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Preface to the Third English Edition

The present edition is the translation of the fourth Russian edition of 2007, with
the previous three published in 1980, 1989, and 2004. The English translations of
the first two appeared in 1984 and 1996. The third and fourth Russian editions,
extended compared to the second edition, were published in two volumes titled
“Probability-1” and “Probability-2”. Accordingly, the present edition consists of
two volumes: this vol. 1, titled “Probability-1,” contains chapters 1 to 3, and chap-
ters 4 to 8 are contained in vol. 2, titled “Probability-2,” to appear in 2016.

The present English edition has been prepared by translator D. M. Chibisov, Pro-
fessor of the Steklov Mathematical Institute. A former student of N. V. Smirnov, he
has a broad view of probability and mathematical statistics, which enabled him not
only to translate the parts that had not been translated before, but also to edit both
the previous translation and the Russian text, making in them quite a number of cor-
rections and amendments. He has written a part of Sect. 13, Chap. 3, concerning the
Kolmogorov–Smirnov tests.

The author is sincerely grateful to D. M. Chibisov for the translation and scien-
tific editing of this book.

Moscow, Russia A.N. Shiryaev
2015

Preface to the Fourth Russian Edition

The present edition contains some new material as compared to the third one. This
especially concerns two sections in Chap. 1, “Generating Functions” (Sect. 13) and
“Inclusion–Exclusion Principle” (Sect. 14).

In the elementary probability theory, dealing with a discrete space of elemen-
tary outcomes, as well as in the discrete mathematics in general, the method of
generating functions is one of the powerful tools of algebraic nature applicable to
diverse problems. In the new Sect. 13, this method is illustrated by a number of
probabilistic-combinatorial problems, as well as by the problems of discrete mathe-
matics like counting the number of integer-valued solutions to linear relations under
various constraints on the solutions or writing down the elements of sequences sat-
isfying certain recurrence relations.
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vi Preface

The material related to the principle (formulas) of inclusion–exclusion is given
undeservedly little attention in textbooks on probability theory, though it is very
efficient in various probabilistic-combinatorial problems. In Sect. 14, we state the
basic inclusion–exclusion formulas and give examples of their application.

Note that after publication of the third edition in two volumes, “Probability-1”
and “Probability-2,” we published the book, “Problems in Probability Theory,” [90]
where the problems were arranged in accordance with the contents of these two vol-
umes. The problems in this book are not only “problems-exercises,” but are mostly
of the nature of “theory in problems,” thus presenting large additional material for a
deeper study of the probability theory.

Let us mention, finally, that in “Probability-1” and “Probability-2” some correc-
tions of editorial nature have been made.

Moscow, Russia A.N. Shiryaev
November 2006

Preface to the Third Russian Edition

Taking into account that the first edition of our book “Probability” was published in
1980, the second in 1989, and the present one, the third, in 2004, one may say that
the editions were appearing once in a decade. (The book was published in English
in 1984 and 1996, and in German in 1988.)

Time has shown that the selection of the topics in the first two editions remained
relevant to this day. For this reason, we retained the structure of the previous edi-
tions, having introduced, though, some essential amendments and supplements in
the present books “Probability-1” and “Probability-2.”

This is primarily pertinent to the last, 8th, chapter (vol. 2) dealing with the theory
of Markov chains with discrete time. This chapter, in fact, has been written anew. We
extended its content and presented the detailed proofs of many results, which had
been only sketched before. A special consideration was given to the strong Markov
property and the concepts of stationary and ergodic distributions. A separate section
was given to the theory of stopping rules for Markov chains.

Some new material has also been added to the 7th chapter (vol. 2) that treats the
theory of martingales with discrete time. In Sect. 9 of this chapter, we state a dis-
crete version of the K. Ito formula, which may be viewed as an introduction to the
stochastic calculus for the Brownian motion, where Ito’s formula for the change of
variables is of key importance. In Sect. 10, we show how the methods of the mar-
tingale theory provide a simple way of obtaining estimates of ruin probabilities for
an insurance company acting under the Cramér–Lundberg model. The next Sect. 11
deals with the “Arbitrage Theory” in stochastic financial mathematics. Here we state
two “Fundamental Theorems of the Arbitrage Theory,” which provide conditions in
martingale terms for absence of arbitrage possibilities and conditions guaranteeing



Preface vii

the existence of a portfolio of assets, which enables one to achieve the objected aim.
Finally, Sect. 13 of this chapter is devoted to the general theory of optimal stopping
rules for arbitrary random sequences. The material presented here demonstrates how
the concepts and results of the martingale theory can be applied in the various prob-
lems of “Stochastic Optimization.”

There are also a number of changes and supplements made in other chapters.
We point out in this respect the new material concerning the theorems on mono-

tonic classes (Sect. 2 of Chap. 2), which relies on detailed treatment of the concepts
and properties of “π-λ” systems, and the fundamental theorems of mathematical
statistics given in Sect. 13 of Chap. 3.

The novelty of the present edition is also the “Outline of historical development
of the mathematical probability theory,” placed at the end of “Probability-2.”

In a number of sections new problems have been added.
The author is grateful to T. B. Tolosova for her laborious work over the scientific

editing of the book and thanks the Publishing House of the Moscow Center for
Continuous Mathematical Education for the offer of the new edition and the fast
and efficient implementation of the publication project.

Moscow, Russia A.N. Shiryaev
2003

Preface to the Second Edition

In the Preface to the first edition, originally published in 1980, we mentioned that
this book was based on the author’s lectures in the Department of Mechanics and
Mathematics of the Lomonosov University in Moscow, which were issued, in part,
in mimeographed form under the title “Probability, Statistics, and Stochastic Pro-
cesses, I, II” and published by that University. Our original intention in writing the
first edition of this book was to divide the contents into three parts: probability,
mathematical statistics, and theory of stochastic processes, which corresponds to an
outline of a three-semester course of lectures for university students of mathemat-
ics. However, in the course of preparing the book, it turned out to be impossible
to realize this intention completely, since a full exposition would have required too
much space. In this connection, we stated in the Preface to the first edition that only
probability theory and the theory of random processes with discrete time were really
adequately presented.

Essentially all of the first edition is reproduced in this second edition. Changes
and corrections are, as a rule, editorial, taking into account comments made by both
Russian and foreign readers of the Russian original and of the English and German
translations [88, 89]. The author is grateful to all of these readers for their attention,
advice, and helpful criticisms.



viii Preface

In this second English edition, new material also has been added, as follows:
in Chap. 3, Sect. 5, Sects. 7–12; in Chap. 4, Sect. 5; in Chap. 7, Sect. 8. The most
important additions are in the third chapter. There the reader will find expositions of
a number of problems connected with a deeper study of themes such as the distance
between probability measures, metrization of weak convergence, and contiguity of
probability measures. In the same chapter, we have added proofs of a number of
important results on the rate of convergence in the central limit theorem and in
Poisson’s theorem on the approximation of the binomial by the Poisson distribution.
These were merely stated in the first edition.

We also call attention to the new material on the probabilities of large deviations
(Chap. 4, Sect. 5), and on the central limit theorem for sums of dependent random
variables (Chap. 7, Sect. 8).

During the last few years, the literature on probability published in Russia
by Nauka has been extended by Sevastyanov [86], 1982; Rozanov [83], 1985;
Borovkov [12], 1986; and Gnedenko [32], 1988. In 1984, the Moscow University
Press published the textbook by Ya. G. Sinai [92]. It appears that these publica-
tions, together with the present volume, being quite different and complementing
each other, cover an extensive amount of material that is essentially broad enough
to satisfy contemporary demands by students in various branches of mathematics
and physics for instruction in topics in probability theory.

Gnedenko’s textbook [32] contains many well-chosen examples, including ap-
plications, together with pedagogical material and extensive surveys of the history
of probability theory. Borovkov’s textbook [12] is perhaps the most like the present
book in the style of exposition. Chapters 9 (Elements of Renewal Theory), 11 (Fac-
torization Identities) and 17 (Functional Limit Theorems), which distinguish [12]
from this book and from [32] and [83], deserve special mention. Rozanov’s text-
book contains a great deal of material on a variety of mathematical models which
the theory of probability and mathematical statistics provides for describing ran-
dom phenomena and their evolution. The textbook by Sevastyanov is based on his
two-semester course at the Moscow State University. The material in its last four
chapters covers the minimum amount of probability and mathematical statistics re-
quired in a 1-year university program. In our text, perhaps to a greater extent than
in those mentioned above, a significant amount of space is given to set-theoretic
aspects and mathematical foundations of probability theory.

Exercises and problems are given in the books by Gnedenko and Sevastyanov at
the ends of chapters, and in the present textbook at the end of each section. These,
together with, for example, the problem sets by A. V. Prokhorov and V. G. and
N. G. Ushakov (Problems in Probability Theory, Nauka, Moscow, 1986) and by
Zubkov, Sevastyanov, and Chistyakov (Collected Problems in Probability Theory,
Nauka, Moscow, 1988), can be used by readers for independent study, and by teach-
ers as a basis for seminars for students.

Special thanks to Harold Boas, who kindly translated the revisions from Russian
to English for this new edition.

Moscow, Russia A.N. Shiryaev
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Preface to the First Edition

This textbook is based on a three-semester course of lectures given by the author
in recent years in the Mechanics–Mathematics Faculty of Moscow State University
and issued, in part, in mimeographed form under the title Probability, Statistics,
Stochastic Processes, I, II by the Moscow State University Press.

We follow tradition by devoting the first part of the course (roughly one semester)
to the elementary theory of probability (Chap. 1). This begins with the construction
of probabilistic models with finitely many outcomes and introduces such funda-
mental probabilistic concepts as sample spaces, events, probability, independence,
random variables, expectation, correlation, conditional probabilities, and so on.

Many probabilistic and statistical regularities are effectively illustrated even by
the simplest random walk generated by Bernoulli trials. In this connection we study
both classical results (law of large numbers, local and integral De Moivre and
Laplace theorems) and more modern results (for example, the arc sine law).

The first chapter concludes with a discussion of dependent random variables gen-
erated by martingales and by Markov chains.

Chapters 2–4 form an expanded version of the second part of the course (second
semester). Here we present (Chap. 2) Kolmogorov’s generally accepted axiomati-
zation of probability theory and the mathematical methods that constitute the tools
of modern probability theory pσ-algebras, measures and their representations, the
Lebesgue integral, random variables and random elements, characteristic functions,
conditional expectation with respect to a σ-algebra, Gaussian systems, and so on).
Note that two measure-theoretical results—Carathéodory’s theorem on the exten-
sion of measures and the Radon–Nikodým theorem—are quoted without proof.

The third chapter is devoted to problems about weak convergence of probabil-
ity distributions and the method of characteristic functions for proving limit theo-
rems. We introduce the concepts of relative compactness and tightness of families
of probability distributions, and prove (for the real line) Prohorov’s theorem on the
equivalence of these concepts.

The same part of the course discusses properties “with probability 1” for se-
quences and sums of independent random variables (Chap. 4). We give proofs of
the “zero or one laws” of Kolmogorov and of Hewitt and Savage, tests for the con-
vergence of series, and conditions for the strong law of large numbers. The law of
the iterated logarithm is stated for arbitrary sequences of independent identically
distributed random variables with finite second moments, and proved under the as-
sumption that the variables have Gaussian distributions.

Finally, the third part of the book (Chaps. 5–8) is devoted to random processes
with discrete time (random sequences). Chapters 5 and 6 are devoted to the theory
of stationary random sequences, where “stationary” is interpreted either in the strict
or the wide sense. The theory of random sequences that are stationary in the strict
sense is based on the ideas of ergodic theory: measure preserving transformations,
ergodicity, mixing, etc. We reproduce a simple proof (by A. Garsia) of the maxi-
mal ergodic theorem; this also lets us give a simple proof of the Birkhoff-Khinchin
ergodic theorem.



x Preface

The discussion of sequences of random variables that are stationary in the wide
sense begins with a proof of the spectral representation of the covariance func-
tion. Then we introduce orthogonal stochastic measures and integrals with respect
to these, and establish the spectral representation of the sequences themselves. We
also discuss a number of statistical problems: estimating the covariance function and
the spectral density, extrapolation, interpolation and filtering. The chapter includes
material on the Kalman–Bucy filter and its generalizations.

The seventh chapter discusses the basic results of the theory of martingales and
related ideas. This material has only rarely been included in traditional courses in
probability theory. In the last chapter, which is devoted to Markov chains, the great-
est attention is given to problems on the asymptotic behavior of Markov chains with
countably many states.

Each section ends with problems of various kinds: some of them ask for proofs
of statements made but not proved in the text, some consist of propositions that will
be used later, some are intended to give additional information about the circle of
ideas that is under discussion, and finally, some are simple exercises.

In designing the course and preparing this text, the author has used a variety
of sources on probability theory. The Historical and Bibliographical Notes indicate
both the historical sources of the results and supplementary references for the mate-
rial under consideration.

The numbering system and form of references is the following. Each section
has its own enumeration of theorems, lemmas and formulas (with no indication of
chapter or section). For a reference to a result from a different section of the same
chapter, we use double numbering, with the first number indicating the number of
the section (thus, (2.10) means formula (10) of Sect. 2). For references to a different
chapter we use triple numbering (thus, formula (2.4.3) means formula (3) of Sect. 4
of Chap. 2). Works listed in the References at the end of the book have the form
rLns, where L is a letter and n is a numeral.

The author takes this opportunity to thank his teacher A. N. Kolmogorov, and
B. V. Gnedenko and Yu. V. Prokhorov, from whom he learned probability theory
and whose advices he had the opportunity to use. For discussions and advice, the
author also thanks his colleagues in the Departments of Probability Theory and
Mathematical Statistics at the Moscow State University, and his colleagues in the
Section on probability theory of the Steklov Mathematical Institute of the Academy
of Sciences of the U.S.S.R.

Moscow, Russia A.N. Shiryaev
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Introduction

The subject matter of probability theory is the mathematical analysis of random
events, i.e., of those empirical phenomena which can be described by saying that:

They do not have deterministic regularity (observations of them do not always
yield the same outcome) whereas at the same time:

They possess some statistical regularity (indicated by the statistical stability of
their frequencies).

We illustrate with the classical example of a “fair” toss of an “unbiased” coin. It
is clearly impossible to predict with certainty the outcome of each toss. The results
of successive experiments are very irregular (now “head,” now “tail”) and we seem
to have no possibility of discovering any regularity in such experiments. However, if
we carry out a large number of “independent” experiments with an “unbiased” coin
we can observe a very definite statistical regularity, namely that “head” appears with
a frequency that is “close” to 1

2 .
Statistical stability of frequencies is very likely to suggest a hypothesis about a

possible quantitative estimate of the “randomness” of some event A connected with
the results of the experiments. With this starting point, probability theory postulates
that corresponding to an event A there is a definite number PpAq, called the proba-
bility of the event, whose intrinsic property is that as the number of “independent”
trials (experiments) increases the frequency of event A is approximated by PpAq.

Applied to our example, this means that it is natural to assign the probability 1
2

to the event A that consists in obtaining “head” in a toss of an “unbiased” coin.
There is no difficulty in multiplying examples in which it is very easy to obtain

numerical values intuitively for the probabilities of one or another event. However,
these examples are all of a similar nature and involve (so far) undefined concepts
such as “fair” toss, “unbiased” coin, “independence,” etc.

Having been invented to investigate the quantitative aspects of “randomness,”
probability theory, like every exact science, became such a science only at the point
when the concept of a probabilistic model had been clearly formulated and axiom-
atized. In this connection it is natural for us to discuss, although only briefly, the

xiii



xiv Introduction

fundamental steps in the development of probability theory. A detailed “Outline of
the history of development of mathematical probability theory” will be given in the
book “Probability-2.”

Probability calculus originated in the middle of the seventeenth century with
Pascal (1623–1662), Fermat (1601–1655), and Huygens (1629–1695). Although
special calculations of probabilities in games of chance had been made earlier, in
the fifteenth and sixteenth centuries, by Italian mathematicians (Cardano, Pacioli,
Tartaglia, etc.), the first general methods for solving such problems were apparently
given in the famous correspondence between Pascal and Fermat, begun in 1654, and
in the first book on probability theory, De Ratiociniis in Aleae Ludo (On Calcula-
tions in Games of Chance), published by Huygens in 1657. It was at this time that
the fundamental concept of “mathematical expectation” was developed and theo-
rems on the addition and multiplication of probabilities were established.

The real history of probability theory begins with the work of Jacob1 Bernoulli
(1654–1705), Ars Conjectandi (The Art of Guessing) published in 1713, in which
he proved (quite rigorously) the first limit theorem of probability theory, the law
of large numbers; and of de Moivre (1667–1754), Miscellanea Analytica Supple-
mentum (a rough translation might be The Analytic Method or Analytic Miscellany,
1730), in which the so-called central limit theorem was stated and proved for the
first time (for symmetric Bernoulli trials).

J. Bernoulli deserves the credit for introducing the “classical” definition of the
concept of the probability of an event as the ratio of the number of possible out-
comes of an experiment, which are favorable to the event, to the number of possible
outcomes.

Bernoulli was probably the first to realize the importance of considering infinite
sequences of random trials and to make a clear distinction between the probability
of an event and the frequency of its realization.

De Moivre deserves the credit for defining such concepts as independence, math-
ematical expectation, and conditional probability.

In 1812 there appeared Laplace’s (1749–1827) great treatise Théorie Analytique
des Probabilités (Analytic Theory of Probability) in which he presented his own
results in probability theory as well as those of his predecessors. In particular, he
generalized de Moivre’s theorem to the general (asymmetric) case of Bernoulli trials
thus revealing in a more complete form the significance of de Moivre’s result.

Laplace’s very important contribution was the application of probabilistic meth-
ods to errors of observation. He formulated the idea of considering errors of obser-
vation as the cumulative results of adding a large number of independent elementary
errors. From this it followed that under rather general conditions the distribution of
errors of observation must be at least approximately normal.

The work of Poisson (1781–1840) and Gauss (1777–1855) belongs to the same
epoch in the development of probability theory, when the center of the stage was
held by limit theorems. In contemporary probability theory the name of Poisson is
attributed to the probability distribution which appeared in a limit theorem proved

1 Also known as James or Jacques.
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by him and to the related stochastic process. Gauss is credited with originating the
theory of errors and, in particular, justification of the fundamental method of least
squares.

The next important period in the development of probability theory is connected
with the names of P. L. Chebyshev (1821–1894), A. A. Markov (1856–1922), and
A. M. Lyapunov (1857–1918), who developed effective methods for proving limit
theorems for sums of independent but arbitrarily distributed random variables.

The number of Chebyshev’s publications in probability theory is not large—four
in all—but it would be hard to overestimate their role in probability theory and in
the development of the classical Russian school of that subject.

“On the methodological side, the revolution brought about by Chebyshev was not only
his insistence for the first time on complete rigor in the proofs of limit theorems, . . . but also,
and principally, that Chebyshev always tried to obtain precise estimates for the deviations
from the limiting laws that are available for large but finite numbers of trials, in the form of
inequalities that are certainly valid for any number of trials.”

