ds, 5, 1> ---r Dn =
Ds, 5, 1.....5, - Let us show that the sequence £ = (&, %) with
n 1 Sl’H-l—k
= G e =S
5 a£2 n_1’ afk n+1_k7 7§ 1

is a martingale. In the first place, it is clear that Z; < Z41 and & is Z-measurable.
Moreover, we have by symmetry, forj <n —k + 1,

E(ni| Z) = E(m | Z) “)
(compare (26), Sect. 8). Therefore

n—k+1
(n—k+DEm|2) = D E0yl %) = E(Suis1 | Z) = Szt
j=1
and consequently

Sn—k+1
— Onk4l
= Trr1 - Bl

and it follows from Example 3 that £ = (&, %) is a martingale.

Remark. From this martingale property of the sequence & = (§, Zk)1<k<n, it is
clear why we will sometimes say that the sequence (Sx/k)1<k<, forms a reversed
martingale. (Compare Problem 5 in Sect. 1, Chap. 7, Vol. 2).

Example 5. Let 7y, . . ., 7, be independent Bernoulli random variables with

Pini = +1) = P(ni = =1) =

b

=

St =1 + -+ + m. Let A and B be integers, A < 0 < B. Then with 0 < \ < 7/2,
the sequence § = (&, Zk) with Dy = s, ... s, and

& = (cos \)™ exp{z)\ (Sk—>}7 1<k<n, (5)

is a complex martingale (i.e., the real and imaginary parts of &, 1 < k < n, form
martingales).
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3. It follows from the definition of a martingale that the expectation E & is the same
for every k:

E& =E¢.

It turns out that this property persists if time & is replaced by a stopping time. In
order to formulate this property we introduce the following definition.

Definition 2. A random variable T = T(w) that takes the values 1,2, ..., nis called
a stopping time (with respect to decompositions (% )1<k<n, 21 < Z2 < -+ < D)
if, forany k = 1,. .., n, the random variable I{;_y, (w) is Z;-measurable.

If we consider Z; as the decomposition induced by observations for k steps (for
example, Zx = Py, ,...n,, the decomposition induced by the variables 71, ..., 7),
then the Z;-measurability of /;—; (w) means that the realization or nonrealization
of the event {t = k} is determined only by observations for k steps (and is indepen-
dent of the “future”).

If B = a(%), then the Z;-measurability of I(;_i (w) is equivalent to the as-
sumption that

{T = k} € . (6)

We have already encountered specific examples of stopping times: the times T; and
09, introduced in Sects. 9 and 10. Those times are special cases of stopping times
of the form

™ = min{0 <k < n: & e A},

7
o =min{0 <k <n: & € A}, v

which are the times (respectively the first time after zero and the first time) for a
sequence &g, &1, . . ., &, to attain a point of the set A.

4. Theorem 1. Let & = (&, Zk)1<k<n be a martingale and  a stopping time with
respect to the decompositions (Zi)1<k<n. Then

E(&|21) = &, ®)
where )
&= D) &y (W) ©)
k=1
and
Eé& =E&. (10)

PROOF (compare the proof of (29) in Sect.9). Let D € &;. Using (3) and the prop-
erties of conditional expectations, we find that
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E(&|D) =
- % Z E(& - Igzepy - Ip)
= 5757 2L EIEG | Z) - Iy - Ip]
- 5 2 E[E(&lieeyy - Ip | 2)]

= P(D) Z E[gnl{‘r=l} . ID]

= m E(ntD) = E(gn |D>7

and consequently
E(&|21) = E(& | 21) = &

The equation E £, = E &; then follows in an obvious way.
This completes the proof of the theorem.
|

Corollary. For the martingale (Sk, Zi)1<k<n of Example 1, and any stopping time
T (with respect to (%)) we have the formulas

ES. =0, ES? =En, (11)

known as Wald’s identities (cf. (29) and (30) in Sect.9; see also Problem 1 and
Theorem 3 in Sect. 2, Chap. 7, Vol. 2).

Let us use Theorem 1 to establish the following proposition.

Theorem 1 (Ballot Theorem). Let 11, . .., n, be a sequence of independent identi-
cally distributed random variables taking finitely many values from the set (0,1, .. .)
and

Sk=m—+--+m, 1<k<n

Then (P-a.s.)
SN\t
P{Sk<kf0rallk,1<k<n|Sn}—(1—n> ; (12)
n

where a* = max(a, 0).

PROOF. On the set {w: S, > n} the formula is evident. We therefore prove (12) for
the sample points at which S, < n.
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Let us consider the martingale £ = (&, Z)1<k<n introduced in Example 4, with
& =Sur1k/(n+1—k)and D = Ds, ., ... 5.-
We define
t=min{l <k <n: & >1},

taking T = non the set {& < 1forallk, 1 <k < n} = {maxi<;<,(S;/]) < 1}.Itis
clear that & = &, = S1 = 0 on this set, and therefore

{maxS’<1}:{maxsl’<1,sn<n}§{fr=0}. (13)

1<i<n 1 1<I<n

Now let us consider the outcomes for which simultaneously maxs <<, (S;/1) > 1
and S, < n. Write 0 = n+ 1 — 7. It is easy to see that

oc=max{l <k <n:S >k}

and therefore (since S, < n) we have 0 < n, S, > o, and S,1 < o + 1. Con-
sequently ny41 = So41 — So < (0 +1) — 0 = 1, ie, ny41 = 0. Therefore
0 <8, =8,+1 <o+ 1, and consequently S, = ¢ and

Sn+1—1: Sa
e bl A
& n+l-—n1 o
Therefore g
l
Ss =11,
{1H<1?<Xn ; >1, Sn<n}§{§r 1} (14)
From (13) and (14) we find that
S s ent = 6 =1} Sy <1}
frgl?gxnl_’"n_r_m”n'

Therefore, on the set {S,, < n}, we have

sn} S P{& = 1]S,) = E(& ]S,

P{max & >1
1<i<n [

where the last equation follows because &; takes only the two values 0 and 1.
Let us notice now that E(&; | S,,) = E(& | 21), and (by Theorem 1) E(&; | 21) =
&1 = S,/n. Consequently, on the set {S, < n} we have

P{Sx <k forallk suchthatl <k <n|S,} =1— (S,/n).

This completes the proof of the theorem.
|

We now apply this theorem to obtain a different proof of Lemma 1 of Sect. 10,
and explain why it is called the ballot theorem.
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Let &y, ..., &, be independent Bernoulli random variables with

Sk = &1 + -+ + & and a, b nonnegative integers such thata —b > 0, a + b = n.
We are going to show that

a—>b

P{S1>0,....8, > 0[S, =a~b} = —.
a

15)

In fact, by symmetry,

P{S; >0,...,8 >0[S =a—b)
=P{51 <0,...,8, <0|S, =—(a—b)}
=P{Si+1<1,....8+n<n|Sy+n=n—(a—>b)}
=P{m<1l,...om+-+m<n|lm+--+n,=n—(a—b)}
_[1_n—(a—b)]+_a—b a—>b

n

n a+b’

where we have put 7, = & + 1 and applied (12).

Now formula (5) of Sect. 10 established in Lemma 1 of Sect. 10 by using the
reflection principle follows from (15) in an evident way.

Let us interpret £; = +1 as a vote for candidate A and & = —1 as a vote for B.
Then Sy, is the difference between the numbers of votes cast for A and B at the time
when k votes have been recorded, and

P{S; >0,...,5,>0|S, =a—b}

is the probability that A was always ahead of B given that A received a votes in all,
B received b votes, and a — b > 0, a + b = n. According to (15) this probability is

(a—b)/n.
5. PROBLEMS

l. Let 9 < %1 < -+ < 9, be a sequence of decompositions with Zy = {1},
and let 7, be Z-measurable variables, 1 < k < n. Show that the sequence

g = (fka @k) with
k

& =Y [m—E(m| 21)]

=1

is a martingale.
2. Letthe random variables 7y, . . ., g satisfy E(ne| 1, .. ., mi—1) = 0,2 < k < n.
Show that the sequence & = (&)1<k<, With & = 7 and

k
Skt1 = 27]i+lfi(771,-~-a77i)> I<k<n-1,

i=1

where f; are given functions, is a martingale.
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3.

Show that every martingale £ = (&;, %) has uncorrelated increments: if a <
b < ¢ < dthen

Cov(&s — &, & — &) = 0.

Let £ = (&1,...,&,) be a random sequence such that & is Z;-measurable
(D < Do < -+ < ). Show that a necessary and sufficient condition
for this sequence to be a martingale (with respect to the system (%)) is that
E & = E¢&; for every stopping time T (with respect to (Z)). (The phrase “for
every stopping time” can be replaced by “for every stopping time that assumes
two values.”)

Show that if £ = (&, Zk)1<k<n is @ martingale and 7 is a stopping time, then

E [gnl{t:k}] = E[fkl{'r:k}]

for every k.

. Let§ = (&, %) and p = (mk, Zk) be two martingales, & = 71 = 0. Show

that .
E & = Z E(& — &—1)(m — me—1)
k=2

and in particular that
n

E& = ) E(&— &)

k=2

. Let n1,...,m, be a sequence of independent identically distributed random

variables with E7; = 0. Show that the sequences & = (&) with

k 2
& = <Z77i) — kEni,
i-1

exp{A(m + -+ )}

& = (E exp Amp )¥

are martingales.

Let n1,...,n, be a sequence of independent identically distributed random
variables taking values in a finite set Y. Let fo(y) = P(my = y) > 0,y €Y,
and let f1(y) be a nonnegative function with >, ., fi(y) = 1. Show that the
sequence & = (&, Z]') with 9 = Dy, .. .

Silm) - fi(me)
Jolm) -+ folm)’

is a martingale. (The variables &, known as likelihood ratios, are extremely
important in mathematical statistics.)

&=
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12 Markov Chains: Ergodic Theorem, Strong
Markov Property

1. We have discussed the Bernoulli scheme with
Q={w:w=(x1,...,%), x =0,1},
where the probability P({w}) = p(w) of each outcome is given by

p(w) =px1) - plx), )

with p(x) = p*q' ~*. With these hypotheses, the variables &1, . .., &, with &(w) = x;
are independent and identically distributed with

P =x)=- =P =x) =px), x=0,1
If we replace (1) by
p(w) = pl(xl) o 'pn(xn)>
where p;(x) = pf(1 — p;)'™, 0 < p; < 1, the random variables &1, . . ., &, are still

independent, but in general are differently distributed:

P(’fl = X) = pl(x)v R P(gn = x) = pn(x)‘

We now consider a generalization that leads to dependent random variables that
form what is known as a Markov chain.
Let us suppose that

= {(.UZ W= (x07xla"'a-xn)7 Xi EX},

where X is a finite set. Let there be given nonnegative functions pg(x), p1(x,y), ...,
pn(x,y) such that

ZPO(X) = ]-7

xeX

Zpk(x,y)zl, k=1,...,n;xeX. 2)
yeX

For each w = (xg,x1,...,%,), put P({w}) = p(w), where

p(w) :p()(xO)pl(x(hxl)'"pn(xnflaxn) (3)

It is easily verified that >} _, p(w) = 1, and consequently the set of numbers p(w)
together with the space €2 and the collection of its subsets defines a probabilistic
model (2, o7, P), which it is usual to call a model of experiments that form a Markov
chain.
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Let us introduce the random variables &y, &1, . .., &, with &(w) = x; forw =
(x1,...,%,). A simple calculation shows that
P& =a) = po(a),