(A. N. KOLMOGOROV [50])

Before Chebyshev the main interest in probability theory had been in the calcu-
lation of the probabilities of random events. He, however, was the first to realize
clearly and exploit the full strength of the concepts of random variables and their
mathematical expectations.

The leading exponent of Chebyshev’s ideas was his devoted student Markov,
to whom there belongs the indisputable credit of presenting his teacher’s results
with complete clarity. Among Markov’s own significant contributions to probability
theory were his pioneering investigations of limit theorems for sums of dependent
random variables and the creation of a new branch of probability theory, the theory
of dependent random variables that form what we now call a Markov chain.

“Markov’s classical course in the calculus of probability and his original papers, which
are models of precision and clarity, contributed to the greatest extent to the transformation
of probability theory into one of the most significant branches of mathematics and to a wide
extension of the ideas and methods of Chebyshev.”

(S. N. BERNSTEIN [7])

To prove the central limit theorem of probability theory (the theorem on conver-
gence to the normal distribution), Chebyshev and Markov used what is known as
the method of moments. Under more general conditions and by a simpler method,
the method of characteristic functions, the theorem was obtained by Lyapunov. The
subsequent development of the theory has shown that the method of characteristic
functions is a powerful analytic tool for establishing the most diverse limit theorems.

The modern period in the development of probability theory begins with its ax-
iomatization. The first work in this direction was done by S. N. Bernstein (1880–
1968), R. von Mises (1883–1953), and E. Borel (1871–1956). A. N. Kolmogorov’s
book Foundations of the Theory of Probability appeared in 1933. Here he presented
the axiomatic theory that has become generally accepted and is not only applicable
to all the classical branches of probability theory, but also provides a firm foundation
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for the development of new branches that have arisen from questions in the sciences
and involve infinite-dimensional distributions.

The treatment in the present books “Probability-1” and “Probability-2” is based
on Kolmogorov’s axiomatic approach. However, to prevent formalities and logical
subtleties from obscuring the intuitive ideas, our exposition begins with the elemen-
tary theory of probability, whose elementariness is merely that in the corresponding
probabilistic models we consider only experiments with finitely many outcomes.
Thereafter we present the foundations of probability theory in their most general
form (“Probability-1”).

The 1920s and 1930s saw a rapid development of one of the new branches of
probability theory, the theory of stochastic processes, which studies families of ran-
dom variables that evolve with time. We have seen the creation of theories of Markov
processes, stationary processes, martingales, and limit theorems for stochastic pro-
cesses. Information theory is a recent addition.

The book “Probability-2” is basically concerned with stochastic processes with
discrete time: random sequences. However, the material presented in the second
chapter of “Probability-1” provides a solid foundation (particularly of a logical na-
ture) for the study of the general theory of stochastic processes.

Although the present edition of “Probability-1” and “Probability-2” is devoted to
Probability Theory, it will be appropriate now to say a few words about Mathemat-
ical Statistics and, more generally, about Statistics and relation of these disciplines
to Probability Theory.

In many countries (e.g., in Great Britain) Probability Theory is regarded as “inte-
gral” part of Statistics handling its mathematical aspects. In this context Statistics is
assumed to consist of descriptive statistics and mathematical statistics. (Many en-
cyclopedias point out that the original meaning of the word statistics was the “study
of the status of a state” (from Latin status). Formerly statistics was called “political
arithmetics” and its aim was estimation of various numerical characteristics describ-
ing the status of the society, economics, etc., and recovery of various quantitative
properties of mass phenomena from incomplete data.)

The descriptive statistics deals with representation of statistical data (“statistical
raw material”) in the form suitable for analysis. (The key words here are, e.g.: pop-
ulation, sample, frequency distributions and their histograms, relative frequencies
and their histograms, frequency polygons, etc.)

Mathematical statistics is designed to produce mathematical processing of “sta-
tistical raw material” in order to estimate characteristics of the underlying distribu-
tions or underlying distributions themselves, or in general to make an appropriate
statistical inference with indication of its accuracy. (Key words: point and interval
estimation, testing statistical hypotheses, nonparametric tests, regression analysis,
analysis of variance, statistics of random processes, etc.)

In Russian tradition Mathematical Statistics is regarded as a natural part of Prob-
ability Theory dealing with “inverse probabilistic problems,” i.e., problems of find-
ing the probabilistic model which most adequately fits the available statistical data.

This point of view, which regards mathematical statistics as part of probability
theory, enables us to provide the rigorous mathematical background to statistical
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methods and conclusions and to present statistical inference in the form of rigor-
ous probabilistic statements. (See, e.g., “Probability-1,” Sect. 13, Chap. 3, “Fun-
damental theorems of mathematical statistics.”) In this connection it might be ap-
propriate to recall that the first limit theorem of probability theory—the Law of
Large Numbers—arose in J. Bernoulli’s “Ars Conjectandi” from his motivation to
obtain the mathematical justification for using the “frequency” as an estimate of
the “probability of success” in the scheme of “Bernoulli trials.” (See in this regard
“Probability-1,” Sect. 7, Chap. 1.)

We conclude this Introduction with words of J. Bernoulli from “Ars Conjectandi”
(Chap. 2 of Part 4)2:

“We are said to know or to understand those things which are certain and beyond doubt;
all other things we are said merely to conjecture or guess about.

To conjecture about something is to measure its probability; and therefore, the art of con-
jecturing or the stochastic art is defined by us as the art of measuring as exactly as possible
the probabilities of things with this end in mind: that in our decisions or actions we may be
able always to choose or to follow what has been perceived as being superior, more advan-
tageous, safer, or better considered; in this alone lies all the wisdom of the philosopher and
all the discretion of the statesman.”

To the Latin expression ars conjectandi (the art of conjectures) there corresponds
the Greek expression στoχαστική τ έχνη (with the second word often omitted).
This expression derives from Greek στ óχoζ meaning aim, conjecture, assumption.

Presently the word “stochastic” is widely used as a synonym of “random.” For ex-
ample, the expressions “stochastic processes” and “random processes” are regarded
as equivalent. It is worth noting that theory of random processes and statistics of
random processes are nowadays among basic and intensively developing areas of
probability theory and mathematical statistics.

2 Cited from: Translations from James Bernoulli, transl. by Bing Sung, Dept. Statist., Harvard
Univ., Preprint No. 2 (1966); Chs. 1–4 also available on: http://cerebro.xu.edu/math/
Sources/JakobBernoulli/ars_sung.pdf. (Transl. 2016 ed.).



Chapter 1
Elementary Probability Theory

We call elementary probability theory that part of probability theory which deals with
probabilities of only a finite number of events.

A. N. Kolmogorov, “Foundations of the Theory of Probability” [51]

1 Probabilistic Model of an Experiment with a Finite
Number of Outcomes

1. Let us consider an experiment of which all possible results are included in a
finite number of outcomes ω1, . . . , ωN . We do not need to know the nature of these
outcomes, only that there are a finite number N of them.

We call ω1, . . . , ωN elementary events, or sample points, and the finite set

Ω “ tω1, . . . , ωNu,
the (finite) space of elementary events or the sample space.

The choice of the space of elementary events is the first step in formulating a
probabilistic model for an experiment. Let us consider some examples of sample
spaces.

Example 1. For a single toss of a coin the sample space Ω consists of two points:

Ω “ tH, Tu,
where H “ “head” and T “ “tail.”

Example 2. For n tosses of a coin the sample space is

Ω “ tω : ω “ pa1, . . . , anq, ai “ HorTu
and the total number NpΩq of outcomes is 2n.

© Springer Science+Business Media New York 2016
A.N. Shiryaev, Probability-1, Graduate Texts
in Mathematics 95, DOI 10.1007/978-0-387-72206-1 1

1



2 1 Elementary Probability Theory

Example 3. First toss a coin. If it falls “head” then toss a die (with six faces num-
bered 1, 2, 3, 4, 5, 6); if it falls “tail,” toss the coin again. The sample space for this
experiment is

Ω “ tH1,H2,H3,H4,H5,H6,TH,TTu.
2. We now consider some more complicated examples involving the selection of n
balls from an urn containing M distinguishable balls.

Example 4 (Sampling with Replacement). This is an experiment in which at each
step one ball is drawn at random and returned again. The balls are numbered
1, . . . ,M, so that each sample of n balls can be presented in the form pa1, . . . , anq,
where ai is the label of the ball drawn at the ith step. It is clear that in sampling
with replacement each ai can have any of the M values 1, 2, . . . , M. The description
of the sample space depends in an essential way on whether we consider samples
like, for example, (4, 1, 2, 1) and (1, 4, 2, 1) as different or the same. It is customary
to distinguish two cases: ordered samples and unordered samples. In the first case
samples containing the same elements, but arranged differently, are considered to
be different. In the second case the order of the elements is disregarded and the two
samples are considered to be identical. To emphasize which kind of sample we are
considering, we use the notation pa1, . . . , anq for ordered samples and ra1, . . . , ans
for unordered samples.

Thus for ordered samples with replacement the sample space has the form

Ω “ tω : ω “ pa1, . . . , anq, ai “ 1, . . . ,Mu
and the number of (different) outcomes, which in combinatorics are called arrange-
ments of n out of M elements with repetitions, is

NpΩq “ Mn. (1)

If, however, we consider unordered samples with replacement (called in combi-
natorics combinations of n out of M elements with repetitions), then

Ω “ tω : ω “ ra1, . . . , ans, ai “ 1, . . . ,Mu.
Clearly the number NpΩq of (different) unordered samples is smaller than the num-
ber of ordered samples. Let us show that in the present case

NpΩq “ Cn
M`n´1, (2)

where Cl
k ” k!{rl!pk ´ lq!s is the number of combinations of k elements, taken l at a

time.
We prove this by induction. Let NpM, nq be the number of outcomes of interest.

It is clear that when k ≤ M we have

Npk, 1q “ k “ C1
k .
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Now suppose that Npk, nq “ Cn
k`n´1 for k ≤ M; we will show that this formula con-

tinues to hold when n is replaced by n`1. For the unordered samples ra1, . . . , an`1s
that we are considering, we may suppose that the elements are arranged in nonde-
creasing order: a1 ≤ a2 ≤ ¨ ¨ ¨ ≤ an`1. It is clear that the number of unordered sam-
ples of size n ` 1 with a1 “ 1 is NpM, nq, the number with a1 “ 2 is NpM ´ 1, nq,
etc. Consequently

NpM, n ` 1q “ NpM, nq ` NpM ´ 1, nq ` ¨ ¨ ¨ ` Np1, nq
“ Cn

M`n´1 ` Cn
M´1`n´1 ` ¨ ¨ ¨ ` Cn

n

“ pCn`1
M`n ´ Cn`1

M`n´1q ` pCn`1
M´1`n ´ Cn`1

M´1`n´1q
` ¨ ¨ ¨ ` pCn`1

n`2 ´ Cn`1
n`1q ` Cn

n “ Cn`1
M`n;

here we have used the easily verified property

Cl´1
k ` Cl

k “ Cl
k`1

of the binomial coefficients Cl
k. (This is the property of the binomial coefficients

which allows for counting them by means of “Pascal’s triangle.”)

Example 5 (Sampling Without Replacement). Suppose that n ≤ M and that the
selected balls are not returned. In this case we again consider two possibilities,
namely ordered and unordered samples.

For ordered samples without replacement (called in combinatorics arrangements
of n out of M elements without repetitions) the sample space

Ω “ tω : ω “ pa1, . . . , anq, ak ‰ al, k ‰ l, ai “ 1, . . . ,Mu,
consists of MpM ´ 1q . . . pM ´ n ` 1q elements. This number is denoted by pMqn or
An

M and is called the number of arrangements of n out of M elements.
For unordered samples without replacement (called in combinatorics combina-

tions of n out of M elements without repetitions) the sample space

Ω “ tω : ω “ ra1, . . . , ans, ak ‰ al, k ‰ l, ai “ 1, . . . ,Mu
consists of

NpΩq “ Cn
M (3)

elements. In fact, from each unordered sample ra1, . . . , ans consisting of distinct
elements we can obtain n! ordered samples. Consequently

NpΩq ¨ n! “ pMqn

and therefore

NpΩq “ pMqn

n!
“ Cn

M.

The results on the numbers of samples of size n from an urn with M balls are
presented in Table 1.1.
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Table 1.1

For the case M “ 3 and n “ 2, the corresponding sample spaces are displayed in
Table 1.2.

Table 1.2

Example 6 (Allocation of Objects Among Cells). We consider the structure of the
sample space in the problem of allocation of n objects (balls, etc.) among M cells
(boxes, etc.). For example, such problems arise in statistical physics in studying the
distribution of n objects (which might be protons, electrons, . . .) among M states
(which might be energy levels).

Let the cells be numbered 1, 2, . . . ,M, and suppose first that the objects are dis-
tinguishable (numbered 1, 2, . . . , n). Then an allocation of the n objects among the
M cells is completely described by an (ordered) collection pa1, . . . , anq, where ai

is the index of the cell containing the ith object. However, if the objects are indis-
tinguishable their allocation among the M cells is completely determined by the
unordered set ra1, . . . , ans, where ai is the index of the cell into which an object is
put at the ith step.
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Comparing this situation with Examples 4 and 5, we have the following corre-
spondences:

pordered samplesq Ø pdistinguishable objectsq,
punordered samplesq Ø pindistinguishable objectsq,

by which we mean that to an instance of choosing an ordered (unordered) sample of
n balls from an urn containing M balls there corresponds (one and only one) instance
of distributing n distinguishable (indistinguishable) objects among M cells.

In a similar sense we have the following correspondences:

psampling with replacementq Ø
ˆ
a cell may receive any number
of objects

˙
,

psampling without replacementq Ø
ˆ
a cell may receive at most
one object

˙
.

These correspondences generate others of the same kind:

¨
˝an unordered sample in

sampling without
replacement

˛
‚Ø

¨
˚̊
˝

indistinguishable objects in the
problem of allocation among cells
when each cell may receive at
most one object

˛
‹‹‚

etc.; so that we can use Examples 4 and 5 to describe the sample space for the
problem of allocation distinguishable or indistinguishable objects among cells either
with exclusion (a cell may receive at most one object) or without exclusion (a cell
may receive any number of objects).

Table 1.3 displays the allocation of two objects among three cells. For distin-
guishable objects, we denote them by W (white) and B (black). For indistinguish-
able objects, the presence of an object in a cell is indicated by a `.

The duality that we have observed between the two problems gives us an obvious
way of finding the number of outcomes in the problem of placing objects in cells.
The results, which include the results in Table 1.1, are given in Table 1.4.

In statistical physics one says that distinguishable (or indistinguishable, respec-
tively) particles that are not subject to the Pauli exclusion principle˚ obey Maxwell–
Boltzmann statistics (or, respectively, Bose–Einstein statistics). If, however, the par-
ticles are indistinguishable and are subject to the exclusion principle, they obey
Fermi–Dirac statistics (see Table 1.4). For example, electrons, protons and neu-
trons obey Fermi–Dirac statistics. Photons and pions obey Bose–Einstein statistics.
Distinguishable particles that are subject to the exclusion principle do not occur in
physics.

3. In addition to the concept of sample space we now introduce the important con-
cept of event playing a fundamental role in construction of any probabilistic model
(“theory”) of the experiment at hand.

˚ At most one particle in each cell. (Translator).
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Table 1.3

Table 1.4

Experimenters are ordinarily interested, not in what particular outcome occurs as
the result of a trial, but in whether the outcome belongs to some subset of the set
of all possible outcomes. We shall describe as events all subsets A Ď Ω for which,
under the conditions of the experiment, it is possible to say either “the outcome
ω P A” or “the outcome ω R A.”
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For example, let a coin be tossed three times. The sample space Ω consists of the
eight points

Ω “ tHHH,HHT, . . . ,TTTu
and if we are able to observe (determine, measure, etc.) the results of all three tosses,
we say that the set

A “ tHHH,HHT,HTH,THHu
is the event consisting of the appearance of at least two heads. If, however, we can
determine only the result of the first toss, this set A cannot be considered to be
an event, since there is no way to give either a positive or negative answer to the
question of whether a specific outcome ω belongs to A.

Starting from a given collection of sets that are events, we can form new events by
means of statements containing the logical connectives “or,” “and” and “not,” which
correspond in the language of set theory to the operations “union,” “intersection,”
and “complement.”

If A and B are sets, their union, denoted by A Y B, is the set of points that belong
either to A or to B (or to both):

A Y B “ tω P Ω: ω P A or ω P Bu.
In the language of probability theory, A Y B is the event consisting of the realization
of at least one of events A or B.

The intersection of A and B, denoted by A X B, or by AB, is the set of points that
belong to both A and B:

A X B “ tω P Ω: ω P A and ω P Bu.
The event A X B consists of the simultaneous realization of both A and B.

For example, if A “ {HH, HT, TH} and B “ {TT, TH, HT} then

A Y B “ tHH,HT,TH,TTu p“ Ωq,
A X B “ tTH,HTu.

If A is a subset of Ω, its complement, denoted by A, is the set of points of Ω that
do not belong to A.

If BzA denotes the difference of B and A (i.e., the set of points that belong to B
but not to A) then A “ ΩzA. In the language of probability, A is the event consisting
of the nonrealization of A. For example, if A “ {HH, HT, TH} then A “ {TT}, the
event in which two successive tails occur.

The sets A and A have no points in common and consequently AXA is empty. We
denote the empty set by ∅. In probability theory, ∅ is called an impossible event.
The set Ω is naturally called the certain event.

When A and B are disjoint pAB “ ∅q, the union A Y B is called the sum of A and
B and written A ` B.

If we consider a collection A0 of sets A Ď Ω we may use the set-theoretic opera-
tors Y, X and z to form a new collection of sets from the elements of A0; these sets
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are again events. If we adjoin the certain and impossible events Ω and ∅ we obtain a
collection A of sets which is an algebra, i.e. a collection of subsets of Ω for which

(1) Ω P A ,
(2) if A P A , B P A , the sets A Y B, A X B, AzB also belong to A .

It follows from what we have said that it will be advisable to consider collections
of events that form algebras. In the future we shall consider only such collections.

Here are some examples of algebras of events:

(a) tΩ, ∅u, the collection consisting of Ω and the empty set (we call this the trivial
algebra);

(b) tA,A, Ω, ∅u, the collection generated by A;
(c) A “ tA : A Ď Ωu, the collection consisting of all the subsets of Ω (including

the empty set ∅).

It is easy to check that all these algebras of events can be obtained from the
following principle.

We say that a collection

D “ tD1, . . . , Dnu
of sets is a decomposition of Ω, and call the Di the atoms of the decomposition, if
the Di are not empty, are pairwise disjoint, and their sum is Ω:

D1 ` ¨ ¨ ¨ ` Dn “ Ω.

For example, if Ω consists of three points, Ω “ t1, 2, 3u, there are five different
decompositions:

D1 “ tD1u with D1 “ t1, 2, 3u;
D2 “ tD1, D2u with D1 “ t1, 2u, D2 “ t3u;
D3 “ tD1, D2u with D1 “ t1, 3u, D2 “ t2u;
D4 “ tD1, D2u with D1 “ t2, 3u, D2 “ t1u;
D5 “ tD1, D2, D3u with D1 “ t1u, D2 “ t2u, D3 “ t3u.

(For the general number of decompositions of a finite set see Problem 2.)
If we consider all unions of the sets in D , the resulting collection of sets, together

with the empty set, forms an algebra, called the algebra induced by D , and denoted
by αpDq. Thus the elements of αpDq consist of the empty set together with the sums
of sets which are atoms of D .

Thus if D is a decomposition, there is associated with it a specific algebra B “
αpDq.

The converse is also true. Let B be an algebra of subsets of a finite space Ω.
Then there is a unique decomposition D whose atoms are the elements of B, with
B “ αpDq. In fact, let D P B and let D have the property that for every B P B the
set D X B either coincides with D or is empty. Then this collection of sets D forms
a decomposition D with the required property αpDq “ B. In Example (a), D is the
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trivial decomposition consisting of the single set D1 “ Ω; in (b), D “ tA, Au. The
most fine-grained decomposition D , which consists of the singletons tωiu, ωi P Ω,
induces the algebra in Example (c), i.e., the algebra of all subsets of Ω.

Let D1 and D2 be two decompositions. We say that D2 is finer than D1, and write
D1 ď D2, if αpD1q Ď αpD2q.

Let us show that if Ω consists, as we assumed above, of a finite number of points
ω1, . . . , ωN , then the number NpA q of sets in the collection A as in Example (c)
is equal to 2N . In fact, every nonempty set A P A can be represented as A “
tωi1 , . . . , ωik u, where ωij P Ω, 1 ≤ k ≤ N. With this set we associate the sequence
of zeros and ones

p0, . . . , 0, 1, 0, . . . , 0, 1, . . .q,
where there are ones in the positions i1, . . . , ik and zeros elsewhere. Then for a given
k the number of different sets A of the form tωi1 , . . . , ωik u is the same as the number
of ways in which k ones (k indistinguishable objects) can be placed in N positions
(N cells). According to Table 1.4 (see the lower right-hand square) we see that this
number is Ck

N . Hence (counting the empty set) we find that

NpA q “ 1 ` C1
N ` ¨ ¨ ¨ ` CN

N “ p1 ` 1qN “ 2N .

4. We have now taken the first two steps in defining a probabilistic model (“theory”)
of an experiment with a finite number of outcomes: we have selected a sample space
and a collection A of its subsets, which form an algebra and are called events.
(Sometimes the pair E “ pΩ,A q is regarded as an experiment.) We now take the
next step, to assign to each sample point (outcome) ωi P Ω, i “ 1, . . . ,N, a weight.
This is denoted by ppωiq and called the probability of the outcome ωi; we assume
that it has the following properties:

(a) 0 ≤ ppωiq ≤ 1 (nonnegativity),
(b) ppω1q ` ¨ ¨ ¨ ` ppωNq “ 1 (normalization).

Starting from the given probabilities ppωiq of the outcomes ωi, we define the
probability PpAq of any event A P A by

PpAq “
ÿ

ti:ωiPAu
ppωiq. (4)

Definition. The “probability space”

pΩ,A ,Pq,
where Ω “ tω1, . . . , ωNu, A is an algebra of subsets of Ω, and

P “ tPpAq;A P A u,
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is said to specify the probabilistic model (“theory”) of an experiment with a (fi-
nite) space Ω of outcomes (elementary events) and algebra A of events. (Clearly,
Pptωiuq “ ppωiq, i “ 1, . . . ,N.) A probability space pΩ,A ,Pq with a finite set Ω
is called discrete.

The following properties of probability follow from (4):

Pp∅q “ 0, (5)

PpΩq “ 1, (6)

PpA Y Bq “ PpAq ` PpBq ´ PpA X Bq. (7)

In particular, if A X B “ ∅, then

PpA ` Bq “ PpAq ` PpBq (8)

and
PpAq “ 1 ´ PpAq. (9)

5. In constructing a probabilistic model for a specific situation, the construction of
the sample space Ω and the algebra A of events are ordinarily not difficult. In ele-
mentary probability theory one usually takes the algebra A to be the algebra of all
subsets of Ω. Any difficulty that may arise is in assigning probabilities to the sample
points. In principle, the solution to this problem lies outside the domain of probabil-
ity theory, and we shall not consider it in detail. We consider that our fundamental
problem is not the question of how to assign probabilities, but how to calculate the
probabilities of complicated events (elements of A ) from the probabilities of the
sample points.

It is clear from a mathematical point of view that for finite sample spaces we can
obtain all conceivable (finite) probability spaces by assigning nonnegative numbers
p1, . . . , pN , satisfying the condition p1 ` ¨ ¨ ¨ ` pN “ 1, to the outcomes ω1, . . . , ωN .

The validity of the assignments of the numbers p1, . . . , pN can, in specific cases,
be checked to a certain extent by using the law of large numbers (which will be
discussed later on). It states that in a long series of “independent” experiments,
carried out under identical conditions, the frequencies with which the elementary
events appear are “close” to their probabilities.

In connection with the difficulty of assigning probabilities to outcomes, we note
that there are many actual situations in which for reasons of symmetry or homogene-
ity it seems reasonable to consider all conceivable outcomes as equally probable. In
such cases, if the sample space consists of points ω1, . . . , ωN , with N ă 8, we put

ppω1q “ ¨ ¨ ¨ “ ppωNq “ 1{N,

and consequently
PpAq “ NpAq{N (10)

for every event A P A , where NpAq is the number of sample points in A.
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This is called the classical method of assigning probabilities. It is clear that in
this case the calculation of PpAq reduces to calculating the number of outcomes be-
longing to A. This is usually done by combinatorial methods, so that combinatorics,
dealing with finite sets, plays a significant role in the calculus of probabilities.

Example 7 (Coincidence Problem). Let an urn contain M balls numbered
1, 2, . . . ,M. We draw an ordered sample of size n with replacement. It is clear
that then

Ω “ tω : ω “ pa1, . . . , anq, ai “ 1, . . . , Mu
and NpΩq “ Mn. Using the classical assignment of probabilities, we consider the
Mn outcomes equally probable and ask for the probability of the event

A “ tω : ω “ pa1, . . . , anq, ai ‰ aj, i ‰ ju,
i.e., the event in which there is no repetition. Clearly NpAq “ MpM ´ 1q ¨ ¨ ¨ pM ´
n ` 1q, and therefore

PpAq “ pMqn

Mn
“

ˆ
1 ´ 1

M

˙ ˆ
1 ´ 2

M

˙
¨ ¨ ¨

ˆ
1 ´ n ´ 1

M

˙
. (11)

This problem has the following striking interpretation. Suppose that there are n
students in a class and that each student’s birthday is on one of 365 days with all
days being equally probable. The question is, what is the probability Pn that there are
at least two students in the class whose birthdays coincide? If we interpret selection
of birthdays as selection of balls from an urn containing 365 balls, then by (11)

Pn “ 1 ´ p365qn

365n
.

The following table lists the values of Pn for some values of n:

n 4 16 22 23 40 64

Pn 0.016 0.284 0.476 0.507 0.891 0.997

For sufficiently large M

log
pMqn

Mn
“

n´1ÿ
k“1

log
´
1 ´ k

M

¯
„ ´ 1

M

n´1ÿ
k“1

k “ ´ 1

M
npn ´ 1q

2
,

hence

PMpnq ” 1 ´ pMqn

Mn
„ 1 ´ e´ npn´1q

2M p” P̃Mpnqq, M Ñ 8.

The figures below present the graphs of P365pnq and P̃365pnq and the graph of
their difference. The graphs of P365pnq and its approximation P̃365pnq shown in the
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left panel practically coincide. The maximal difference between them in the interval
r0, 60s equals approximately 0.01 (at about n “ 30).

2010 30 40 50 60

0,0020.2

0

1

0.8

0.6

0.4 0,004

0,006

0,008

0,01

n 2010 30 40 50 60 n
Graph of P365pnq and P̃365pnq Graph of P365pnq ´ P̃365pnq

It is interesting to note that (unexpectedly!) the size of class in which there is
probability 1

2 of finding at least two students with the same birthday is not very
large: only 23.

Example 8 (Prizes in a Lottery). Consider a lottery that is run in the following
way. There are M tickets numbered 1, 2, . . . ,M, of which n, numbered 1, . . . , n,
win prizes pM ≥ 2nq. You buy n tickets, and ask for the probability (P, say) of
winning at least one prize.

Since the order in which the tickets are drawn plays no role in the presence or
absence of winners in your purchase, we may suppose that the sample space has the
form

Ω “ tω : ω “ ra1, . . . , ans, ak ‰ al, k ‰ l, ai “ 1, . . . , Mu.
By Table 1.1, NpΩq “ Cn

M . Now let

A0 “ tω : ω “ ra1, . . . , ans, ak ‰ al, k ‰ l, ai “ n ` 1, . . . ,Mu
be the event that there is no winner in the set of tickets you bought. Again by
Table 1.1, NpA0q “ Cn

M´n. Therefore

PpA0q “ Cn
M´n

Cn
M

“ pM ´ nqn

pMqn

“
ˆ
1 ´ n

M

˙ ˆ
1 ´ n

M ´ 1

˙
¨ ¨ ¨

ˆ
1 ´ n

M ´ n ` 1

˙

and consequently

P “ 1 ´ PpA0q “ 1 ´
ˆ
1 ´ n

M

˙ ˆ
1 ´ n

M ´ 1

˙
¨ ¨ ¨

ˆ
1 ´ n

M ´ n ` 1

˙
.

If M “ n2 and n Ñ 8, then PpA0q Ñ e´1 and

P Ñ 1 ´ e´1 « 0.632.

The convergence is quite fast: for n “ 10 the probability is already P “ 0.670.
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6. PROBLEMS

1. Establish the following properties of the operators X and Y:

A Y B “ B Y A, AB “ BA pcommutativityq,
A Y pB Y Cq “ pA Y Bq Y C, ApBCq “ pABqC passociativityq,
A pB Y Cq “ AB Y AC, A Y pBCq “ pA Y BqpA Y Cq pdistributivityq,
A Y A “ A, AA “ A pidempotencyq.

Show also the following De Morgan’s laws:

A Y B “ A X B, AB “ A Y B.

2. Let Ω contain N elements. Show that Bell’s number BN of different decompo-
sitions of Ω is given by the formula

BN “ e´1
8ÿ

k“0

kN

k!
. (12)

(Hint: Show that

BN “
N´1ÿ
k“0

Ck
N´1Bk, where B0 “ 1,

and then verify that the series in (12) satisfy the same recurrence relations.)
3. For any finite collection of sets A1, . . . ,An,

PpA1 Y ¨ ¨ ¨ Y Anq ≤ PpA1q ` ¨ ¨ ¨ ` PpAnq.
4. Let A and B be events. Show that AB Y BA is the event in which exactly one of

A and B occurs. Moreover,

PpAB Y BAq “ PpAq ` PpBq ´ 2PpABq.
5. Let A1, . . . ,An be events, and define S0, S1, . . . , Sn as follows: S0 “ 1,

Sr “
ÿ
Jr

PpAk1 X ¨ ¨ ¨ X Akr q, 1 ≤ r ≤ n,

where the sum is over the unordered subsets Jr “ rk1, . . . , krs of t1, . . . , nu,
ki ‰ kj, i ‰ j.

Let Bm be the event in which exactly m of the events A1, . . . ,An occur si-
multaneously. Show that

PpBmq “
nÿ

r“m

p´1qr´mCm
r Sr.

In particular, for m “ 0

PpB0q “ 1 ´ S1 ` S2 ´ ¨ ¨ ¨ ˘ Sn.
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Show also that the probability that at least m of the events A1, . . . ,An occur
simultaneously is

PpBmq ` ¨ ¨ ¨ ` PpBnq “
nÿ

r“m

p´1qr´mCm´1
r´1 Sr.

In particular, the probability that at least one of the events A1, . . . ,An occurs is

PpB1q ` ¨ ¨ ¨ ` PpBnq “ S1 ´ S2 ` ¨ ¨ ¨ ¯ Sn.

Prove the following properties:
(a) Bonferroni’s inequalities: for any k “ 1, 2, . . . such that 2k ≤ n,

S1 ´ S2 ` ¨ ¨ ¨ ´ S2k ≤ P
ˆ nď

i“1

Ai

˙
≤ S1 ´ S2 ` ¨ ¨ ¨ ` S2k´1;

(b) Gumbel’s inequalities:

P
ˆ nď

r“1

Ai

˙
≤ S̃m

Cm´1
n´1

, m “ 1, . . . , n,

where
S̃m “

ÿ
1≤i1ă...ăim≤n

PpAi1 Y . . . Y Aim q;

(c) Frechét’s inequalities:

P
ˆ nď

i“1

Ai

˙
≤ S̃m`1

Cm
n´1

≤ S̃m

Cm´1
n´1

, m “ 1, . . . , n ´ 1.

6. Show that PpA X B X Cq ≥ PpAq ` PpBq ` PpCq ´ 2 and, by induction,

P
ˆ nč

i“1

Ai

˙
≥

nÿ
i“1

PpAiq ´ pn ´ 1q.

7. Explore the asymptotic behavior of the probabilities PMpnq in Example 7 under
various assumptions about n and M (for example: n “ xM, M Ñ 8, or n “
x
?

M, M Ñ 8, where x is a fixed number). Compare the results with the local
limit theorem in Sect. 6.

2 Some Classical Models and Distributions

1. Binomial distribution. Let a coin be tossed n times and record the results as an
ordered set pa1, . . . , anq, where ai “ 1 for a head (“success”) and ai “ 0 for a tail
(“failure”). The sample space is

Ω “ tω : ω “ pa1, . . . , anq, ai “ 0, 1u.
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To each sample point ω “ pa1, . . . , anq we assign the probability (“weight”)

ppωq “ pΣai qn´Σai ,

where the nonnegative numbers p and q satisfy p ` q “ 1. In the first place, we
verify that this assignment of the weights ppωq is consistent. It is enough to show
that

ř
ωPΩ ppωq “ 1.

Consider all outcomes ω “ pa1, . . . , anq for which
ř

i ai “ k, where k “
0, 1, . . . , n. According to Table 1.4 (allocation of k indistinguishable objects over
n places) the number of these outcomes is Ck

n. Therefore

ÿ
ωPΩ

ppωq “
nÿ

k“0

Ck
npkqn´k “ pp ` qqn “ 1.

Thus the space Ω together with the collection A of all its subsets and the proba-
bilities PpAq “ ř

ωPA ppωq, A P A (in particular, Pptωuq “ ppωq, ω P Ω), defines
a discrete probabilistic model. It is natural to call this the probabilistic model for n
tosses of a coin. This model is also called the Bernoulli scheme.

In the case n “ 1, when the sample space contains just the two points ω “ 1
(“success”) and ω “ 0 (“failure”), it is natural to call pp1q “ p the probability of
success. We shall see later that this model for n tosses of a coin can be thought of as
the result of n “independent” experiments with probability p of success at each trial.

Let us consider the events

Ak “ tω : ω “ pa1, . . . , anq, a1 ` ¨ ¨ ¨ ` an “ ku, k “ 0, 1, . . . , n,

containing exactly k successes. It follows from what we said above that

PpAkq “ Ck
npkqn´k, (1)

and
řn

k“0 PpAkq “ 1.
The set of probabilities pPpA0q, . . . ,PpAnqq is called the binomial distribution

(the probability distribution of the number of successes in a sample of size n). This
distribution plays an extremely important role in probability theory since it arises in
the most diverse probabilistic models. We write Pnpkq “ PpAkq, k “ 0, 1, . . . , n.
Figure 1 shows the binomial distribution in the case p “ 1

2 (symmetric coin) for
n “ 5, 10, 20.

We now present a different model (in essence, equivalent to the preceding one)
which describes the random walk of a “particle.”

Let the particle start at the origin, and after unit time let it take a unit step upward
or downward (Fig. 2).

Consequently after n steps the particle can have moved at most n units up or
n units down. It is clear that each path ω of the particle is completely specified
by a vector pa1, . . . , anq, where ai “ `1 if the particle moves up at the ith step,
and ai “ ´1 if it moves down. Let us assign to each path ω the weight ppωq “
pνpωqqn´νpωq, where νpωq is the number of `1’s in the sequence ω “ pa1, . . . , anq,
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Fig. 1 Graph of the binomial probabilities Pnpkq for n “ 5, 10, 20

Fig. 2

i.e., νpωq “ rpa1 ` ¨ ¨ ¨ ` anq ` ns{2, and the nonnegative numbers p and q satisfy
p ` q “ 1.

Since
ř

ωPΩ ppωq “ 1, the set of probabilities ppωq together with the space Ω of
paths ω “ pa1, . . . , anq and its subsets define an acceptable probabilistic model of
the motion of the particle for n steps.

Let us ask the following question: What is the probability of the event Ak that
after n steps the particle is at a point with ordinate k? This condition is satisfied by
those paths ω for which νpωq ´ pn ´ νpωqq “ k, i.e.,

νpωq “ n ` k
2

, k “ ´n,´n ` 2, . . . , n.

The number of such paths (see Table 1.4) is Cpn`kq{2
n , and therefore
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PpAkq “ Cpn`kq{2
n ppn`kq{2qpn´kq{2.

Consequently the binomial distribution pPpA´nq, . . . ,PpA0q, . . . ,PpAnqq can be
said to describe the probability distribution of the position of the particle after n
steps.

Note that in the symmetric case pp “ q “ 1
2 q when the probabilities of the

individual paths are equal to 2´n,

PpAkq “ Cpn`kq{2
n ¨ 2´n.

Let us investigate the asymptotic behavior of these probabilities for large n.
If the number of steps is 2n, it follows from the properties of the binomial coef-

ficients that the largest of the probabilities PpAkq, |k| ≤ 2n is

PpA0q “ Cn
2n ¨ 2´2n.

From Stirling’s formula (see formula (6) below)

n! „ ?
2πn e´nnn.˚

Consequently

Cn
2n “ p2nq!

pn!q2 „ 22n ¨ 1?
πn

and therefore for large n

PpA0q „ 1?
πn

.

Figure 3 represents the beginning of the binomial distribution for 2n steps of a
random walk (in contrast to Fig. 2, the time axis is now directed upward).

Fig. 3 Beginning of the binomial distribution

˚ The notation f pnq „ gpnq means that f pnq{gpnq Ñ 1 as n Ñ 8.
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2. Multinomial distribution. Generalizing the preceding model, we now suppose
that the sample space is

Ω “ tω : ω “ pa1, . . . , anq, ai “ b1, . . . , bru,
where b1, . . . , br are given numbers. Let νipωq be the number of elements of ω “
pa1, . . . , anq that are equal to bi, i “ 1, . . . , r, and define the probability of ω by

ppωq “ pν1pωq
1 ¨ ¨ ¨ pνrpωq

r ,

where pi ≥ 0 and p1 ` ¨ ¨ ¨ ` pr “ 1. Note that
ÿ
ωPΩ

ppωq “
ÿ

!
n1≥0,¨¨¨ ,nr≥0,
n1` ¨¨¨` nr“n

) Cnpn1, . . . , nrqpn1
1 ¨ ¨ ¨ pnr

r ,

where Cnpn1, . . . , nrq is the number of (ordered) sequences pa1, . . . , anq in which
b1 occurs n1 times, . . . , br occurs nr times. Since n1 elements b1 can be allocated
among n positions in Cn1

n ways; n2 elements b2 among n ´ n1 positions in Cn2
n´n1

ways, etc., we have

Cnpn1, . . . , nrq “ Cn1
n ¨ Cn2

n´n1 ¨ ¨ ¨ Cnr

n´pn1`¨¨¨`nr´1q

“ n!
n1!pn ´ n1q! ¨ pn ´ n1q!

n2!pn ´ n1 ´ n2q! ¨ ¨ ¨ 1

“ n!
n1! ¨ ¨ ¨ nr!