P(§o = ao,...,& = ax) = polao)pi(ao,ar) - prak—1,ar). “)

We now establish the validity of the following fundamental property of condi-
tional probabilities in the probability model (€2, <7, P) at hand:

Pl&ii1 = a1 & =ar, .. 6o = a0} = Pl = a1 [G=al  (5)

(under the assumption that P(& = ay, ...,& = ag) > 0).
By (4) and the definition of conditional probabilities (Sect. 3)

P{&+1 = ary1 & = ar, ..., 60 = ao}
. P{fk-&-l = Ak+1y- - ,50 = ao}
- P&=ar,... 8 =ao)
_ polao)pi(ao,ar) - pry1(ax, axy1)
B pol(ao) - - - pr(ax—1, ax)

:pk+1(akaak+1)'

In a similar way we verify

P{&+1 = ars1 | & = ar} = prs1(ak, ags1), (6)

which establishes (5).
Let @,f = Y,,....c, be the decomposition induced by &p, ..., &, and %’,f =

(7).
Then, in the notation introduced in Sect. 8, it follows from (5) that
Pt = i | 21} = Pl = ainn | &) (7)
or

P{&+1 = aks1 10y - &} = P{&1 = ars1 | &}

Remark 1. We interrupt here our exposition in order to make an important comment
regarding the formulas (5) and (7) and events of zero probability.

Formula (5) was established assuming that P{{;, = ay,...,& = ag} > 0 (hence
also P{& = ax} > 0). In essence, this was needed only because conditional proba-
bilities P(A | B) have been defined (so far!) only under the assumption P(B) > 0.

Let us notice, however, that if B = {& = ax,...,& = ap} and P(B) = 0 (and
therefore also P(C) = 0 for C = {£ = a}), then the “path” {{y = aq, ..., & = ai}
has to be viewed as unrealizable one, and then the question about the conditional
probability of the event {&;1 = a;} given that this unrealizable “path” occurs is of
no practical interest.

In this connection we will for definiteness define the conditional probability
P(A | B) by the formula
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P(4B) .
P(A[B) = ZOR if P(B) > 0,
0, if P(B) = 0.

With this definition the formulas (5) and (7) hold without any additional assump-
tions like P{& = a, ..., & = ap} > 0.

Let us emphasize that the difficulty related to the events of zero probability is very
common for probability theory. We will give in Sect. 7, Chap. 2, a general definition
of conditional probabilities (with respect to arbitrary decompositions, o-algebras,
etc.), which is both very natural and “works” in “zero probability” setups.

Now, if we use the evident equation
P(AB|C) = P(A|BC)P(B|C),
we find from (7) that

P{& = an - g1 = @ | B} =Pl =an,. o, G =@ |&) (8)

or

P{fn =dpy -y £k+1 = Qk+1 ‘50; sy gk}
=P{&=an, ..., &1 = a1 &) 9)
This equation admits the following intuitive interpretation. Let us think of &
as the position of a particle “at present,” with (&g, ..., &—1) being the “past,” and
(&k+1, - - -, &) the “future.” Then (9) says that if the past and the present are given,
the future depends only on the present and is independent of how the particle arrived

at &, i.e., is independent of the past (o, . . ., {—1)-
Let *

P = {ékfl = Qk—1y--- 750 = (10},
N = {& = ai},

F={§=an....&+1 = a1}
Then it follows from (9) that
P(F|NP) = P(F|N),
from which we easily find that
P(FP|N) = P(F|N)P(P|N). (10)

In other words, it follows from (7) that for a given present N, the future F and the
past P are independent. It is easily shown that the converse also holds: if (10) holds
forallk =0,1,...,n— 1, then (7) holds for every k = 0,1,...,n — 1.

* “Present” is denoted by N (“Now”) to distinguish from P = “Past”.—Translator.
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The property of the independence of future and past, or, what is the same thing,
the lack of dependence of the future on the past when the present is given, is
called the Markov property, and the corresponding sequence of random variables
o, - .., &y 1s a Markov chain.

Consequently if the probabilities p(w) of the sample points are given by (3), the
sequence (&, . . ., &) with &(w) = x; forms a Markov chain.

We give the following formal definition.

Definition. Let (2, o7, P) be a (finite) probability space and let £ = (&, ..., &,) be
a sequence of random variables with values in a (finite) set X. If (7) is satisfied, the
sequence & = (&, ..., &,) is called a (finite) Markov chain.

The set X is called the phase space or state space of the chain. The set of prob-
abilities (po(x)), x € X, with po(x) = P(&§o = x) is the initial distribution, and the
matrix |pg(x,¥)|, x,y € X, with pr(x,y) = P{& = y|&-—1 = x} is the matrix of
transition probabilities (from state x to state y) attime k = 1,...,n.

When the transition probabilities py(x,y) do not depend on k, that is, py(x,y) =
p(x,y), the sequence £ = (&, ..., &,) is called a homogeneous Markov chain with
transition matrix |p(x,y)|.

Notice that the matrix |p(x,y)| is stochastic: its elements are nonnegative and
the sum of the elements in each row is 1: 3} p(x,y) = 1, x€ X.

We shall suppose that the phase space X is a finite set of integers (X =
{0,1,...,N}, X = {0,£1,...,£N}, etc.), and use the traditional notation p; =
po(i) and p; = p(i,j).

It is clear that the properties of homogeneous Markov chains are completely de-
termined by the initial probabilities p; and the transition probabilities p;;. In specific
cases we describe the evolution of the chain, not by writing out the matrix |p;| ex-
plicitly, but by a (directed) graph whose vertices are the states in X, and an arrow
from state i to state j with the number p;; over it indicates that it is possible to pass
from point i to point j with probability p;. When p; = 0, the corresponding arrow
is omitted.