.

Therefore

ÿ
ωPΩ

Ppωq “
ÿ

!
n1≥0,...,nr≥0.
n1`¨¨¨`nr“n

)
n1!

n! ¨ ¨ ¨ nr!
pn1
1 ¨ ¨ ¨ pnr

r “ pp1 ` ¨ ¨ ¨ ` prqn “ 1,

and consequently we have defined an acceptable method of assigning probabilities.
Let

An1,...,nr “ tω : ν1pωq “ n1, . . . , νrpωq “ nru.
Then

PpAn1,...,nr q “ Cnpn1, . . . , nrq pn1
1 ¨ ¨ ¨ pnr

r . (2)

The set of probabilities
tPpAn1,...,nr qu

is called the multinomial (or polynomial) distribution.
We emphasize that both this distribution and its special case, the binomial distri-

bution, originate from problems about sampling with replacement.

3. The multidimensional hypergeometric distribution occurs in problems that
involve sampling without replacement.



2 Some Classical Models and Distributions 19

Consider, for example, an urn containing M balls numbered 1, 2, . . . , M, where
M1 balls have the color b1, . . . , Mr balls have the color br, and M1 `¨ ¨ ¨`Mr “ M.
Suppose that we draw a sample of size n ă M without replacement. The sample
space is

Ω “ tω : ω “ pa1, . . . , anq, ak ‰ al, k ‰ l, ai “ 1, . . . , Mu
and NpΩq “ pMqn. Let us suppose that the sample points are equiprobable, and find
the probability of the event Bn1,...,nr in which n1 balls have color b1, . . . , nr balls
have color br, where n1 ` ¨ ¨ ¨ ` nr “ n. It is easy to show that

NpBn1,...,nr q “ Cnpn1, . . . , nrqpM1qn1 ¨ ¨ ¨ pMrqnr ,

and therefore

PpBn1,...,nr q “ NpBn1,...,nr q
NpΩq “ Cn1

M1
¨ ¨ ¨ Cnr

Mr

Cn
M

. (3)

The set of probabilities tPpBn1,...,nr qu is called the multidimensional hypergeo-
metric distribution. When r “ 2 it is simply called the hypergeometric distribution
because its “generating function” is a hypergeometric function.

The structure of the multidimensional hypergeometric distribution is rather com-
plicated. For example, the probability

PpBn1,n2q “ Cn1
M1

Cn2
M2

Cn
M

, n1 ` n2 “ n, M1 ` M2 “ M, (4)

contains nine factorials. However, it is easily established that if M,M1 Ñ 8 in such
a way that M1{M Ñ p (and therefore M2{M Ñ 1 ´ p) then

PpBn1,n2q Ñ Cn1
n1`n2pn1p1 ´ pqn2 . (5)

In other words, under the present hypotheses the hypergeometric distribution is
approximated by the binomial; this is intuitively clear since when M and M1 are
large (but finite), sampling without replacement ought to give almost the same result
as sampling with replacement.

Example. Let us use (4) to find the probability of picking six “lucky” numbers in
a lottery of the following kind (this is an abstract formulation of the “Sportloto,”
which was well known in Russia in 1970s–80s):

There are 49 balls numbered from 1 to 49; six of them are lucky (colored red,
say, whereas the rest are white). We draw a sample of six balls, without replacement.
The question is, What is the probability that all six of these balls are lucky? Taking
M “ 49, M1 “ 6, n1 “ 6, n2 “ 0, we see that the event of interest, namely

B6,0 “ t6 balls, all luckyu
has, by (4), probability

PpB6,0q “ 1

C6
49

« 7.2 ˆ 10´8.
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4. The numbers n! increase extremely rapidly with n. For example,

10! “ 3, 628, 800,

15! “ 1, 307, 674, 368, 000,

and 100! has 158 digits. Hence from either the theoretical or the computational point
of view, it is important to know Stirling’s formula,

n! “ ?
2πn

´n
e

¯n
exp

ˆ
θn

12n

˙
, 0 ă θn ă 1, (6)

whose proof can be found in most textbooks on mathematical analysis.

5. PROBLEMS

1. Prove formula (5).
2. Show that for the multinomial distribution tPpAn1,...,nr qu the maximum proba-

bility is attained at a point pk1, . . . , krq that satisfies the inequalities npi ´ 1 ă
ki ≤ pn ` r ´ 1qpi, i “ 1, . . . , r.

3. One-dimensional Ising model. Consider n particles located at the points 1, 2,
. . . , n. Suppose that each particle is of one of two types, and that there are n1

particles of the first type and n2 of the second pn1 ` n2 “ nq. We suppose that
all n! arrangements of the particles are equally probable.

Construct a corresponding probabilistic model and find the probability of
the event Anpm11, m12, m21, m22q “ tv11 “ m11, . . . , v22 “ m22u, where vij

is the number of particles of type i following particles of type j pi, j “ 1, 2q.
4. Prove the following equalities using probabilistic and combinatorial argu-

ments:

nÿ
k“0

Ck
n “ 2n,

nÿ
k“0

pCk
nq2 “ Cn

2n,

nÿ
k“0

p´1qn´kCk
m “ Cn

m´1, m ≥ n ` 1,

mÿ
k“0

kpk ´ 1qCk
m “ mpm ´ 1q2m´2, m ≥ 2,

kCk
n “ nCk´1

n´1,

Cm
n “

mÿ
j“0

Cj
kCm´j

n´k ,

where 0 ≤ m ≤ n, 0 ≤ k ≤ n and we set Cj
l “ 0 for j ă 0 or j ą l.
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5. Suppose we want to estimate the size N of a population without total counting.
Such a question may be of interest, for example, when we try to estimate the
population of a country, or a town, etc.
In 1786 Laplace proposed the following method to estimate the number N of
inhabitants of France.
Draw a sample of size M, say, from the population and mark its elements.
Then return them into the initial population and assume that they become “well
mixed” with unmarked elements. Then draw n elements from the “mixed”
population. Suppose there are X marked elements among them.
Show that the corresponding probability PN,M;ntX “ mu is given by the for-
mula for the hypergeometric distribution (cf. (4)):

PN,M;ntX “ mu “ Cn
MCn´m

N´M

Cn
N

.

For fixed M, n and m find N maximizing this probability, i.e., find the “most
likely” size of the whole population (for fixed M and n) given that the number
X of marked elements in the repeated sample is equal to m.
Show that the “most likely” value (to be denoted by pN) is given by the formula
(with r ¨ s denoting the integral part):

pN “ rMnm´1s.
The estimator pN for N obtained in this way is called the maximum likelihood
estimator.
(This problem is continued in Sect. 7 (Problem 4).)

6. (Compare with Problem 2 in Sect. 1.) Let Ω contain N elements and let d̃pNq
be the number of different decompositions of Ω with the property that each
subset of the decomposition has odd number of elements. Show that

d̃p1q “ 1, d̃p2q “ 1, d̃p3q “ 2,

d̃p4q “ 5, d̃p5q “ 12, d̃p6q “ 37

and, in general,
8ÿ

n“1

d̃pnqxn

n!
“ esinh x ´ 1, |x| ă 1.

3 Conditional Probability: Independence

1. The concept of probabilities of events lets us answer questions of the following
kind: If there are M balls in an urn, M1 white and M2 black, what is the probabil-
ity PpAq of the event A that a selected ball is white? With the classical approach,
PpAq “ M1{M.
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The concept of conditional probability, which will be introduced below, lets us
answer questions of the following kind: What is the probability that the second ball
is white (event B) under the condition that the first ball was also white (event A)?
(We are thinking of sampling without replacement.)

It is natural to reason as follows: if the first ball is white, then at the second step
we have an urn containing M ´ 1 balls, of which M1 ´ 1 are white and M2 black;
hence it seems reasonable to suppose that the (conditional) probability in question
is pM1 ´ 1q{pM ´ 1q.

We now give a definition of conditional probability that is consistent with our
intuitive ideas.

Let pΩ,A ,Pq be a (discrete) probability space and A an event (i.e. A P A q.

Definition 1. The conditional probability of event B given that event A, PpAq ą 0,
occurred (denoted by PpB | Aq) is

PpABq
PpAq . (1)

In the classical approach we have PpAq “ NpAq{NpΩq, PpABq “ NpABq{NpΩq,
and therefore

PpB | Aq “ NpABq
NpAq . (2)

From Definition 1 we immediately get the following properties of conditional
probability:

PpA | Aq “ 1,

Pp∅ | Aq “ 0,

PpB | Aq “ 1, B Ě A,

PpB1 ` B2 | Aq “ PpB1 | Aq ` PpB2 | Aq.
It follows from these properties that for a given set A the conditional probability

Pp¨ | Aq has the same properties on the space pΩ X A,A X Aq, where A X A “
tB X A : B P A u, that the original probability Pp¨q has on pΩ,A q.

Note that
PpB | Aq ` PpB | Aq “ 1;

however in general

PpB | Aq ` PpB | Aq ‰ 1,

PpB | Aq ` PpB | Aq ‰ 1.

Example 1. Consider a family with two children. We ask for the probability that
both children are boys, assuming

(a) that the older child is a boy;
(b) that at least one of the children is a boy.
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The sample space is

Ω “ tBB,BG,GB,GGu,
where BG means that the older child is a boy and the younger is a girl, etc.

Let us suppose that all sample points are equally probable:

PpBBq “ PpBGq “ PpGBq “ PpGGq “ 1
4 .

Let A be the event that the older child is a boy, and B, that the younger child
is a boy. Then A Y B is the event that at least one child is a boy, and AB is the
event that both children are boys. In question (a) we want the conditional probability
PpAB | Aq, and in (b), the conditional probability PpAB | A Y Bq.

It is easy to see that

PpAB | Aq “ PpABq
PpAq “

1
4
1
2

“ 1

2
,

PpAB | A Y Bq “ PpABq
PpA Y Bq “

1
4
3
4

“ 1

3
.

2. The simple but important formula (3), below, is called the formula for total prob-
ability. It provides the basic means for calculating the probabilities of complicated
events by using conditional probabilities.

Consider a decomposition D “ tA1, . . . ,Anu with PpAiq ą 0, i “ 1, . . . , n (such
a decomposition is often called a complete set of disjoint events). It is clear that

B “ BA1 ` ¨ ¨ ¨ ` BAn

and therefore

PpBq “
nÿ

i“1

PpBAiq.

But

PpBAiq “ PpB | Aiq PpAiq.
Hence we have the formula for total probability:

PpBq “
nÿ

i“1

PpB | Aiq PpAiq. (3)

In particular, if 0 ă PpAq ă 1, then

PpBq “ PpB | Aq PpAq ` PpB | Aq PpAq. (4)

Example 2. An urn contains M balls, m of which are “lucky.” We ask for the prob-
ability that the second ball drawn is lucky (assuming that the result of the first
draw is unknown, that a sample of size 2 is drawn without replacement, and that
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all outcomes are equally probable). Let A be the event that the first ball is lucky, and
B the event that the second is lucky. Then

PpB | Aq “ PpBAq
PpAq “

mpm´1q
MpM´1q

m
M

“ m ´ 1

M ´ 1
,

PpB | Aq “ PpBAq
PpAq “

mpM´mq
MpM´1q

M´m
M

“ m
M ´ 1

and

PpBq “ PpB | Aq PpAq ` PpB | Aq PpAq
“ m ´ 1

M ´ 1
¨ m

M
` m

M ´ 1
¨ M ´ m

M
“ m

M
.

It is interesting to observe that PpAq is precisely m{M. Hence, when the nature
of the first ball is unknown, it does not affect the probability that the second ball is
lucky.

By the definition of conditional probability pwith PpAq ą 0q,

PpABq “ PpB | Aq PpAq. (5)

This formula, the multiplication formula for probabilities, can be generalized (by
induction) as follows: If A1, . . . ,An´1 are events with PpA1 ¨ ¨ ¨ An´1q ą 0, then

PpA1 ¨ ¨ ¨ Anq “ PpA1q PpA2 | A1q ¨ ¨ ¨ PpAn | A1 ¨ ¨ ¨ An´1q (6)

phere A1 ¨ ¨ ¨ An “ A1 X A2 X ¨ ¨ ¨ X Anq.

3. Suppose that A and B are events with PpAq ą 0 and PpBq ą 0. Then along with
(5) we have the parallel formula

PpABq “ PpA | Bq PpBq. (7)

From (5) and (7) we obtain Bayes’s formula

PpA | Bq “ PpAq PpB | Aq
PpBq . (8)

If the events A1, . . . ,An form a decomposition of Ω, (3) and (8) imply Bayes’s
theorem:

PpAi | Bq “ PpAiq PpB | Aiqřn
j“1 PpAjq PpB | Ajq . (9)

In statistical applications, A1, . . . ,An pA1 ` ¨ ¨ ¨ ` An “ Ωq are often called
hypotheses, and PpAiq is called the prior (or a priori)˚ probability of Ai. The condi-

˚ Apriori: before the experiment; aposteriori: after the experiment.
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tional probability PpAi | Bq is considered as the posterior (or the a posteriori) prob-
ability of Ai after the occurrence of event B.

Example 3. Let an urn contain two coins: A1, a fair coin with probability 1
2 of falling

H; and A2, a biased coin with probability 1
3 of falling H. A coin is drawn at random

and tossed. Suppose that it falls head. We ask for the probability that the fair coin
was selected.

Let us construct the corresponding probabilistic model. Here it is natural to take
the sample space to be the set Ω “ tA1H, A1T, A2H, A2Tu, which describes all
possible outcomes of a selection and a toss pA1H means that coin A1 was selected
and fell heads, etc.) The probabilities ppωq of the various outcomes have to be as-
signed so that, according to the statement of the problem,

PpA1q “ PpA2q “ 1
2

and

PpH | A1q “ 1
2 , PpH | A2q “ 1

3 .

With these assignments, the probabilities of the sample points are uniquely deter-
mined:

PpA1Hq “ 1
4 , PpA1Tq “ 1

4 , PpA2Hq “ 1
6 , PpA2Tq “ 1

3 .

Then by Bayes’s formula the probability in question is

PpA1 |Hq “ PpA1q PpH | A1q
PpA1q PpH | A1q ` PpA2q PpH | A2q “ 3

5
,

and therefore

PpA2 |Hq “ 2
5 .

4. In certain sense, the concept of independence, which we are now going to in-
troduce, plays a central role in probability theory: it is precisely this concept that
distinguishes probability theory from the general theory of measure spaces.

If A and B are two events, it is natural to say that B is independent of A if knowing
that A has occurred has no effect on the probability of B. In other words, “B is
independent of A” if

PpB | Aq “ PpBq (10)

(we are supposing that PpAq ą 0).
Since

PpB | Aq “ PpABq
PpAq ,

it follows from (10) that
PpABq “ PpAq PpBq. (11)

In exactly the same way, if PpBq ą 0 it is natural to say that “A is independent of
B” if
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PpA | Bq “ PpAq.
Hence we again obtain (11), which is symmetric in A and B and still makes sense
when the probabilities of these events are zero.

After these preliminaries, we introduce the following definition.

Definition 2. Events A and B are called independent or statistically independent
(with respect to the probability P) if

PpABq “ PpAq PpBq.
In probability theory we often need to consider not only independence of events

(or sets) but also independence of collections of events (or sets).
Accordingly, we introduce the following definition.

Definition 3. Two algebras A1 and A2 of events (or sets) are called independent or
statistically independent (with respect to the probability P) if all pairs of sets A1 and
A2, belonging respectively to A1 and A2, are independent.

For example, let us consider the two algebras

A1 “ tA1,A1, ∅, Ωu and A2 “ tA2,A2, ∅, Ωu,
where A1 and A2 are subsets of Ω. It is easy to verify that A1 and A2 are indepen-
dent if and only if A1 and A2 are independent. In fact, the independence of A1 and
A2 means the independence of the 16 pairs of events A1 and A2,A1 and A2, . . . ,Ω
and Ω. Consequently A1 and A2 are independent. Conversely, if A1 and A2 are inde-
pendent, we have to show that the other 15 pairs of events are independent. Let us
verify, for example, the independence of A1 and A2. We have

PpA1A2q “ PpA1q ´ PpA1A2q “ PpA1q ´ PpA1q PpA2q
“ PpA1q ¨ p1 ´ PpA2qq “ PpA1q PpA2q.

The independence of the other pairs is verified similarly.

5. The concept of independence of two sets (events) or two algebras of sets can be
extended to any finite number of sets or algebras of sets.

Definition 4. We say that the sets (events) A1, . . . ,An are mutually independent or
statistically independent (with respect to the probability P) if for any k “ 1, . . . , n
and 1 ≤ i1 ă i2 ă ¨ ¨ ¨ ă ik ≤ n

PpAi1 . . .Aik q “ PpAi1q . . .PpAik q. (12)

Definition 5. The algebras A1, . . . ,An of sets (events) are called mutually inde-
pendent or statistically independent (with respect to the probability P) if any sets
A1, . . . ,An belonging respectively to A1, . . . ,An are independent.
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Note that pairwise independence of events does not imply their independence. In
fact if, for example, Ω “ tω1, ω2, ω3, ω4u and all outcomes are equiprobable, it is
easily verified that the events

A “ tω1, ω2u, B “ tω1, ω3u, C “ tω1, ω4u
are pairwise independent, whereas

PpABCq “ 1
4 ‰ p 1

2 q3 “ PpAq PpBq PpCq.
Also note that if

PpABCq “ PpAq PpBq PpCq
for events A,B and C, it by no means follows that these events are pairwise indepen-
dent. In fact, let Ω consist of the 36 ordered pairs pi, jq, where i, j “ 1, 2, . . . , 6 and
all the pairs are equiprobable. Then if A “ tpi, jq : j “ 1, 2 or 5u, B “ tpi, jq : j “
4, 5 or 6u, C “ tpi, jq : i ` j “ 9u we have

PpABq “ 1
6 ‰ 1

4 “ PpAq PpBq,
PpACq “ 1

36 ‰ 1
18 “ PpAq PpCq,

PpBCq “ 1
12 ‰ 1

18 “ PpBq PpCq,
but also

PpABCq “ 1
36 “ PpAq PpBq PpCq.

6. Let us consider in more detail, from the point of view of independence, the clas-
sical discrete model pΩ,A ,Pq that was introduced in Sect. 2 and used as a basis for
the binomial distribution.

In this model

Ω “ tω : ω “ pa1, . . . , anq, ai “ 0, 1u, A “ tA : A Ď Ωu
and

ppωq “ pΣai qn´Σai . (13)

Consider an event A Ď Ω. We say that this event depends on a trial at time k if it
is determined by the value ak alone. Examples of such events are

Ak “ tω : ak “ 1u, Ak “ tω : ak “ 0u.
Let us consider the sequence of algebras A1,A2, . . . ,An, where Ak “ tAk,Ak,

∅, Ωu and show that under (13) these algebras are independent.
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It is clear that

PpAkq “
ÿ

tω : ak“1u
ppωq “

ÿ
tω : ak“1u

pΣai qn´Σai

“ p
ÿ

pa1,...,ak´1, ak`1,...,anq
pa1`¨¨¨`ak´1`ak`1`¨¨¨`an

ˆ qpn´1q´pa1`¨¨¨`ak´1`ak`1`¨¨¨`anq “ p
n´1ÿ
l“0

Cl
n´1plqpn´1q´l “ p,

and a similar calculation shows that PpAkq “ q and that, for k ‰ l,

PpAk Alq “ p2, PpAk Alq “ pq, PpAk Alq “ pq, PpAk Alq “ q2.

It is easy to deduce from this that Ak and Al are independent for k ‰ l.
It can be shown in the same way that A1,A2, . . . ,An are independent. This is the

basis for saying that our model pΩ,A ,Pq corresponds to “n independent trials with
two outcomes and probability p of success.” James Bernoulli was the first to study
this model systematically, and established the law of large numbers (Sect. 5) for
it. Accordingly, this model is also called the Bernoulli scheme with two outcomes
(success and failure) and probability p of success.

A detailed study of the probability space for the Bernoulli scheme shows that it
has the structure of a direct product of probability spaces, defined as follows.

Suppose that we are given a collection pΩ1,B1,P1q, . . . , pΩn,Bn,Pnq of dis-
crete probability spaces. Form the space Ω “ Ω1 ˆ Ω2 ˆ ¨ ¨ ¨ ˆ Ωn of points
ω “ pa1, . . . , anq, where ai P Ωi. Let A “ B1 b ¨ ¨ ¨ b Bn be the algebra of
the subsets of Ω that consists of sums of sets of the form

A “ B1 ˆ B2 ˆ ¨ ¨ ¨ ˆ Bn

with Bi P Bi. Finally, for ω “ pa1, . . . , anq take ppωq “ p1pa1q ¨ ¨ ¨ pnpanq and
define PpAq for the set A “ B1 ˆ B2 ˆ ¨ ¨ ¨ ˆ Bn by

PpAq “
ÿ

ta1PB1,...,anPBnu
p1pa1q . . . pnpanq.

It is easy to verify that PpΩq “ 1 and therefore the triple pΩ, A , Pq defines a
probability space. This space is called the direct product of the probability spaces
pΩ1,B1,P1q, . . . , pΩn,Bn,Pnq.

We note an easily verified property of the direct product of probability spaces:
with respect to P, the events

A1 “ tω : a1 P B1u, . . . , An “ tω : an P Bnu,
where Bi P Bi, are independent. In the same way, the algebras of subsets of Ω,
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A1 “ tA1 : A1 “ tω : a1 P B1u, B1 P B1u,
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

An “ tAn : An “ tω : an P Bnu, Bn P Bnu
are independent.

It is clear from our construction that the Bernoulli scheme

pΩ, A , Pq with Ω “ tω : ω “ pa1, . . . , anq, ai “ 0 or 1u,
A “ tA : A Ď Ωu and ppωq “ pΣ ai qn´Σ ai

can be thought of as the direct product of the probability spaces pΩi, Bi, Piq, i “ 1,
2, . . . , n, where

Ωi “ t0, 1u, Bi “ tt0u, t1u, ∅, Ωiu,
Pipt1uq “ p, Pipt0uq “ q.

7. PROBLEMS

1. Give examples to show that in general the equations

PpB | Aq ` PpB | Aq “ 1,

PpB | Aq ` PpB | Aq “ 1

are false.
2. An urn contains M balls, of which M1 are white. Consider a sample of size n.

Let Bj be the event that the ball selected at the jth step is white, and Ak the
event that a sample of size n contains exactly k white balls. Show that

PpBj | Akq “ k{n

both for sampling with replacement and for sampling without replacement.
3. Let A1, . . . ,An be independent events. Then

P

˜
nď

i“1

Ai

¸
“ 1 ´

nź
i“1

PpAiq.

4. Let A1, . . . ,An be independent events with PpAiq “ pi. Then the probability
P0 that neither event occurs is

P0 “
nź

i“1

p1 ´ piq.

5. Let A and B be independent events. In terms of PpAq and PpBq, find the prob-
abilities of the events that exactly k, at least k, and at most k of A and B occur
pk “ 0, 1, 2q.
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6. Let event A be independent of itself, i.e., let A and A be independent. Show
that PpAq is either 0 or 1.

7. Let event A have PpAq “ 0 or 1. Show that A and an arbitrary event B are
independent.

8. Consider the electric circuit shown in Fig. 4. Each of the switches A, B, C, D,
and E is independently open or closed with probabilities p and q, respectively.
Find the probability that a signal fed in at “input” will be received at “output.”
If the signal is received, what is the conditional probability that E is open?

Fig. 4

9. Let PpA ` Bq ą 0. Show that

PpA | A ` Bq “ PpAq
PpAq ` PpBq .

10. Let an event A be independent of events Bn, n ≥ 1, such that Bi X Bj “ ∅,
i ‰ j. Then A and

Ť8
n“1 Bn are independent.

11. Show that if PpA | Cq ą PpB | Cq and PpA | C̄q ą PpB | C̄q, then PpAq ą PpBq.
12. Show that

PpA | Bq “ PpA | BCq PpC | Bq ` PpA | BC̄q PpC̄ | Bq.
13. Let X and Y be independent binomial random variables with parameters

pn, pq.˚ Show that

PpX “ k | X ` Y “ mq “ Ck
nCm´k

n

Cm
2n

, k “ 0, 1, . . . ,minpm, nq.

14. Let A, B, C be pairwise independent equiprobable events such that AXBXC “
∅. Find the largest possible value of the probability PpAq.

15. Into an urn containing one white ball another ball is added which is white
or black with equal probabilities. Then one ball is drawn at random which
occurred white. What is the conditional probability that the ball remaining in
the urn is also white?

˚ See (2) in the next section. Translator.
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4 Random Variables and Their Properties

1. Let pΩ, A , Pq be a discrete probabilistic model of an experiment with a finite
number of outcomes, NpΩq ă 8, where A is the algebra of all subsets of Ω. We
observe that in the examples above, where we calculated the probabilities of various
events A P A , the specific nature of the sample space Ω was of no interest. We
were interested only in numerical properties depending on the sample points. For
example, we were interested in the probability of some number of successes in a
series of n trials, in the probability distribution for the number of objects in cells,
etc.

The concept “random variable,” which we now introduce (later it will be given a
more general form), serves to define quantities describing the results of “measure-
ments” in random experiments.

Definition 1. Any numerical function ξ “ ξpωq defined on a (finite) sample space
Ω is called a (simple) random variable. (The reason for the term “simple” random
variable will become clear after the introduction of the general concept of random
variable in Sect. 4, Chap. 2).

Example 1. In the model of two tosses of a coin with sample space Ω “ {HH, HT,
TH, TT}, define a random variable ξ “ ξpωq by the table

ω HH HT TH TT

ξpωq 2 1 1 0

Here, from its very definition, ξpωq is nothing but the number of heads in the
outcome ω.

Another extremely simple example of a random variable is the indicator (or char-
acteristic function) of a set A P A :

ξ “ IApωq,
where˚

IApωq “
"
1, ω P A,
0, ω R A.

When experimenters are concerned with random variables that describe observa-
tions, their main interest is in the probabilities with which the random variables take
various values. From this point of view they are interested, not in the probability dis-
tribution P on pΩ, A q, but in the probability distribution over the range of a random
variable. Since we are considering the case when Ω contains only a finite number
of points, the range X of the random variable ξ is also finite. Let X “ tx1, . . . , xmu,
where the (different) numbers x1, . . . , xm exhaust the values of ξ.

˚ The notation IpAq is also used. For frequently used properties of indicators see Problem 1.
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Let X be the collection of all subsets of X, and let B P X . We can also interpret
B as an event if the sample space is taken to be X, the set of values of ξ.

On pX, X q, consider the probability Pξp¨q induced by ξ according to the formula

PξpBq “ Ptω : ξpωq P Bu, B P X .

It is clear that the values of this probability are completely determined by the prob-
abilities

Pξpxiq “ Ptω : ξpωq “ xiu, xi P X.

The set of numbers tPξpx1q, . . . , Pξpxmqu is called the probability distribution
of the random variable ξ.

Example 2. A random variable ξ that takes the two values 1 and 0 with probabilities
p (“success”) and q (“failure”), is called a Bernoulli˚ random variable. Clearly

Pξpxq “ pxq1´x, x “ 0, 1. (1)

A binomial (or binomially distributed) random variable ξ is a random variable
that takes the n ` 1 values 0, 1, . . . , n with probabilities

Pξpxq “ Cx
npxqn´x, x “ 0, 1, . . . , n. (2)

Note that here and in many subsequent examples we do not specify the sample
spaces pΩ, A , Pq, but are interested only in the values of the random variables and
their probability distributions.

The probabilistic structure of the random variables ξ is completely specified by
the probability distributions tPξpxiq, i “ 1, . . . , mu. The concept of distribution
function, which we now introduce, yields an equivalent description of the proba-
bilistic structure of the random variables.

Definition 2. Let x P R1. The function

Fξpxq “ Ptω : ξpωq ≤ xu
is called the distribution function of the random variable ξ.

Clearly

Fξpxq “
ÿ

ti : xi≤xu
Pξpxiq

˚ We use the terms “Bernoulli, binomial, Poisson, Gaussian, . . . , random variables” for what are
more usually called random variables with Bernoulli, binomial, Poisson, Gaussian, . . . , distribu-
tions.
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and

Pξpxiq “ Fξpxiq ´ Fξpxi ´q,
where Fξpx ´q “ limy Òx Fξpyq.

If we suppose that x1 ă x2 ă ¨ ¨ ¨ ă xm and put Fξpx0q “ 0, then

Pξpxiq “ Fξpxiq ´ Fξpxi´1q, i “ 1, . . . , m.

The following diagrams (Fig. 5) exhibit Pξpxq and Fξpxq for a binomial random
variable.

Fig. 5

It follows immediately from Definition 2 that the distribution function Fξ “
Fξpxq has the following properties:

(1) Fξp´8q “ 0, Fξp`8q “ 1;
(2) Fξpxq is continuous on the right pFξpx`q “ Fξpxqq and piecewise constant.

Along with random variables it is often necessary to consider random vectors
ξ “ pξ1, . . . , ξrq whose components are random variables. For example, when we
considered the multinomial distribution we were dealing with a random vector v “
pv1, . . . , vrq, where vi “ vipωq was the number of elements equal to bi, i “ 1, . . . , r,
in the sequence ω “ pa1, . . . , anq.

The set of probabilities

Pξpx1, . . . , xrq “ Ptω : ξ1pωq “ x1, . . . , ξrpωq “ xru,
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where xi P Xi, the range of ξi, is called the probability distribution of the random
vector ξ, and the function

Fξpx1, . . . , xrq “ Ptω : ξ1pωq ≤ x1, . . . , ξrpωq ≤ xru,
where xi P R1, is called the distribution function of the random vector ξ “
pξ1, . . . , ξrq.

For example, for the random vector v “ pv1, . . . , vrq mentioned above,

Pvpn1, . . . , nrq “ Cnpn1, . . . , nrqpn1
1 ¨ ¨ ¨ pnr

r

(see (2), Sect. 2).

2. Let ξ1, . . . , ξr be a set of random variables with values in a (finite) set X Ď R1.
Let X be the algebra of all subsets of X.

Definition 3. The random variables ξ1, . . . , ξr are said to be (mutually) indepen-
dent if

Ptξ1 “ x1, . . . , ξr “ xru “ Ptξ1 “ x1u ¨ ¨ ¨ Ptξr “ xru
for all x1, . . . , xr P X; or, equivalently, if

Ptξ1 P B1, . . . , ξr P Bru “ Ptξ1 P B1u ¨ ¨ ¨ Ptξr P Bru
for all B1, . . . , Br P X .

We can get a very simple example of independent random variables from the
Bernoulli scheme. Let

Ω “ tω : ω “ pa1, . . . , anq, ai “ 0, 1u, ppωq “ pΣai qn´Σai

and ξipωq “ ai for ω “ pa1, . . . , anq, i “ 1, . . . , n. Then the random variables
ξ1, ξ2, . . . , ξn are independent, as follows from the independence of the events

A1 “ tω : a1 “ 1u, . . . , An “ tω : an “ 1u,
which was established in Sect. 3.

3. We shall frequently encounter the problem of finding the probability distributions
of random variables that are functions f pξ1, . . . , ξrq of random variables ξ1, . . . , ξr.
For the present we consider only the determination of the distribution of a sum
ζ “ ξ ` η of random variables.

If ξ and η take values in the respective sets X “ tx1, . . . , xku and Y “
ty1, . . . , ylu, the random variable ζ “ ξ ` η takes values in the set Z “ tz : z “
xi ` yj, i “ 1, . . . , k; j “ 1, . . . , lu. Then it is clear that

Pζpzq “ Ptζ “ zu “ Ptξ ` η “ zu “
ÿ

tpi, jq : xi`yj“zu
Ptξ “ xi, η “ yju.
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The case of independent random variables ξ and η is particularly important. In
this case

Ptξ “ xi, η “ yju “ Ptξ “ xiu Ptη “ yju,
and therefore

Pζpzq “
ÿ

tpi, jq : xi ` yj “ zu
PξpxiqPηpyjq “

kÿ
i“1

PξpxiqPηpz ´ xiq (3)

for all z P Z, where in the last sum Pηpz ´ xiq is taken to be zero if z ´ xi R Y .
For example, if ξ and η are independent Bernoulli random variables, taking the

values 1 and 0 with respective probabilities p and q, then Z “ t0, 1, 2u and

Pζp0q “ Pξp0qPηp0q “ q2,

Pζp1q “ Pξp0qPηp1q ` Pξp1qPηp0q “ 2pq,

Pζp2q “ Pξp1qPηp1q “ p2.

It is easy to show by induction that if ξ1, ξ2, . . . , ξn are independent Bernoulli
random variables with Ptξi “ 1u “ p, Ptξi “ 0u “ q, then the random variable
ζ “ ξ1 ` ¨ ¨ ¨ ` ξn has the binomial distribution

Pζpkq “ Ck
npkqn´k, k “ 0, 1, . . . , n. (4)

4. We now turn to the important concept of the expectation, or mean value, of a
random variable.

Let pΩ, A , Pq be a (discrete) probability space and ξ “ ξpωq a random variable
with values in the set X “ tx1, . . . , xku. If we put Ai “ tω : ξ “ xiu, i “ 1, . . . , k,
then ξ can evidently be represented as

ξpωq “
kÿ

i“1

xiIpAiq, (5)

where the sets A1, . . . , Ak form a decomposition of Ω (i.e., they are pairwise disjoint
and their sum is Ω; see Subsection 3 of Sect. 1).

Let pi “ Ptξ “ xiu. It is intuitively plausible that if we observe the values of
the random variable ξ in “n repetitions of identical experiments,” the value xi ought
to be encountered about pi n times, i “ 1, . . . , k. Hence the mean value calculated
from the results of n experiments is roughly

1

n
rnp1x1 ` ¨ ¨ ¨ ` npkxks “

kÿ
i“1

pixi.

This discussion provides the motivation for the following definition.
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Definition 4. The expectation˚ or mean value of the random variable ξ “ řk
i“1 xi

IpAiq is the number

E ξ “
kÿ

i“1

xi PpAiq. (6)

Since Ai “ tω : ξpωq “ xiu and Pξpxiq “ PpAiq, we have

E ξ “
kÿ

i“1

xiPξpxiq. (7)

Recalling the definition of Fξ “ Fξpxq and writing

ΔFξpxq “ Fξpxq ´ Fξpx ´q,
we obtain Pξpxiq “ ΔFξpxiq and consequently

E ξ “
kÿ

i“1

xiΔFξpxiq. (8)

Before discussing the properties of the expectation, we remark that it is often
convenient to use another representation of the random variable ξ, namely

ξpωq “
lÿ

j “ 1

x1
j IpBjq,

where B1 ` ¨ ¨ ¨ ` Bl “ Ω, but some of the x1
j may be repeated. In this case E ξ

can be calculated from the formula
řl

j “ 1 x1
j PpBjq, which differs formally from (6)

because in (6) the xi are all different. In fact,
ÿ

tj : x1
j “ xiu

x1
j PpBjq “ xi

ÿ
tj : x1

j “ xiu
PpBjq “ xi PpAiq

and therefore
lÿ

j “ 1

x1
j PpBjq “

kÿ
i “ 1

xi PpAiq.

5. We list the basic properties of the expectation:

(1) If ξ ≥ 0 then E ξ ≥ 0.
(2) E paξ ` bηq “ a E ξ ` b E η, where a and b are constants.
(3) If ξ ≥ η then E ξ ≥ E η.
(4) | E ξ| ≤ E |ξ|.
˚ Also known as mathematical expectation, or expected value, or (especially in physics) expecta-
tion value. (Translator of 1984 edition).
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(5) If ξ and η are independent, then E ξη “ E ξ ¨ E η.
(6) pE |ξη|q2 ≤ E ξ2 ¨ E η2 (Cauchy–Bunyakovskii inequality).˚
(7) If ξ “ IpAq then E ξ “ PpAq.

Properties (1) and (7) are evident. To prove (2), let

ξ “
ÿ

i

xi IpAiq, η “
ÿ

j

yj IpBjq.

Then

aξ ` bη “ a
ÿ
i, j

xi IpAi X Bjq ` b
ÿ
i, j

yj IpAi X Bjq

“
ÿ
i, j

paxi ` byjqIpAi X Bjq

and

Epaξ ` bηq “
ÿ
i, j

paxi ` byjq PpAi X Bjq

“
ÿ

i

axi PpAiq `
ÿ

j

byj PpBjq

“ a
ÿ

i

xi PpAiq ` b
ÿ

j

yj PpBjq “ a E ξ ` b E η.

Property (3) follows from (1) and (2). Property (4) is evident, since

| E ξ| “
ˇ̌
ˇ ÿ

i

xi PpAiq
ˇ̌
ˇ ≤ ÿ

i

|xi| PpAiq “ E |ξ|.

To prove (5) we note that

E ξη “ E
ˆ ÿ

i

xi IpAiq
˙ˆ ÿ

j

yj IpBjq
˙

“ E
ÿ
i, j

xi yj IpAi X Bjq “
ÿ
i, j

xiyj PpAi X Bjq

“
ÿ
i, j

xiyj PpAiq PpBjq

“
ˆ ÿ

i

xi PpAiq
˙

¨
ˆ ÿ

j

yj PpBjq
˙

“ E ξ ¨ E η,

where we have used the property that for independent random variables the events

Ai “ tω : ξpωq “ xiu and Bj “ tω : ηpωq “ yju
are independent: PpAi X Bjq “ PpAiq PpBjq.