Pij

"

I J

Example 1. Let X = {0,1, 2} and

o

Pyl =

Wl o=
o
Wl = O
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The following graph corresponds to this matrix:

1
3 }

; Om |
0 I 2 :
i
Here state O is said to be absorbing: if the particle gets into this state it remains there,
since pgp = 1. From state 1 the particle goes to the adjacent states 0 or 2 with equal
probabilities; state 2 has the property that the particle remains there with probability
% and goes to state 0 with probability %

Example 2. Let X = {0, £1, ..., #N}, po = 1, pww = p—n,—~ = 1, and, for
li| <N,
p, Jj=it]
pj=N4 Jj=i-1 an
0  otherwise.
The transitions corresponding to this chain can be presented graphically in the fol-
lowing way (N = 3):

q 4 q P P P
QT ST O
-3 =< p =l p q q ° 3

This chain corresponds to the two-player game discussed earlier, when each player
has a bankroll N and at each turn the first player wins + 1 from the second with
probability p, and loses (wins —1) with probability g. If we think of state i as the
amount won by the first player from the second, then reaching state N or —N means
the ruin of the second or first player, respectively.

In fact, if 1, 72, . . ., ), are independent Bernoulli random variables with P(r; =
+1) =p,P(pi = —1) = g, So = 0 and Sy = 1 + --- + 7 the amounts won by
the first player from the second, then the sequence So, S1, .. ., S, is a Markov chain

with pg = 1 and transition matrix (11), since

P{Sk+1 =J|Sk = i, Sk—1 = ig—1,...,81 = i1}
= P{Sk + M1 =J| Sk = ik, Ske1 = dk—1,..., 81 = i1}
= P{Sk + M1 =J | Sk = ix} = P{my1 = J — ix}.

This Markov chain has a very simple structure:

Si41 =Sk + My, 0<k<n—1,

where 11,12, ..., 17, is a sequence of independent random variables.
The same considerations show that if £y, 71, . . . , 17, are independent random vari-
ables then the sequence &g, &1, - . . , &, with
§k+1 :ﬁc(fk7nk+1)a 0 < k <n-— 17 (12)

is also a Markov chain.
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It is worth noting in this connection that a Markov chain constructed in this way
can be considered as a natural probabilistic analog of a (deterministic) sequence
x = (xo,...,x,) generated by the recurrent equations

X1 = fi(x)-

We now give another example of a Markov chain of the form (12); this example
arises in queueing theory.

Example 3. At a taxi stand let taxis arrive at unit intervals of time (one at a time). If
no one is waiting at the stand, the taxi leaves immediately. Let 7, be the number of
passengers who arrive at the stand at time k, and suppose that 7, ..., 7, are inde-
pendent random variables. Let & be the length of the waiting line at time k, g = 0.
Then if & = i, at the next time k + 1 the length &1 of the waiting line is equal to

. T]k"v‘l lfl:O7
T= Vi 14 ifi> 1

In other words,
&1 = (& —1)" +ms1, 0<k<n—1,

where at = max(a, 0), and therefore the sequence £ = (o, ..., &) is a Markov
chain.

Example 4. This example comes from the theory of branching processes. A
branching process with discrete time is a sequence of random variables &y, &1, . . ., &,
where ¢ is interpreted as the number of particles in existence at time k, and the pro-
cess of creation and annihilation of particles is as follows: each particle, indepen-
dently of the other particles and of the “prehistory” of the process, is transformed
into j particles with probability p;, j = 0,1,...,M. (This model of the process
of creation and annihilation is called the Galton—Watson model, see [6] and Prob-
lem 18 in Sect. 5, Chap. VIII of [90]).

We suppose that at the initial time there is just one particle, {; = 1. If at time k
there are & particles (numbered 1,2, ..., &), then by assumption &1 is given as a
random sum of random variables,

o= 4+ 772’:),

(%)

where 7;"’ is the number of particles produced by particle number i. It is clear that

if & = O then &1 = 0. If we suppose that all the random variables nj(k), k>0, are
independent of each other, we obtain

P{&+1 = kg1 | & = ks &1 = ik—1,- .-} = P{&41 = k1 | & = ix}

=P+ g = i)

It is evident from this that the sequence &, &1, . . ., &, is a Markov chain.
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A particularly interesting case is that in which each particle either vanishes with
probability g or divides in two with probability p, p + g = 1. In this case it is easy
to calculate that

pij = P{&s1 =7|& =i}

is given by the formula

_ [ dPpirg=i j=0,2, ..., 2,
Py = 0 in all other cases.

2. Let & = (&, p,P) be a homogeneous Markov chain with initial vector (row)
= ||p;| and transition matrix P = |p;]|. It is clear that

pi=Pl&i=jléo=i}=-=P{&=jl{-1 =i}
We shall use the notation
p,, =P{&=jléo =1} (=P{&u=jl&=1i})

for the probability of a transition from state i to state j in k steps, and

P = P& =}

for the probability of the particle to be at point j at time k. Also let

(k
p® = |pf, PO =|p|.

Let us show that the transition probabilities pi(jk)

satisfy the Kolmogorov—Chapman

equation
k+1) ISIR(
py =3 Pl (13)
or, in matrix form,
pk+d — pt)  p0) (14)

The proof is extremely simple: using the formula for total probability and the
Markov property, we obtain

P = PG =jl&o = i) = Y. P(Eri = J, & = alé = i)
=Y P& =jl& = )P(& =& =) Zpa,l?la :

The following two cases of (13) are particularly important:
the backward equation

Py = pianll (15)



12 Markov Chains: Ergodic Theorem, Strong Markov Property 119

and the forward equation
k+1 k
Py =3 ppa; (16)

(see Figs. 22 and 23). The forward and backward equations can be written in the

following matrix forms
pé+D) — p®) P, (17)

Pkt — p.pW), (18)

o/

+

N

0 I+ 1

Fig. 22 For the backward equation

f") that

ptY =3 ppl), (19)

Similarly, we find for the (unconditional) probabilities p

or in matrix form
p(k+1) - p(k) PO,

In particular,

p(k+1) — p(k) P (forward equation)

and
pth) = p) . pk) (backward equation).

Since P = P, p(® — p, it follows from these equations that
PO — Pt p® = . B

Consequently for homogeneous Markov chains the k-step transition probabilities
pl-{jk) are the elements of the kth powers of the matrix PP, so that many properties of

such chains can be investigated by the methods of matrix analysis.
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0

Fig. 23 For the forward equation

Example 5. Consider a homogeneous Markov chain with the two states 0 and 1 and

the transition matrix
p— (P00 Poi
Pio P11

P2 — Po + PoiP1o po1(poo + p11)
p1o(poo +p11) P31+ Poipio

It is easy to calculate that

and (by induction)

P = 1 (1—1911 1—P00)
2—poo—p1n \1—p1i1 1—poo

Jr(Poo +p1—1)" < 1—poo —(1— Poo))
2 — poo — p11 _(1—1711) 1-pnu

(under the assumption that |pgo + p11 — 1| < 1).
Hence it is clear that if the elements of P satisfy |pgg +p11 — 1| < 1 (in particular,
if all the transition probabilities p;; are positive), then as n — o0

P 1 (1—1711 1—1700), (20)
2—poo—p11 \1=P11 1= poo

and therefore

w _ l—pn

Jim p® — m _ 1—poo
w0 2*1700*17117

li N= =0,1.
l’znpll 2*1700*17117 ' ’

Consequently if |poo + p11 — 1| < 1, such a Markov chain exhibits regular

behavior of the following kind: the influence of the initial state on the probability
(n)

of finding the particle in one state or another eventually becomes negligible (pl-j
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approach limits 7;, independent of i and forming a probability distribution: 7y > 0,
m > 0, mg + m = 1); if also all p;; > 0 then 7y > 0 and 7; > 0. (Compare with
Theorem 1 below.)

3. The following theorem describes a wide class of Markov chains that have the
property called ergodicity: the limits ; = lim,, p;; not only exist, are independent of
i, and form a probability distribution (7; > 0, > = 1), but also 7; > 0 for all
J (such a distribution 7; is said to be ergodic, see Sect. 3, Chap. 8, Vol. 2 for more
detail).

Theorem 1 (Ergodic Theorem). Let P = |pjj|| be the transition matrix of a Markov

chain with a finite state space X = {1,2, ..., N}.
(a) If there is an ng such that
minp >0, @1
ij -
then there are numbers 1, ..., wy such that
m >0, Zm=1 (22)
J
and
p,(]n) — ﬂ-ja n— o0 (23)
foreveryje XandieX.
(b) Conversely, if there are numbers 1, ..., my satisfying (22) and (23), there is
an ng such that (21) holds.
(¢c) The numbers (71, ..., Ty) satisfy the equations
m:i}mmm j=1,...,N. (24)
PROOF. (a) Let
(m) _ s (m) (n) _ (n)
m; 7mi1nplj , Mj 7mlaxpl-j .
Since
n+1 n
Py =3 piapl, (25)
we have
nﬁ”l)=r@npy+”:=H§n§:pmp$)ngn§:pmrgnp$)=r#”,

whence m_(") < m"Y and similarly Mj(") > A/1]('1+1). Consequently, to establish
(23) it will be enough to prove that

M" —m” -0, n—w, j=1,... N
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Let £ = min,;; pl(]"c’) > 0. Then

pun0+n) ZPZZO)])EZ) Z[p(no Epja pa/ +€ija paj

Zp%’ e e
sp( ") > 0; therefore

no+n n n n 2n n 2n
it = m Z[p U — e+ epy = m" (1 —€) +epy,

and consequently

m](noJrn) Z m](”)(l _ E) + 517](]2”)-

In a similar way

(no+n) (n) (2n)
Mj ’ < MJ (1-¢)+ cPjj

Combining these inequalities, we obtain
(no+n) (no-+n) (n) (n)
M = < (MY —m) (1 —€)
and consequently

Mi(kng +n) ’njgknoJrn)

IN

(n) (n) k
M;" —m;7)(1—¢)" |0, k — 0.

Thus M; (na) _ ]("’3 ) 0 for some subsequence ng, ng — 0. But the difference
(n)

M; m _ ( ) is monotonic in n, and therefore M () _ — 0, n — c0.

( )

If we put mj = lim, m;"’, it follows from the precedlng inequalities that

i) =l < M = < (1 gl

for n > ng, that is, p( ")
geometric progresswn)

It is also clear that mf") > m}"") > ¢ > 0 for n > no, and therefore 7; > 0.

(b) Inequality (21) follows from (23) since the number of states is finite and
> 0.

(c) Equations (24) follow from (23) and (25).

This completes the proof of the theorem. m]

converges to its limit m; geometrically (i.e., as fast as a

4. The system of equations (compare with (24))

X =Y XaPojy J=1,...,N, (24%)
«
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plays a major role in the theory of Markov chains. Any nonnegative solution
q = (q1,-..,qn) of this system satisfying >, g, = 1 is said to be a stationary or
invariant probability distribution for the Markov chain with transition matrix |p;].
The reason for this terminology is as follows.