˚ Also known as the Cauchy–Schwarz or Schwarz inequality. (Translator of 1984 edition).
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To prove property (6) we observe that

ξ2 “
ÿ

i

x2i IpAiq, η2 “
ÿ

j

y2j IpBjq

and
E ξ2 “

ÿ
i

x2i PpAiq, E η2 “
ÿ

j

y2j PpBjq.

Let E ξ2 ą 0, E η2 ą 0. Put

ξ̃ “ ξa
E ξ2

, η̃ “ ηa
E η2

.

Since 2|ξ̃η̃| ≤ ξ̃2 ` η̃2, we have 2E |ξ̃η̃| ≤ E ξ̃2 ` E η̃2 “ 2. Therefore E |ξ̃η̃| ≤ 1
and pE |ξη|q2 ≤ E ξ2 ¨ E η2.

However, if, say, E ξ2 “ 0, this means that
ř

i x2i PpAiq “ 0 and consequently
the mean value of ξ is 0, and Ptω : ξpωq “ 0u “ 1. Therefore if at least one of
E ξ2 or E η2 is zero, it is evident that E |ξη| “ 0 and consequently the Cauchy–
Bunyakovskii inequality still holds.

Remark. Property (5) generalizes in an obvious way to any finite number of ran-
dom variables: if ξ1, . . . , ξr are independent, then

E ξ1 ¨ ¨ ¨ ξr “ E ξ1 ¨ ¨ ¨ E ξr.

The proof can be given in the same way as for the case r “ 2, or by induction.

Example 3. Let ξ be a Bernoulli random variable, taking the values 1 and 0 with
probabilities p and q. Then

E ξ “ 1 ¨ Ptξ “ 1u ` 0 ¨ Ptξ “ 0u “ p.

Example 4. Let ξ1, . . . , ξn be n Bernoulli random variables with Ptξi “ 1u “
p, Ptξi “ 0u “ q, p ` q “ 1. Then if

Sn “ ξ1 ` ¨ ¨ ¨ ` ξn

we find that
E Sn “ np.

This result can also be obtained in a different way. It is easy to see that E Sn

is not changed if we assume that the Bernoulli random variables ξ1, . . . , ξn are
independent. With this assumption, we have according to (4)

PpSn “ kq “ Ck
npkqn´k, k “ 0, 1, . . . , n.
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Therefore

E Sn “
nÿ

k “ 0

k PpSn “ kq “
nÿ

k“0

kCk
npkqn´k

“
nÿ

k “ 0

k ¨ n!
k!pn ´ kq!p

kqn´k

“ np
nÿ

k “ 1

pn ´ 1q!
pk ´ 1q!ppn ´ 1q ´ pk ´ 1qq!p

k´1qpn´1q´pk´1q

“ np
nÿ

l “ 0

pn ´ 1q!
l!ppn ´ 1q ´ lq!p

lqpn´1q´l “ np.

However, the first method is more direct.

6. Let ξ “ ř
i xiIpAiq, where Ai “ tω : ξpωq “ xiu, and let ϕ “ ϕpξpωqq be a

function of ξpωq. If Bj “ tω : ϕpξpωqq “ yju, then

ϕpξpωqq “
ÿ

j

yjIpBjq,

and consequently
Eϕ “

ÿ
j

yj PpBjq “
ÿ

j

yjPϕpyjq. (9)

But it is also clear that
ϕpξpωqq “

ÿ
i

ϕpxiqIpAiq.

Hence, along with (9), the expectation of the random variable ϕ “ ϕpξq can be
calculated as

Eϕpξq “
ÿ

i

ϕpxiqPξpxiq.

7. The important notion of the variance of a random variable ξ indicates the amount
of scatter of the values of ξ around E ξ.

Definition 5. The variance of the random variable ξ (denoted by Var ξ) is

Var ξ “ Epξ ´ E ξq2.
The number σ “ `?

Var ξ is called the standard deviation (of ξ from the mean
value E ξ).

Since

Epξ ´ E ξq2 “ Epξ2 ´ 2ξ ¨ E ξ ` pE ξq2q “ E ξ2 ´ pE ξq2,
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we have
Var ξ “ E ξ2 ´ pE ξq2.

Clearly Var ξ ≥ 0. It follows from the definition that

Varpa ` bξq “ b2 Var ξ, where a and b are constants.

In particular, Var a “ 0, Varpbξq “ b2 Var ξ.
Let ξ and η be random variables. Then

Varpξ ` ηq “ Eppξ ´ E ξq ` pη ´ E ηqq2
“ Var ξ ` Var η ` 2Epξ ´ E ξqpη ´ E ηq.

Write
Covpξ, ηq “ Epξ ´ E ξqpη ´ E ηq.

This number is called the covariance of ξ and η. If Var ξ ą 0 and Var η ą 0, then

ρpξ, ηq “ Covpξ, ηq?
Var ξ ¨ Var η

is called the correlation coefficient of ξ and η. It is easy to show (see Problem 7
below) that if ρpξ, ηq “ ˘1, then ξ and η are linearly dependent:

η “ aξ ` b,

with a ą 0 if ρpξ, ηq “ 1 and a ă 0 if ρpξ, ηq “ ´1.
We observe immediately that if ξ and η are independent, so are ξ ´ E ξ and

η ´ E η. Consequently by Property (5) of expectations,

Covpξ, ηq “ Epξ ´ E ξq ¨ Epη ´ E ηq “ 0.

Using the notation that we introduced for covariance, we have

Varpξ ` ηq “ Var ξ ` Var η ` 2Covpξ, ηq; (10)

if ξ and η are independent, the variance of the sum ξ ` η is equal to the sum of the
variances,

Varpξ ` ηq “ Var ξ ` Var η. (11)

It follows from (10) that (11) is still valid under weaker hypotheses than the in-
dependence of ξ and η. In fact, it is enough to suppose that ξ and η are uncorrelated,
i.e., Covpξ, ηq “ 0.

Remark. If ξ and η are uncorrelated, it does not follow in general that they are
independent. Here is a simple example. Let the random variable α take the values
0, π{2 and π with probability 1

3 . Then ξ “ sinα and η “ cosα are uncorrelated;
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however, they are stochastically dependent (i.e., not independent with respect to the
probability P):

Ptξ “ 1, η “ 1u “ 0 ‰ 1
9 “ Ptξ “ 1u Ptη “ 1u.

Properties (10) and (11) can be extended in the obvious way to any number of
random variables:

Var

˜
nÿ

i “ 1

ξi

¸
“

nÿ
i “ 1

Var ξi ` 2
ÿ
i ą j

Covpξi, ξjq. (12)

In particular, if ξ1, . . . , ξn are pairwise independent (pairwise uncorrelated is suffi-
cient), then

Var

˜
nÿ

i“1

ξi

¸
“

nÿ
i “ 1

Var ξi. (13)

Example 5. If ξ is a Bernoulli random variable, taking the values 1 and 0 with
probabilities p and q, then

Var ξ “ Epξ ´ E ξq2 “ Epξ ´ pq2 “ p1 ´ pq2p ` p2q “ pq.

It follows that if ξ1, . . . , ξn are independent identically distributed Bernoulli ran-
dom variables, and Sn “ ξ1 ` ¨ ¨ ¨ ` ξn, then

Var Sn “ npq. (14)

8. Consider two random variables ξ and η. Suppose that only ξ can be observed. If ξ
and η are correlated, we may expect that knowing the value of ξ allows us to make
some inference about the values of the unobserved variable η.

Any function f “ f pξq of ξ is called an estimator for η. We say that an estimator
f ˚ “ f ˚pξq is best (or optimal) in the mean-square sense if

Epη ´ f ˚pξqq2 “ inf
f

Epη ´ f pξqq2.

Let us show how to find the best estimator in the class of linear estimators λpξq “
a ` bξ. Consider the function gpa, bq “ Epη ´ pa ` bξqq2. Differentiating gpa, bq
with respect to a and b, we obtain

Bgpa, bq
Ba

“ ´2Erη ´ pa ` bξqs,
Bgpa, bq

Bb
“ ´2Erpη ´ pa ` bξqqξs,

whence, setting the derivatives equal to zero, we find that the best mean-square
linear estimator is λ˚pξq “ a˚ ` b˚ξ, where

a˚ “ E η ´ b˚ E ξ, b˚ “ Covpξ, ηq
Var ξ

. (15)
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In other words,

λ˚pξq “ E η ` Covpξ, ηq
Var ξ

pξ ´ E ξq. (16)

The number Epη ´ λ˚pξqq2 is called the mean-square error of estimation. An
easy calculation shows that it is equal to

Δ˚ “ Epη ´ λ˚pξqq2 “ Var η ´ Cov2pξ, ηq
Var ξ

“ Var η ¨ r1 ´ ρ2pξ, ηqs. (17)

Consequently, the larger (in absolute value) the correlation coefficient ρpξ, ηq
between ξ and η, the smaller the mean-square error of estimation Δ˚. In particular,
if |ρpξ, ηq| “ 1 then Δ˚ “ 0 (cf. Problem 7). On the other hand, if ξ and η are
uncorrelated pρpξ, ηq “ 0q, then λ˚pξq “ E η, i.e., in the absence of correlation
between ξ and η the best estimate of η in terms of ξ is simply E η (cf. Problem 4).

9. PROBLEMS.

1. Verify the following properties of indicators IA “ IApωq:

I∅ “ 0, IΩ “ 1, IA ` IA “ 1,

IAB “ IA ¨ IB,

IAYB “ IA ` IB ´ IAB.

The indicator of
Ťn

i“1 Ai is 1 ´ śn
i“1p1 ´ IAi q, the indicator of

Ťn
i“1 Ai isśn

i“1p1 ´ IAi q, the indicator of
řn

i“1 Ai is
řn

i“1 IAi , and

IA�B “ pIA ´ IBq2 “ IA ` IB pmod 2q,
where A�B is the symmetric difference of A and B, i.e., the set pAzBqYpBzAq.

2. Let ξ1, . . . , ξn be independent random variables and

ξmin “ minpξ1, . . . , ξnq, ξmax “ maxpξ1, . . . , ξnq.
Show that

Ptξmin ≥ xu “
nź

i“1

Ptξi ≥ xu, Ptξmax ă xu “
nź

i“1

Ptξi ă xu.

3. Let ξ1, . . . , ξn be independent Bernoulli random variables such that

Ptξi “ 0u “ 1 ´ λiΔ, Ptξi “ 1u “ λiΔ,

where n and λi ą 0, i “ 1, . . . , n, are fixed and Δ ą 0 is a small number.
Show that

Ptξ1 ` ¨ ¨ ¨ ` ξn “ 1u “
ˆ nÿ

i“1

λi

˙
Δ ` OpΔ2q,

Ptξ1 ` ¨ ¨ ¨ ` ξn ą 1u “ OpΔ2q.



4 Random Variables and Their Properties 43

4. Show that inf´8ăaă8 Epξ ´ aq2 is attained for a “ E ξ and consequently

inf´8ăaă8 Epξ ´ aq2 “ Var ξ.

5. Let ξ be a random variable with distribution function Fξpxq and let me be a
median of Fξpxq, i.e., a point such that

Fξpme´q ≤ 1
2 ≤ Fξpmeq.

Show that
inf´8ăaă8 E |ξ ´ a| “ E |ξ ´ me|.

6. Let Pξpxq “ Ptξ “ xu and Fξpxq “ Ppξ ≤ xu. Show that

Paξ`bpxq “ Pξ

ˆ
x ´ b

a

˙
,

Faξ`bpxq “ Fξ

ˆ
x ´ b

a

˙

for a ą 0 and ´8 ă b ă 8. If y ≥ 0, then

Fξ2pyq “ Fξp`?
yq ´ Fξp´?

yq ` Pξp´?
yq.

Let ξ` “ maxpξ, 0q. Then

Fξ` pxq “
$&
%

0, x ă 0,
Fξp0q, x “ 0,
Fξpxq, x ą 0.

7. Let ξ and η be random variables with Var ξ ą 0, Var η ą 0, and let ρ “
ρpξ, ηq be their correlation coefficient. Show that |ρ| ≤ 1. If |ρ| “ 1, there are
constants a and b such that η “ aξ ` b. Moreover, if ρ “ 1, then

η ´ E η?
Var η

“ ξ ´ E ξ?
Var ξ

(and therefore a ą 0), whereas if ρ “ ´1, then

η ´ E η?
Var η

“ ´ξ ´ E ξ?
Var ξ

(and therefore a ă 0).
8. Let ξ and η be random variables with E ξ “ E η “ 0, Var ξ “ Var η “ 1 and

correlation coefficient ρ “ ρpξ, ηq. Show that

E maxpξ2, η2q ≤ 1 ` a
1 ´ ρ2.
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9. Use the equation

˜
Indicator of

nď
i“1

Ai

¸
“

nź
i“1

p1 ´ IAi q

to prove the formula PpB0q “ 1 ´ S1 ` S2 ` ¨ ¨ ¨ ˘ Sn in Problem 4 of Sect. 1.
10. Let ξ1, . . . , ξn be independent random variables, ϕ1 “ ϕ1pξ1, . . . , ξkq and

ϕ2 “ ϕ2pξk`1, . . . , ξnq, functions respectively of ξ1, . . . , ξk and ξk`1, . . . , ξn.
Show that the random variables ϕ1 and ϕ2 are independent.

11. Show that the random variables ξ1, . . . , ξn are independent if and only if

Fξ1,...,ξn px1, . . . , xnq “ Fξ1px1q ¨ ¨ ¨ Fξn pxnq
for all x1, . . . , xn, where Fξ1,...,ξn px1, . . . , xnq “ Ptξ1 ≤ x1, . . . , ξn ≤ xnu.

12. Show that the random variable ξ is independent of itself (i.e., ξ and ξ are
independent) if and only if ξ “ const.

13. Under what conditions on ξ are the random variables ξ and sin ξ independent?
14. Let ξ and η be independent random variables and η ‰ 0. Express the proba-

bilities of the events Ptξη ≤ zu and Ptξ{η ≤ zu in terms of the probabilities
Pξpxq and Pηpyq.

15. Let ξ, η, ζ be random variables such that |ξ| ≤ 1, |η| ≤ 1, |ζ| ≤ 1. Prove the
Bell inequality:

| E ξζ ´ E ηζ| ≤ 1 ´ E ξη.

(See, e.g., [46].)
16. Let k balls be independently thrown into n urns. (Each ball falls into any

specific urn with probability 1{n.) Find the expectation of the number of
nonempty urns.

5 The Bernoulli Scheme: I—The Law of Large Numbers

1. In accordance with the definitions given in Sect. 2, Subsection 1, for n “ 1, 2, . . .,
a triple

pΩn,An,Pnq with Ωn “ tω : ω “ pa1, . . . , anq, ai “ 0, 1u,
An “ tA : A Ď Ωnu, Pnptωuq “ pΣai qn´Σai pq “ 1 ´ pq (1)

is called a (discrete) probabilistic model of n independent experiments with two
outcomes, or a Bernoulli scheme.

In this and the next section we study some limiting properties (in a sense de-
scribed below) for Bernoulli schemes. These are best expressed in terms of random
variables and of the probabilities of events connected with them.
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We introduce random variables ξn1, . . . , ξnn by taking ξnipωq “ ai, i “ 1, . . . , n,
where ω “ pa1, . . . , anq. As we saw above, the Bernoulli variables ξnipωq are inde-
pendent and identically distributed:

Pntξni “ 1u “ p, Pntξni “ 0u “ q, i “ 1, . . . , n.

It is natural to think of ξni as describing the result of an experiment at the ith stage
(or at time i).

Let us put Sn0pωq ” 0 and

Snk “ ξn1 ` ¨ ¨ ¨ ` ξnk, k “ 1, . . . , n.

For notational simplicity we will write Sn for Snn. As we found above, En Sn “ np
and consequently

En
Sn

n
“ p. (2)

In other words, the mean value of the frequency of “success,” i.e., Sn{n, coincides
with the probability p of success. Hence we are led to ask how much the frequency
Sn{n of success differs from its probability p.

We first note that we cannot expect that, for a sufficiently small ε ą 0 and for
sufficiently large n, the deviation of Sn{n from p is less than ε for all ω, i.e., that

ˇ̌
ˇ̌Snpωq

n
´ p

ˇ̌
ˇ̌ ≤ ε, ω P Ωn. (3)

In fact, when 0 ă p ă 1,

Pn

"
Sn

n
“ 1

*
“ Pntξn1 “ 1, . . . , ξnn “ 1u “ pn,

Pn

"
Sn

n
“ 0

*
“ Pntξn1 “ 0, . . . , ξnn “ 0u “ qn,

whence it follows that (3) is not satisfied for sufficiently small ε ą 0.
We observe, however, that for large n the probabilities of the events tSn{n “ 1u

and tSn{n “ 0u are small. It is therefore natural to expect that the total probability
of the events for which |rSnpωq{ns ´ p| ą ε will also be small when n is sufficiently
large.

We shall accordingly try to estimate the probability of the event

tω : |rSnpωq{ns ´ p| ą εu.
For n ≥ 1 and 0 ≤ k ≤ n, write

Pnpkq “ Ck
npkqn´k.
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Then

Pn

"ˇ̌̌
ˇSn

n
´ p

ˇ̌̌
ˇ ≥ ε

*
“

ÿ
tk : |pk{nq´p|≥εu

Pnpkq. (4)

It was proved by J. Bernoulli that, as n Ñ 8, the expression in the right-hand side
and hence the probability in the left-hand side tend to 0. The latter statement is
called the law of large numbers.

The analytic proof of this statement is rather involved, and we will prove that

Pn

"ˇ̌
ˇ̌Sn

n
´ p

ˇ̌
ˇ̌ ≥ ε

*
Ñ 0 as n Ñ 8 (5)

by probabilistic methods. For this purpose we will use the following inequality,
which was established by Chebyshev.

Chebyshev’s (Bienaymé–Chebyshev’s) inequality. Let pΩ,A ,Pq be a (discrete)
probability space and ξ “ ξpωq a nonnegative random variable defined on pΩ,A q.
Then

Ptξ ≥ εu ≤ E ξ{ε (6)

for all ε ą 0.

PROOF. We notice that

ξ “ ξIpξ ≥ εq ` ξIpξ ă εq ≥ ξIpξ ≥ εq ≥ εIpξ ≥ εq,
where IpAq is the indicator of A. Then, by the properties of the expectation,

E ξ ≥ εE Ipξ ≥ εq “ εPpξ ≥ εq,
which establishes (6).

[\
Corollary. If ξ is any random variable defined on pΩ,A q, we have for ε ą 0,

Pt|ξ| ≥ εu ≤ E |ξ|{ε,
Pt|ξ| ≥ εu “ Ptξ2 ≥ ε2u ≤ E ξ2{ε2,
Pt|ξ ´ E ξ| ≥ εu ≤ Var ξ{ε2,
P

`|ξ ´ E ξ|{a
Var ξ ≥ ε

˘ ≤ 1{ε2.