Take the distribution q = (g1, .. .,qy) for the initial one, i.e., let p; = ¢;,j =
1,...,N. Then

1
pj( ) = anpaj =(q;
[e%
and in general p]g") = g;. In other words, if we take q = (¢1,...,gn) as the initial
distribution, this distribution is unchanged as time goes on, i.e., for any k

P& =Jj) =P =J), j=1,....N.

Moreover, with initial distribution q = (g1, . . ., gy) the Markov chain £ = (£, q, P)
is stationary: the joint distribution of the vector (&, {it1, - - -, &1) is independent
of k for all / (assuming that k + [ < n).

Property (21) guarantees both the existence of limits m; = lim pfj"), which are
independent of i, and the existence of an ergodic distribution, i.e., of a distribution
(m1,...,my) with m; > 0. The distribution (71, ..., my) is also a stationary distri-
bution. Let us now show that the set (7y, ..., my) is the only stationary distribution.

In fact, let (71, . .., y) be another stationary distribution. Then

7~Tj = Zﬁ'apaj == Zﬁal’g}),
[e% [e3%

") _, 7; we have

and since p,,;

= D (Fa - m) = m;.

(03

We note that a stationary probability distribution (even unique) may exist for a
nonergodic chain. In fact, if
0 1
(1)

on_ (01 a1 _ (10
P_<1o)’ F=1o 1)

and consequently the limits lim pi(j”) do not exist. At the same time, the system

then

g =Y qoboj  J=1,2,

[0
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reduces to

q1 = 42,
92 = q1,
of which the unique solution (g1, ¢2) satisfying q1 + g2 = 1is (1, 1).
We also notice that for this example the system (24*) with x; = g; has the form

4o = qoPoo + q1pP10,
q1 = qopo1 + q1pP11,

from which, by the condition g¢ + g1 = 1, we find that the unique stationary distri-
bution (go, ¢1) coincides with the one obtained above:

1—pn 1 —poo

qgo = ’ q1 = .
2 — poo — p11 2 — poo — P11

We now consider some corollaries of the ergodic theorem.
Let A < X be a set of states, and

1, xeA,
Ia(x) = {0 XEA

Consider
IA(§0) +oe IA(&H)
n+1

which is the fraction of the time spent by the particle in the set A. Since

va(n) =

E[Ia(&) &0 =] = P& eAl&o =) =D pl (=pP(4)),

JEA
we have
E I (k)
an) |60 = 1 = — 2,,
and in particular

Elvyy(n) |6 =] = +1Zp(k)-

It is known from analysis (see also Lemma 1 in Sect. 3, Chap. 4, Vol. 2) that if

a, — athen (ap + -+ +a,)/(n+1) > a, n » . Hencelfp()
then

—>7Tj,k—>OO,

Eviy(n) — m;, Eva(n) — ma, where 74 = ij.
jeA
For ergodic chains one can in fact prove more, namely that the following result holds
for Iy (&o0), - - - 1a(&n), - - .

Law of Large Numbers. If &y,&1, . .. form an ergodic Markov chain with a finite
state space, then
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P{|VA(n) - 7TA| > E} - 07 n— o, (26)
for every e > 0, every set A < X and every initial distribution.

Before we undertake the proof, let us notice that we cannot apply the results
of Sect. 5 directly to I4(&p), - .. , I4(&,), - . ., since these variables are, in general,
dependent. However, the proof can be carried through along the same lines as for
independent variables if we again use Chebyshev’s inequality, and apply the fact
that for an ergodic chain with finitely many states there is a number p, 0 < p < 1,
such that

Py —ml < Cp Q7
Let us consider states i and j (which might be the same) and show that, for ¢ > 0,
P{lvjy(n) —m| > e[& =i} -0, n— . (28)
By Chebyshev’s inequality,
Elvg () — 16 =)

2

P{vgy(n) = ml > €] & = i} <
Hence we have only to show that
E{vgy(n) —ml* & =i} -0, n— .

A simple calculation shows that

Eflvgy (n) — w2 & = i} = —— -E [ZUU}({" 7 ] =i

(n+1) =
kl)
T L2 2 2 m;
(n+1) k=01=0
where
! .
>:Ewmmm@m@:&
E[l(3(&) | &0 =il —m - E[I;3(&) | & = i] + ]
_ PI(JS) P~y p® — o p 42,
s=min(k,l) and t=|k—1I.
By (27),
py =mte, leI<Cpn
Therefore

&,/ s
mi < Calp® + o' + o + ],
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where C; is a constant. Consequently

1 by (k,1) G SEN s 1 k I
—— 3 < o NI 4+ o+ )]
(I’l + 1) k=01=0 ’ (I’l + 1) k=01=0

4Cq 2(11 + 1) 8Cq

Shr? 1-p ana-p 0 "

Then (28) follows from this, and we obtain (26) in an obvious way.

5.1In Sect. 9 we gave, for arandom walk Sy, S1, . .. generated by a Bernoulli scheme,
recurrent equations for the probability and the expectation of the exit time at either
boundary. We now derive similar equations for Markov chains.

Let £ = (&,..., &) be a Markov chain with transition matrix |p;|| and phase
space X = {0, +1,...,+N}. Let A and B be two integers, —N <A <0< B <N,
and x € X. Let %1 be the set of paths (xg,x1,...,X), x; € X, that leave the

interval (A, B) for the first time at the upper end, i.e., leave (A, B) by going into the
set (B,B+1,...,N).
ForA <x < B, put

Bi(x) = P{(&o,---,&) € Bri1| 6o = x}.

In order to find these probabilities (for the first exit of the Markov chain from (A, B)
through the upper boundary) we use the method that was applied in the deduction
of the backward equations.

We have

Bi(x) = P{(&0,-- -, &) € Brv1|&o = x}
= pry : P{(é-()v e 76/{) € %k+1 |£0 =X, 61 = )’}7
y

where, as is easily seen by using the Markov property and the homogeneity of the
chain,

P{(%0,.--,&) € Bir1|&o =x, & =y}
=P{(x,y, §2,.--,&) € By |0 = x, &1 =y}
=P{(y, &, &) € Zi| & =y}
=P{(y, &1, &-1) € Br|&o =y} = B (9)-

Therefore

Bi(x) = pryﬁkq )

y

forA < x < Band 1 < k < n. Moreover, it is clear that

B(x)=1, x=B,B+1,...,N,
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and
Bi(x) =0, x=—N,...,A.

In a similar way we can find equations for ay(x), the probabilities for first exit
from (A, B) through the lower boundary.

Lett, = min{0 <[ <k: & ¢ (A, B)}, where 1, = kif the set {-} = &. Then the
same method, applied to mg(x) = E(t|£o = x), leads to the following recurrent
equations:

mi(x) =1+ Z mj—1 (y)ny
y

(here 1 <k <n, A <x < B). We define
mi(x) =0, x¢ (A, B).

Itis clear that if the transition matrix is given by (11) the equations for ay (x), Bi(x)
and my(x) become the corresponding equations from Sect. 9, where they were ob-
tained by essentially the same method that was used here.

These equations have the most interesting applications in the limiting case when
the walk continues for an unbounded length of time. Just as in Sect. 9, the corre-
sponding equations can be obtained by a formal limiting process (k — o0).

By way of example, we consider the Markov chain with states {0, 1, ..., B} and
transition probabilities

Poo =1, peg =1,
and
pi>0, j=i+1,
Pij = Ti, .] = ia
qi > O, ] =i— 1,
for1 <i<B—1,wherep;,+¢q; +r = 1.
For this chain, the corresponding graph is

ry

e S¢S,

0 1 2
4 P

It is clear that states 0 and B are absorbing, whereas for every other state i the
particle stays there with probability 7;, moves one step to the right with probability
pi, and to the left with probability g;.

Let us find a(x) = lim_, ax(x), the limit of the probability that a particle
starting at the point x arrives at state zero before reaching state B. Taking limits as
k — oo in the equations for oy (x), we find that

a(j) = gaj = 1) + rja(j) + pja(j + 1)
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when 0 < j < B, with the boundary conditions

Since r; = 1 — g; — pj;, we have

pila+1) —a(j) = gi(a(j) —ali—1))

and consequently

a(j+1) —afj) = pi(a(l) - 1),

where
. ql e ql .
Pj= y PO = 1.
P1-:Dj

But

J

a(j+1) — 1= > (ali+1) — a(i)).

i=0

Therefore

a(i+1)—1=(a(l) =1)- > p;.
i=0

Ifj = B—1, we have a(j + 1) = a(B) = 0, and therefore

1
a(l) - 1= —SB-1
Z,':o Pi
whence
B—1 B—1
o ; P
a(l):Z%—_llp’ and a(j):zjg_f1 l’ j=1,...,B.
Zi:() Pi Zi:O Pi

(This should be compared with the results of Sect.9.)
Now let m(x) = limy my(x), the limiting value of the average time taken to arrive
at one of the states 0 or B. Then m(0) = m(B) = 0,

m(x) = 14 ) m(y)py

and consequently for the example that we are considering,
m(j) = 1+ gm(j — 1) + rym(j) + pjm(j + 1)
forallj = 1,2,...,B — 1. To find m(j) we put

M(j) = m(j) —m(j — 1), j=1,...,B
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Then
ij(i+1):C]jM(j)—1, jzl,...,B—l,

and consequently we find that

M(j+1)=pM(1) — Ry,

where
Pj=q1 %’ Rj:[1+%+...+£]"q2].
pP1Dj pj Pj-1 Pj-1-DP1

Therefore

j—1
m(j) = m(j) — m(0) = 3 M(i + 1)

i=0
Jj—1

= ) (pm(1) — R)) = m(1) 2 Pi _i Ri.
i=0 i=0

i=0

It remains only to determine m(1). But m(B) = 0, and therefore

B—1
; R;
(1) = 202
Do Pi
and for 1 <j <B,
j—1 25_1 Rt
m(j) = Zpi' == _ZRi~
i=0 2i—0 Pi 2o

(This should be compared with the results in Sect.9 for the case r; = 0, p; = p,
qi =q.)
6. In this subsection we consider a stronger version of the Markov property (8),
namely that it remains valid if time k is replaced by a random time (see Theorem 2
below). The significance of this, the strong Markov property, will be illustrated in
particular by the example of the derivation of the recurrent relations (38), which
play an important role in the classification of the states of Markov chains (Chapter 8,
Vol. 2).

Let £ = (&,...,&,) be a homogeneous Markov chain with transition matrix
Ipiills let Z¢ = (ZF)o<i<n be a system of decompositions, ZF = Z¢, ¢, Let B
denote the algebra o _@,f ) generated by the decomposition Qf .

We first put the Markov property (8) into a somewhat different form. Let B € %,f
Let us show that then

P{&=an, . &1 = a1 | B (G = ar)}
= P{gn =dp, ... 7§k+1 = Qj+1 |£k = ak} (29)



130 1 Elementary Probability Theory

(assuming that P{B n (& = at)} > 0). In fact, B can be represented in the form

*
B:Z {50 :agv"'vgk:al’{k}v
where >* extends over some set of collections (af, ..., a}). Consequently

P{&w = an,...,Gr1 = ar11|Bn (& = ar)}
_ P{(& = an,...,& = ax) n B}
P{(& = ax) n B}
_ SP{&=an,....=a)n(Co=ab,....& =af)}
P{(& = ax) n B} '

(30)

But, by the Markov property,

P{(gn :ana~~~7£k =ak)ﬁ(€o :az)kw",gk:a;ck)}

P& =an,.... 041 = a1 & =af,....& = a}
= xPl{éo =aj,....& =af} ifa = af,
0 if a # af,

P{fﬂ :an7"'7€k+1 :ak+1|§k =ak}P{£0 :aga"'vgk :a];k}

= if ay = aff,

0 if ax # aff,

P{& = an, .- &1 = ary1 | & = ar} P{(& = ax) n B}
= if ay = af,

0 if a # af.