(7)

(The last inequality represents the form in which Chebyshev obtained the in-
equality in his paper [16].)

Now we turn again to the probability space (1). Take ξ “ Sn{n in the next-to-last
of inequalities (7). Then using (14) of Sect. 4, we obtain

Pn

"ˇ̌̌
ˇSn

n
´ p

ˇ̌ˇ̌ ≥ ε

*
≤ VarnpSn{nq

ε2
“ Varn Sn

n2ε2
“ npq

n2ε2
“ pq

nε2
.
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Therefore

Pn

"ˇ̌̌
ˇSn

n
´ p

ˇ̌̌
ˇ ≥ ε

*
≤ pq

nε2
≤ 1

4nε2
, (8)

and, since ε ą 0 is fixed, this implies the law of large numbers (5).

Fig. 6

It is clear from (4) and (5) that
ÿ

tk : |pk{nq´p|≥εu
Pnpkq Ñ 0, n Ñ 8. (9)

We can clarify this graphically in the following way. Let us represent the bino-
mial distribution tPnpkq, 0 ≤ k ≤ nu as in Fig. 6.

Then as n increases the graph spreads out and becomes flatter. At the same time
the sum of Pnpkq over k, for which np ´ nε ≤ k ă np ` nε, tends to 1.

Let us think of the sequence of random variables Sn0, Sn1, . . . , Snn as the path of
a wandering particle. Then (9) has the following interpretation.

Let us draw lines from the origin of slopes kp, kpp`εq, and kpp´εq. Then on the
average the path follows the kp line, and for every ε ą 0 we can say that when n is
sufficiently large there is a large probability that the point Sn specifying the position
of the particle at time n lies in the interval rnpp ´ εq, npp ` εqs; see Fig. 7.

The statement (5) goes by the name of James Bernoulli’s law of large numbers.
We may remark that to be precise, Bernoulli’s proof consisted in establishing (9),

which he did quite rigorously by using estimates for the “tails” of the binomial prob-
abilities Pnpkq (for the values of k for which |pk{nq ´ p| ≥ εq. A direct calculation
of the sum of the tail probabilities of the binomial distribution

ř
tk:|pk{nq´p|≥ε Pnpkq

is rather difficult problem for large n, and the resulting formulas are ill adapted for
actual estimates of the probability with which the frequencies Sn{n differ from p
by less than ε. Important progress resulted from the discovery by de Moivre (for
p “ 1

2 q and then by Laplace (for 0 ă p ă 1q of simple asymptotic formulas for
Pnpkq, which led not only to new proofs of the law of large numbers but also to
more precise statements of both local and integral limit theorems, the essence of
which is that for large n and at least for k „ np,

Pnpkq „ 1?
2πnpq

e´pk´npq2{p2npqq,
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Fig. 7

and ÿ
tk : |pk{nq´p|≤εu

Pnpkq „ 1?
2π

ż ε
?

n{pq

´ε
?

n{pq
e´x2{2dx.

2. The next section will be devoted to precise statements and proofs of these results.
For the present we consider the question of the real meaning of the law of large
numbers, and of its empirical interpretation.

Let us carry out a large number, say N, of series of experiments, each of which
consists of “n independent trials with probability p of the event C of interest.” Let
Si

n{n be the frequency of event C in the ith series and Nε the number of series in
which the frequency deviates from p by less than ε:

Nε is the number of i’s for which |pSi
n{nq ´ p| ≤ ε.

Then by the law of large numbers

Nε{N „ Pε (10)

where Pε “ Pnt|pS1
n {nq ´ p| ≤ εu.

3. Let us apply the estimate obtained above,

P
"ˇ̌̌

ˇSn

n
´ p

ˇ̌
ˇ̌ ≥ ε

*
“

ÿ
tk : |pk{nq´p|≥εu

Pnpkq ≤ 1

4nε2
, (11)

to answer the following question that is typical of mathematical statistics: what is
the least number n of observations which guarantees (for arbitrary 0 ă p ă 1) that

P
"ˇ̌

ˇ̌Sn

n
´ p

ˇ̌
ˇ̌ ≤ ε

*
≥ 1 ´ α, (12)
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where α is a given number (usually small)? (Here and later we omit the index n of
P and the like when the meaning of the notation is clear from the context.)

It follows from (11) that this number is the smallest integer n for which

n ≥ 1

4ε2α
. (13)

For example, if α “ 0.05 and ε “ 0.02, then 12500 observations guarantee that
(12) will hold independently of the value of the unknown parameter p.

Later (Subsection 5, Sect. 6) we shall see that this number is much overstated;
this came about because Chebyshev’s inequality provides only a very crude upper
bound for Pt|pSn{nq ´ p| ≥ εu.

4. Let us write

Cpn, εq “
"
ω :

ˇ̌
ˇ̌Snpωq

n
´ p

ˇ̌
ˇ̌ ≤ ε

*
.

From the law of large numbers that we proved, it follows that for every ε ą 0 and
for sufficiently large n, the probability of the set Cpn, εq is close to 1. In this sense it
is natural to call paths (realizations) ω that are in Cpn, εq typical (or (n, ε)-typical).

We ask the following question: How many typical realizations are there, and what
is the weight ppωq of a typical realization?

For this purpose we first notice that the total number NpΩq of points is 2n, and
that if p “ 0 or 1, the set of typical paths Cpn, εq contains only the single path
p0, 0, . . . , 0q or p1, 1, . . . , 1q. However, if p “ 1

2 , it is intuitively clear that “almost
all” paths (all except those of the form p0, 0, . . . , 0q or p1, 1, . . . , 1q) are typical and
that consequently there should be about 2n of them.

It turns out that we can give a definitive answer to the question when 0 ă p ă 1;
it will then appear that both the number of typical realizations and the weights ppωq
are determined by a function of p called the entropy.

In order to present the corresponding results in more depth, it will be helpful to
consider the somewhat more general scheme of Subsection 2 of Sect. 2 instead of
the Bernoulli scheme itself.

Let pp1, p2, . . . , prq be a finite probability distribution, i.e., a set of nonnegative
numbers satisfying p1 ` ¨ ¨ ¨ ` pr “ 1. The entropy of this distribution is

H “ ´
rÿ

i“1

pi log pi, (14)

with 0 ¨ log 0 “ 0. It is clear that H ≥ 0, and H “ 0 if and only if every pi, with one
exception, is zero. The function f pxq “ ´x log x, 0 ≤ x ≤ 1, is convex upward, so
that, as we know from the theory of convex functions,

f px1q ` ¨ ¨ ¨ ` f pxrq
r

≤ f

ˆ
x1 ` ¨ ¨ ¨ ` xr

r

˙
.
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Consequently

H “ ´
rÿ

i“1

pi log pi ≤ ´r ¨ p1 ` ¨ ¨ ¨ ` pr

r
¨ log

ˆ
p1 ` ¨ ¨ ¨ ` pr

r

˙
“ log r.

In other words, the entropy attains its largest value for p1 “ ¨ ¨ ¨ “ pr “ 1{r (see
Fig. 8 for H “ Hppq in the case r “ 2).

If we consider the probability distribution pp1, p2, . . . , prq as giving the probabil-
ities for the occurrence of events A1,A2, . . . ,Ar, say, then it is quite clear that the
“degree of indeterminacy” of an event will be different for different distributions.
If, for example, p1 “ 1, p2 “ ¨ ¨ ¨ “ pr “ 0, it is clear that this distribution does
not admit any indeterminacy: we can say with complete certainty that the result of
the experiment will be A1. On the other hand, if p1 “ ¨ ¨ ¨ “ pr “ 1{r, the distri-
bution has maximal indeterminacy, in the sense that it is impossible to discover any
preference for the occurrence of one event rather than another.

log 2

0 1 p

H(p)

1
2

Fig. 8 The function Hppq “ ´p log p ´ p1 ´ pq logp1 ´ pq

Consequently it is important to have a quantitative measure of the indeterminacy
of different probability distributions, so that we may compare them in this respect.
As we will see, such a measure of indeterminacy is successfully provided by the
entropy; it plays an important role in statistical mechanics and in many significant
problems of coding and communication theory.

Suppose now that the sample space is

Ω “ tω : ω “ pa1, . . . , anq, ai “ 1, . . . , ru
and that ppωq “ pv1pωq

1 ¨ ¨ ¨ pvrpωq
r , where vipωq is the number of occurrences of i in

the sequence ω, and pp1, . . . , prq is a probability distribution.
For ε ą 0 and n “ 1, 2, . . . , let us put

Cpn, εq “
"
ω :

ˇ̌ˇ̌vipωq
n

´ pi

ˇ̌ˇ̌ ă ε, i “ 1, . . . , r

*
.

It is clear that

PpCpn, εqq ≥ 1 ´
rÿ

i“1

P
"ˇ̌ˇ̌vipωq

n
´ pi

ˇ̌ˇ̌ ≥ ε

*
,
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and for sufficiently large n the probabilities Pt|pvipωq{nq ´ pi| ≥ εu are arbitrarily
small when n is sufficiently large, by the law of large numbers applied to the random
variables

ξkpωq “
$&
%

1, ak “ i,

0, ak ‰ i,
k “ 1, . . . , n.

Hence for large n the probability of the event Cpn, εq is close to 1. Thus, as in the
case n “ 2, a path in Cpn, εq can be said to be typical.

If all pi ą 0, then for every ω P Ω

ppωq “ exp

#
´n

rÿ
k“1

ˆ
´vkpωq

n
log pk

˙+
.

Consequently if ω is a typical path, we haveˇ̌
ˇ̌
ˇ

rÿ
k “ 1

ˆ
´vkpωq

n
log pk

˙
´ H

ˇ̌
ˇ̌
ˇ ≤ ´

rÿ
k “ 1

ˇ̌
ˇ̌vkpωq

n
´ pk

ˇ̌
ˇ̌ log pk ≤ ´ε

rÿ
k “ 1

log pk.

It follows that for typical paths the probability ppωq is close to e´nH and—since, by
the law of large numbers, the typical paths “almost” exhaust Ω when n is large—
the number of such paths must be of order enH . These considerations lead us to the
following proposition.

Theorem (Macmillan). Let pi ą 0, i “ 1, . . . , r, and 0 ă ε ă 1. Then there is an
n0 “ n0pε; p1, . . . , prq such that for all n ą n0

(a) enpH´εq ≤ NpCpn, ε1qq ≤ enpH`εq;
(b) e´npH`εq ≤ ppωq ≤ e´npH´εq, ω P Cpn, ε1q;
(c) PpCpn, ε1qq “ ř

ωPCpn, ε1q
ppωq Ñ 1, n Ñ 8,

where

ε1 is the smaller of ε and ε
M #

´2
rÿ

k “ 1

log pk

+
.

PROOF. Conclusion (c) follows from the law of large numbers. To establish the
other conclusions, we notice that if ω P Cpn, ε1q then

npk ´ ε1n ă vkpωq ă npk ` ε1n, k “ 1, . . . , r,

and therefore

ppωq “ expt´
ÿ

vk log pku ă expt´n
ÿ

pk log pk ´ ε1n
ÿ

log pku
≤ expt´npH ´ 1

2εqu.
Similarly

ppωq ą expt´npH ` 1
2εqu.

Consequently (b) is now established.
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Furthermore, since

PpCpn, ε1qq ≥ NpCpn, ε1qq ¨ min
ωPCpn, ε1q

ppωq,

we have

NpCpn, ε1qq ≤ PpCpn, ε1qq
min

ωPCpn, ε1q
ppωq ă 1

e´npH`p1{2qεq “ enpH`p1{2qεq

and similarly

NpCpn, ε1qq ≥ PpCpn, ε1qq
max

ωPCpn, ε1q
ppωq ą PpCpn, ε1qqenpH´p1{2qεq.

Since PpCpn, ε1qq Ñ 1, n Ñ 8, there is an n1 such that PpCpn, ε1qq ą 1 ´ ε
for n ą n1, and therefore

NpCpn, ε1qq ≥ p1 ´ εq exptnpH ´ 1
2εqu

“ exptnpH ´ εq ` p 1
2nε ` logp1 ´ εqqu.

Let n2 be such that
1
2nε ` logp1 ´ εq ą 0

for n ą n2. Then when n ≥ n0 “ maxpn1, n2q we have

NpCpn, ε1qq ≥ enpH´εq.

This completes the proof of the theorem.
[\

5. The law of large numbers for Bernoulli schemes lets us give a simple and elegant
proof of the Weierstrass theorem on the approximation of continuous functions by
polynomials.

Let f “ f ppq be a continuous function on the interval [0, 1]. We introduce the
polynomials

Bnppq “
nÿ

k“0

f

ˆ
k
n

˙
Ck

npkqn´k, q “ 1 ´ p, (15)

which are called Bernstein’s polynomials after the inventor of this proof of Weier-
strass’s theorem.

If ξ1, . . . , ξn is a sequence of independent Bernoulli random variables with
Ptξi “ 1u “ p, Ptξi “ 0u “ q and Sn “ ξ1 ` ¨ ¨ ¨ ` ξ̀n, then

E f

ˆ
Sn

n

˙
“ Bnppq.
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Since the function f “ f ppq, being continuous on [0,1], is uniformly continuous, for
every ε ą 0 we can find δ ą 0 such that |f pxq ´ f pyq| ≤ ε whenever |x ´ y| ≤ δ. It
is also clear that this function is bounded: |f pxq| ≤ M ă 8.

Using this and (8), we obtain

|f ppq ´ Bnppq| “
ˇ̌̌
ˇ̌

nÿ
k“0

„
f ppq ´ f

ˆ
k
n

˙j
Ck

npkqn´k

ˇ̌̌
ˇ̌

≤
ÿ

tk:|pk{nq´p|≤δu

ˇ̌
ˇ̌f ppq ´ f

ˆ
k
n

˙ˇ̌
ˇ̌ Ck

npkqn´k

`
ÿ

tk:|pk{nq´p|ąδu

ˇ̌
ˇ̌f ppq ´ f

ˆ
k
n

˙ˇ̌
ˇ̌ Ck

npkqn´k

≤ ε ` 2M
ÿ

tk:|pk{nq´p|ąδu
Ck

npkqn´k ≤ ε ` 2M
4nδ2

“ ε ` M
2nδ2

.

Hence for Bernstein’s polynomials (15)

lim
nÑ8 max

0≤p≤1
|f ppq ´ Bnppq| “ 0,

which is the conclusion of the Weierstrass theorem.

6. PROBLEMS

1. Let ξ and η be random variables with correlation coefficient ρ. Establish the
following two-dimensional analog of Chebyshev’s inequality:

Pt|ξ ´ E ξ| ≥ ε
a

Var ξ or |η ´ E η| ≥ ε
a

Var ηu ≤ 1

ε2
p1 ` a

1 ´ ρ2q.

(Hint: Use the result of Problem 8 of Sect. 4.)
2. Let f “ f pxq be a nonnegative even function that is nondecreasing for positive

x. Then for a random variable ξ with |ξpωq| ≤ C,

Pt|ξ| ≥ εu ≥ E f pξq ´ f pεq
f pCq .

In particular, if f pxq “ x2,

E ξ2 ´ ε2

C2
≤ Pt|ξ ´ E ξ| ≥ εu ≤ Var ξ

ε2
.

3. Let ξ1, . . . , ξn be a sequence of independent random variables with Var ξi ≤ C.
Then

P
"ˇ̌ˇ̌ξ1 ` ¨ ¨ ¨ ` ξn

n
´ Epξ1 ` ¨ ¨ ¨ ` ξnq

n

ˇ̌̌
ˇ ≥ ε

*
≤ C

nε2
. (16)
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(Inequality (16) implies the validity of the law of large numbers in more gen-
eral contexts than Bernoulli schemes.)

4. Let ξ1, . . . , ξn be independent Bernoulli random variables with Ptξi “ 1u “
p ą 0, Ptξi “ ´1u “ 1´p. Derive the following Bernstein’s inequality: there
is a number a ą 0 such that

P
"ˇ̌̌

ˇSn

n
´ p2p ´ 1q

ˇ̌̌
ˇ ≥ ε

*
≤ 2e´aε2n,

where Sn “ ξ1 ` ¨ ¨ ¨ ` ξn and ε ą 0.
5. Let ξ be a nonnegative random variable and a ą 0. Find supPtx ≥ au over

all distributions such that:
(i) E ξ “ 20;

(ii) E ξ “ 20, Var ξ “ 25;
(iii) E ξ “ 20, Var ξ “ 25 and ξ is symmetric about its mean value.

6 The Bernoulli Scheme: II—Limit Theorems (Local,
de Moivre–Laplace, Poisson)

1. As in the preceding section, let

Sn “ ξ1 ` ¨ ¨ ¨ ` ξn.

Then

E
Sn

n
“ p, (1)

and by (14) of Sect. 4

E
ˆ

Sn

n
´ p

˙2

“ pq
n
. (2)

Formula (1) implies that Sn
n „ p, where the precise meaning of the equivalence

sign „ has been provided by the law of large numbers in the form of bounds for

probabilities P
!ˇ̌

ˇ Sn
n ´ p

ˇ̌
ˇ ≥ ε

)
. We can naturally expect that the “relation”

ˇ̌
ˇSn

n
´ p

ˇ̌
ˇ „

c
pq
n
, (3)

obtainable apparently as a consequence of (2), can also receive an exact probabilistic
meaning by treating, for example, the probabilities of the form

P
"ˇ̌

ˇ̌Sn

n
´ p

ˇ̌
ˇ̌ ≤ x

c
pq
n

*
, x P R1,

or equivalently
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P
"ˇ̌̌

ˇSn ´ E Sn?
Var Sn

ˇ̌̌
ˇ ≤ x

*

(since E Sn “ np and Var Sn “ npqq.
If, as before, we write

Pnpkq “ Ck
npkqn´k, 0 ≤ k ≤ n,

for n ≥ 1, then

P
"ˇ̌

ˇ̌Sn ´ E Sn?
Var Sn

ˇ̌
ˇ̌ ≤ x

*
“

ÿ
tk : |pk´npq{?

npq|≤xu
Pnpkq. (4)

We set the problem of finding convenient asymptotic formulas, as n Ñ 8, for
Pnpkq and for their sum over the values of k that satisfy the condition on the right-
hand side of (4).

The following result provides an answer not only for these values of k (that is,
for those satisfying |k ´ np| “ Op?

npqq) but also for those satisfying |k ´ np| “
opnpqq2{3.

Local Limit Theorem. Let 0 ă p ă 1; then

Pnpkq „ 1?
2πnpq

e´pk ´ npq2{p2npqq (5)

uniformly in k such that |k ´ np| “ opnpqq2{3, more precisely, as n Ñ 8

sup
tk : |k´np|≤ϕpnqu

ˇ̌
ˇ̌
ˇ

Pnpkq
1?

2πnpq e´pk ´ npq2{p2npqq ´ 1

ˇ̌
ˇ̌
ˇ Ñ 0, (6)

where ϕpnq “ opnpqq2{3.