Therefore the sum >.* in (30) is equal to

P{& = an, ... &1 = aks1 | & = ar} P{(& = ax) n B}.

This establishes (29).
Let T be a stopping time (with respect to the system 2¢ = (Q,f Jo<k<n; see
Definition 2 in Sect. 11).

Definition. We say that a set B in the algebra %S belongs to the system of sets ﬂf
if, foreach k, 0 < k <n,
Bn{t=k}e % (31)

It is easily verified that the collection of such sets B forms an algebra (called the
algebra of events observed at time 7).

Theorem 2. Let £ = (&, . .., &) be a homogeneous Markov chain with transition
matrix |y, T a stopping time (with respect to 2%), B € Bt andA = {w: 1+ 1 <n}.
Then if P{A n B n (& = ag)} > 0, the following strong Markov properties hold:

P{§T+l =as,...,541 = a1 |A NBN (gr = ao)}
=P{&i=a,....Gr1=a1|An (& = ao)}, (32)
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and if P{A n (& = ao)} > 0 then

P{€T+l =day... )€T+1 = |A N (g'f = ao)} = paou1 . -pu/,la,- (33)

PROOF. For the sake of simplicity, we give the proof only for the case / = 1. Since
Bn(t=k)€ %’f, we have, according to (29),

P{&+1 =a1, AnBn (& = ao)}
= Z P{&+1 = a1, & = ao, T=k, B}

k<n—1
= Z P{&+1 = a1 |& = ao, 1=k, B} P{& = ao, T = k, B}
k<n—1
= 2 P{&1 = a1 |& = ao} P{& = ao, 1=k, B}
k<n—1
= Papar Z P{ﬁk =dap, T= k, B} = Pagay P{A NBn (&; = aO)}7
k<n—1

which simultaneously establishes (32) and (33) (for (33) we have to take B = ).
O

Remark 2. When / = 1, the strong Markov property (32), (33) is evidently equiva-
lent to the property that

P{&t1€ ClIANB N (& = ao)} = Py, (C), (34)

for every C < X, where

Pao (C) = Z Paga; -

a1eC

In turn, (34) can be restated as follows: on the set A = {t < n — 1},
P{&i1 € C| B5} = Pe,(C), (35)

which is a form of the strong Markov property that is commonly used in the general
theory of homogeneous Markov processes.

Remark 3. If we use the conventions described in Remark 1, the properties (32) and
(33) remain valid without assuming that the probabilities of the events An{&, = ap}
and A n B n {&; = ap} are positive.
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7.Let& = (&, . .., &) be ahomogeneous Markov chain with transition matrix |p;||,
and let

O =Pl =i gi1<I<k-1|&=1i) (36)
and )

RO =Pla=j g #j 1<I<k—1]& =i} (37)

for i # j be respectively the probability of first return to state i at time k and the
probability of first arrival at state j at time k.
Let us show that

p,(j" = Zfl(k) (n— k), where p;jo) = 1. (38)
k=1

The intuitive meaning of the formula is clear: to go from state i to state j in n
steps, it is necessary to reach state j for the first time in & steps (1 < k < n) and then
to go from state j to state j in n — k steps. We now give a rigorous derivation.

Let j be given and

t=min{l <k <n: & =j},

assuming thatt =n+ 1if {:} = @. Thenf(k) =P{t=k|&{ =i} and

pl(]n) P{& =Jjl& =i}
M Pl =jt=k|& =i}

1<k<n

D P{ni =, T=k|& = i}, (39)

1<k<n

where the last equation follows because &,y = &, on the set {T = k}. Moreover,
the set {1 = k} = {t = k, {& = j} forevery k, 1 < k < n. Therefore if P{¢, =
i, T =k} > 0, it follows from Theorem 2 that

P{€T+n—k :j|50 = i, T= k} = P{€T+n—k :j|£0 = i> T= k 5‘: :]}
= Pléerni=jl&=j} =pi"

and by (37)
py = Z P{éorni =il =i 1=k P{t=k|& =i}

:2 (”k)fl ,

k=1

which establishes (38).
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8. PROBLEMS

1. Let& = (o, ..., &) be a Markov chain with values in X and f = f(x) (x € X)
a function. Will the sequence (f (&), ...,f(&:)) form a Markov chain? Will
the “reversed” sequence

(f’”fﬂ—lv s 750)

form a Markov chain?
2. LetP = |p;|, 1 <i,j < r, be a stochastic matrix and X an eigenvalue of the
matrix, i.e., a root of the characteristic equation det [P — AE| = 0. Show that

A1 = 1 is an eigenvalue and that all the other eigenvalues have moduli not
(k)

exceeding 1. If all the eigenvalues Ay, ..., A, are distinct, then p;;* admits the

representation
Py = m ay(2X + o+ ay ()X,
where 7, a;;(2), ..., a;(r) can be expressed in terms of the elements of IP. (It
follows from this algebraic approach to the study of Markov chains that, in
particular, when |Ao| < 1,... |\ < 1, the limit limy pfjk)
and is independent of i.)
3. Let& = (&, ..., &) be ahomogeneous Markov chain with state space X and

transition matrix P = |p,,||. Let us denote by

exists for every j

7¢@=EM@H®=ﬂ<=Zw®m>

the operator of transition for one step. L