THE PROOF depends on Stirling’s formula (6) of Sect. 2

n ! “ ?
2πne´nnnp1 ` Rpnqq,

where Rpnq Ñ 0 as n Ñ 8.
Then if n Ñ 8, k Ñ 8, n ´ k Ñ 8, we have

Ck
n “ n!

k!pn ´ kq!
“

?
2πn e´nnna

2πk ¨ 2πpn ´ kq e´kkk ¨ e´pn´kqpn ´ kqn´k

1 ` Rpnq
p1 ` Rpkqqp1 ` Rpn ´ kqq

“ 1b
2πn k

n

`
1 ´ k

n

˘ ¨ 1 ` εpn, k, n ´ kq`
k
n

˘k `
1 ´ k

n

˘n´k ,
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where ε “ εpn, k, n ´ kq is defined in an evident way and ε Ñ 0 as n Ñ 8,
k Ñ 8, n ´ k Ñ 8.

Therefore

Pnpkq “ Ck
npkqn´k “ 1b

2πn k
n

`
1 ´ k

n

˘ pkp1 ´ pqn´k

`
k
n

˘k `
1 ´ k

n

˘n´k p1 ` εq.

Write p̂ “ k{n. Then

Pnpkq “ 1a
2πnp̂p1 ´ p̂q

ˆ
p
p̂

˙k ˆ
1 ´ p
1 ´ p̂

˙n´k

p1 ` εq

“ 1a
2πnp̂p1 ´ p̂q exp

"
k log

p
p̂

` pn ´ kq log 1 ´ p
1 ´ p̂

*
¨ p1 ` εq

“ 1a
2πnp̂p1 ´ p̂q exp

"
n

„
k
n
log

p
p̂

`
ˆ
1 ´ k

n

˙
log

1 ´ p
1 ´ p̂

j*
p1 ` εq

“ 1a
2πnp̂p1 ´ p̂q expt´nHpp̂qup1 ` εq,

where

Hpxq “ x log
x
p

` p1 ´ xq log 1 ´ x
1 ´ p

.

We are considering values of k such that |k ´ np| “ opnpqq2{3, and consequently
p ´ p̂ Ñ 0, n Ñ 8.

Since, for 0 ă x ă 1,

H1pxq “ log
x
p

´ log
1 ´ x
1 ´ p

,

H2pxq “ 1

x
` 1

1 ´ x
,

H3pxq “ ´ 1

x2
` 1

p1 ´ xq2 ,

if we write Hpp̂q in the form Hpp ` pp̂ ´ pqq and use Taylor’s formula, we find that
as n Ñ 8

Hpp̂q “ Hppq ` H1ppqpp̂ ´ pq ` 1
2H2ppqpp̂ ´ pq2 ` Op|p̂ ´ p|3q

“ 1

2

ˆ
1

p
` 1

q

˙
pp̂ ´ pq2 ` Op|p̂ ´ p|3q.

Consequently

Pnpkq “ 1a
2πnp̂p1 ´ p̂q exp

"
´ n
2pq

pp̂ ´ pq2 ` nOp|p̂ ´ p|3q
*

p1 ` εq.
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Notice that
n

2pq
pp̂ ´ pq2 “ n

2pq

ˆ
k
n

´ p

˙2

“ pk ´ npq2
2npq

.

Therefore

Pnpkq “ 1?
2πnpq

e´pk´npq2{p2npqqp1 ` ε1pn, k, n ´ kqq,

where

1 ` ε1pn, k, n ´ kq “ p1 ` εpn, k, n ´ kqq exptn Op|p ´ p̂|3qu
d

pp1 ´ pq
p̂p1 ´ p̂q

and, as is easily seen,

sup |ε1pn, k, n ´ kq| Ñ 0, n Ñ 8,

if the sup is taken over the values of k for which

|k ´ np| ≤ ϕpnq, ϕpnq “ opnpqq2{3.

This completes the proof. [\
Corollary. The conclusion of the local limit theorem can be put in the following
equivalent form: For all x P R1 such that x “ opnpqq1{6, and for np ` x

?
npq an

integer from the set {0, 1, . . . , n},

Pnpnp ` x
?

npqq „ 1?
2πnpq

e´x2{2, (7)

i.e., as n Ñ 8,

sup
tx : |x|≤ψpnqu

ˇ̌
ˇ̌̌Pnpnp ` x

?
npqq

1?
2πnpq e´x2{2 ´ 1

ˇ̌̌
ˇ̌ Ñ 0, (8)

where ψpnq “ opnpqq1{6.

We can reformulate these results in probabilistic language in the following way:

PtSn “ ku „ 1?
2πnpq

e´pk´npq2{p2npqq, |k ´ np| “ opnpqq2{3, (9)

P
"

Sn ´ np?
npq

“ x
*

„ 1?
2πnpq

e´x2{2, x “ opnpqq1{6. (10)

(In the last formula np ` x
?

npq is assumed to have one of the values 0, 1, . . . , n.q
If we put tk “ pk ´ npq{?

npq and Δtk “ tk`1 ´ tk “ 1{?
npq, the preceding

formula assumes the form

P
"

Sn ´ np?
npq

“ tk

*
„ Δtk?

2π
e´t2k {2, tk “ opnpqq1{6. (11)
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It is clear that Δtk “ 1{?
npq Ñ 0 and the set of points ttku as it were “fills” the

real line. It is natural to expect that (11) can be used to obtain the integral formula

P
"

a ă Sn ´ np?
npq

≤ b

*
„ 1?

2π

ż b

a
e´x2{2dx, ´8 ă a ≤ b ă 8.

Let us now give a precise statement.

2. For ´8 ă a ≤ b ă 8 let

Pnpa, bs “
ÿ

aăx≤b

Pnpnp ` x
?

npqq,

where the summation is over those x for which np ` x
?

npq is an integer.
It follows from the local theorem (see also (11)) that for all tk defined by k “

np ` tk
?

npq and satisfying |tk| ≤ T ă 8,

Pnpnp ` tk
?

npqq “ Δtk?
2π

e´t2k {2r1 ` εptk, nqs, (12)

where
sup

|tk|≤T
|εptk, nq| Ñ 0, n Ñ 8. (13)

Consequently, if a and b are given so that ´T ≤ a ≤ b ≤ T , then

ÿ
aătk≤b

Pnpnp ` tk
?

npqq “
ÿ

aătk≤b

Δtk?
2π

e´t2k {2 `
ÿ

aătk≤b

εptk, nq Δtk?
2π

e´t2k {2

“ 1?
2π

ż b

a
e´x2{2dx ` Rp1q

n pa, bq ` Rp2q
n pa, bq, (14)

where

Rp1q
n pa, bq “

ÿ
aătk≤b

Δtk?
2π

e´t2k {2 ´ 1?
2π

ż b

a
e´x2{2 dx,

Rp2q
n pa, bq “

ÿ
aătk≤b

εptk, nq Δtk?
2π

e´t2k {2.

From the standard properties of Riemann sums,

sup
´T≤a≤b≤T

|Rp1q
n pa, bq| Ñ 0, n Ñ 8. (15)
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It also clear that

sup
´T≤a≤b≤T

|Rp2q
n pa, bq|

≤ sup
|tk|≤T

|εptk, nq| ¨ ř
|tk|≤T

Δtk?
2π

e´t2k {2

≤ sup
|tk|≤T

|εptk, nq|

ˆ
„

1?
2π

ż T

´T
e´x2{2 dx ` sup

´T≤a≤b≤T
|Rp1q

n pa, bq|
j

Ñ 0,

(16)

where the convergence of the right-hand side to zero follows from (15) and from

1?
2π

ż T

´T
e´x2{2 dx ≤ 1?

2π

ż 8

´8
e´x2{2 dx “ 1, (17)

the value of the last integral being well known. We write

Φpxq “ 1?
2π

ż x

´8
e´t2{2 dt.

Then it follows from (14)–(16) that

sup
´T≤a≤b≤T

|Pnpa, bs ´ pΦpbq ´ Φpaqq| Ñ 0, n Ñ 8. (18)

We now show that this result holds for T “ 8 as well as for finite T . By (17),
corresponding to a given ε ą 0 we can find a finite T “ Tpεq such that

1?
2π

ż T

´T
e´x2{2 dx ą 1 ´ 1

4ε. (19)

According to (18), we can find an N such that for all n ą N and T “ Tpεq we have

sup
´T≤a≤b≤T

|Pnpa, bs ´ pΦpbq ´ Φpaqq| ă 1
4ε. (20)

It follows from this and (19) that

Pnp´T, Ts ą 1 ´ 1
2 ε,

and consequently

Pnp´8, Ts ` PnpT, 8q ≤ 1
2 ε,

where Pnp´8, Ts “ limSÓ´8 PnpS, Ts and PnpT, 8q “ limSÒ8 PnpT, Ss.
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Therefore for ´8 ≤ a ≤ ´T ă T ≤ b ≤ 8,
ˇ̌
ˇ̌̌
Pnpa, bs ´ 1?

2π

ż b

a
e´x2{2 dx

ˇ̌
ˇ̌̌

≤ |Pnp´T, Ts ´ 1?
2π

ż T

´T
e´x2{2 dx

ˇ̌̌
ˇ

`
ˇ̌
ˇ̌Pnpa, ´Ts ´ 1?

2π

ż ´T

a
e´x2{2 dx

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌̌PnpT, bs ´ 1?

2π

ż b

T
e´x2{2 dx

ˇ̌
ˇ̌̌

≤ 1

4
ε ` Pnp´8, ´Ts ` 1?

2π

ż ´T

´8
e´x2{2dx ` PnpT, 8q

` 1?
2π

ż 8

T
e´x2{2 dx ≤ 1

4
ε ` 1

2
ε ` 1

8
ε ` 1

8
ε “ ε.

By using (18) it is now easy to see that Pnpa, bs tends to Φpbq ´ Φpaq uniformly
for ´8 ≤ a ă b ≤ 8.

Thus we have proved the following theorem.

De Moivre–Laplace Integral Theorem. Let 0 ă p ă 1,

Pnpkq “ Ck
npkqn´k, Pnpa, bs “

ÿ
aăx≤b

Pnpnp ` x
?

npqq.

Then

sup
´8≤aăb≤8

ˇ̌
ˇ̌
ˇPnpa, bs ´ 1?

2π

ż b

a
e´x2{2 dx

ˇ̌
ˇ̌
ˇ Ñ 0, n Ñ 8. (21)

In probabilistic language (21) can be stated in the following way:

sup
´8≤aăb≤8

ˇ̌
ˇ̌̌P

"
a ă Sn ´ E Sn?

Var Sn
≤ b

*
´ 1?

2π

ż b

a
e´x2{2s dx

ˇ̌
ˇ̌
ˇ Ñ 0, n Ñ 8.

It follows at once from this formula that

PtA ă Sn ≤ Bu ´
„
Φ

ˆ
B ´ np?

npq

˙
´ Φ

ˆ
A ´ np?

npq

˙j
Ñ 0, (22)

as n Ñ 8, whenever ´8 ≤ A ă B ≤ 8.

Example. A true die is tossed 12000 times. We ask for the probability P that the
number of 6’s lies in the interval (1800, 2100].

The required probability is

P “
ÿ

1800ăk≤2100

Ck
12000

ˆ
1

6

˙k ˆ
5

6

˙12000´k

.
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An exact calculation of this sum would obviously be rather difficult. However,
if we use the integral theorem we find that the probability P in question is approxi-
mately pn “ 12000, p “ 1

6 , a “ 1800, b “ 2100q

Φ

¨
˝ 2100 ´ 2000b

12000 ¨ 1
6 ¨ 5

6

˛
‚´ Φ

¨
˝ 1800 ´ 2000b

12000 ¨ 1
6 ¨ 5

6

˛
‚“ Φp?

6q ´ Φp´2
?
6q

« Φp2.449q ´ Φp´4.898q « 0.992,

where the values of Φp2.449q and Φp´4.898q were taken from tables of Φpxq (this
is the normal distribution function; see Subsection 6 below).

3. We have plotted a graph of Pnpnp`x
?

npqq (with x assumed such that np`x
?

npq
is an integer) in Fig. 9.

Then the local theorem says that the curve p1{?
2πnpqqe´x2{2 provides a close

fit to Pnpnp ` x
?

npqq when x “ opnpqq1{6. On the other hand the integral theorem
says that

Pnpa, bs “ Pta
?

npq ă Sn ´ np ≤ b
?

npqu
“ Ptnp ` a

?
npq ă Sn ≤ np ` b

?
npqu

is closely approximated by the integral p1{?
2πq şb

a e´x2{2 dx.

Fig. 9

We write

Fnpxq “ Pnp´8, xs
ˆ

“ P
"

Sn ´ np?
npq

≤ x

*˙
.

Then it follows from (21) that

sup
´8≤x≤8

|Fnpxq ´ Φpxq| Ñ 0, n Ñ 8. (23)
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It is natural to ask how rapid the approach to zero is in (21) and (23), as n Ñ 8.
We quote a result in this direction (a special case of the Berry–Esseen theorem: see
Sect. 11 in Chap. 3):

sup
´8≤x≤8

|Fnpxq ´ Φpxq| ≤ p2 ` q2?
npq

. (24)

Fig. 10

It is important to recognize that the order of the estimate p1{?
npqq cannot be

improved; this means that the approximation of Fnpxq by Φpxq can be poor for values
of p that are close to 0 or 1, even when n is large. This suggests the question of
whether there is a better method of approximation for the probabilities of interest
when p or q is small, something better than the normal approximation given by the
local and integral theorems. In this connection we note that for p “ 1

2 , say, the
binomial distribution tPnpkqu is symmetric (Fig. 10, left). However, for small p the
binomial distribution is asymmetric (Fig. 10, right), and hence it is not reasonable to
expect that the normal approximation will be satisfactory.
4. It turns out that for small values of p the distribution known as the Poisson distri-
bution provides a good approximation to tPnpkqu.

Let

Pnpkq “
"

Ck
npkqn´k, k “ 0, 1, . . . , n,

0, k “ n ` 1, n ` 2, . . . ,

and suppose that p is a function ppnq of n.

Poisson’s Theorem. Let ppnq Ñ 0, n Ñ 8, in such a way that nppnq Ñ λ, where
λ ą 0. Then for k “ 1, 2, . . . ,

Pnpkq Ñ πk, n Ñ 8, (25)

where

πk “ λke´λ

k!
, k “ 0, 1, . . . . (26)

THE PROOF is extremely simple. Since ppnq “ pλ{nq ` op1{nq by hypothesis,
for a given k “ 0, 1, . . . and n Ñ 8,
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Pnpkq “ Ck
npkqn´k

“ npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q
k!

„
λ

n
` o

ˆ
1

n

˙jk

¨
„
1 ´ λ

n
` o

ˆ
1

n

˙jn´k

.

But

npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q
„
λ

n
` o

ˆ
1

n

˙jk

“ npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q
nk

rλ ` op1qsk Ñ λk, n Ñ 8,

and „
1 ´ λ

n
` o

ˆ
1

n

˙jn´k

Ñ e´λ, n Ñ 8,

which establishes (25). [\
The set of numbers tπk, k “ 0, 1, . . .u defines the Poisson probability distribu-

tion pπk ≥ 0,
ř8

k“0 πk “ 1q. Notice that all the (discrete) distributions considered
previously were concentrated at only a finite number of points. The Poisson dis-
tribution is the first example that we have encountered of a (discrete) distribution
concentrated at a countable number of points.

The following result of Prokhorov exhibits the rate of convergence of Pnpkq to πk

as n Ñ 8: if nppnq “ λ ą 0, then

8ÿ
k“0

|Pnpkq ´ πk| ≤ 2λ

n
¨ minp2, λq. (27)

The proof of a somewhat weaker result is given in Sect. 12, Chap. 3.

5. Let us return to the de Moivre–Laplace limit theorem, and show how it implies
the law of large numbers. Since

P
"ˇ̌

ˇ̌Sn

n
´ p

ˇ̌
ˇ̌ ≤ ε

*
“ P

"ˇ̌
ˇ̌Sn ´ np?

npq

ˇ̌
ˇ̌ ≤ ε

c
n
pq

*
,

it is clear from (21) that for ε ą 0

P
"ˇ̌

ˇ̌Sn

n
´ p

ˇ̌
ˇ̌ ≤ ε

*
´ 1?

2π

ż ε
?

n{pq

´ε
?

n{pq
e´x2{2 dx Ñ 0, n Ñ 8, (28)

whence

P
"ˇ̌ˇ̌Sn

n
´ p

ˇ̌̌
ˇ ≤ ε

*
Ñ 1, n Ñ 8,

which is the conclusion of the law of large numbers.
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From (28)

P
"ˇ̌̌

ˇSn

n
´ p

ˇ̌̌
ˇ ≤ ε

*
„ 1?

2π

ż ε
?

n{pq

´ε
?

n{pq
e´x2{2 dx, n Ñ 8, (29)

whereas Chebyshev’s inequality yielded only

P
"ˇ̌̌

ˇSn

n
´ p

ˇ̌̌
ˇ ≤ ε

*
≥ 1 ´ pq

nε2
.

It was shown in Subsection 3 of Sect. 5 that Chebyshev’s inequality yielded the
estimate

n ≥ 1

4ε2α
p“ n1pαqq

for the number of observations needed for the validity of the inequality

P
"ˇ̌

ˇ̌Sn

n
´ p

ˇ̌
ˇ̌ ≤ ε

*
≥ 1 ´ α.

Thus with ε “ 0.02 and α “ 0.05, 12500 observations were needed. We can now
solve the same problem by using the approximation (29).

We define the number kpαq by

1?
2π

ż kpαq

´kpαq
e´x2{2 dx “ 1 ´ α.

Since ε
apn{pq) ≥ 2ε

?
n, if we define n as the smallest integer satisfying

2ε
?

n ≥ kpαq (30)

we find that

P
"ˇ̌̌

ˇSn

n
´ p

ˇ̌̌
ˇ ≤ ε

*
Á 1 ´ α. (31)

We find from (30) that the smallest integer n ≥ n2pαq with

n2pαq “
”k2pαq

4ε2

ı

guarantees that (31) is satisfied, and the accuracy of the approximation can easily be
established by using (24).

Taking ε “ 0.02, α “ 0.05, we find that in fact 2500 observations suffice, rather
than the 12500 found by using Chebyshev’s inequality. The values of kpαq have
been tabulated. We quote a number of values of kpαq for various values of α:

α 0,50 0,3173 0,10 0,05 0,0454 0,01 0,0027
kpαq 0,675 1,000 1,645 1,960 2,000 2,576 3,000
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6. The function

Φpxq “ 1?
2π

ż x

´8
e´t2{2 dt, (32)

which was introduced above and occurs in the de Moivre–Laplace integral theorem,
plays an exceptionally important role in probability theory. It is known as the normal
or Gaussian distribution function on the real line, with the (normal or Gaussian)
density

ϕpxq “ 1?
2π

e´x2{2, x P R1.

Fig. 11 Graph of the normal probability density ϕpxq

We have already encountered (discrete) distributions concentrated on a finite or
countable set of points. The normal distribution belongs to another important class
of distributions that arise in probability theory. We have mentioned its exceptional
role; this comes about, first of all, because under rather general hypotheses, sums
of a large number of independent random variables (not necessarily Bernoulli vari-
ables) are closely approximated by the normal distribution (Sect. 4, Chap. 3). For the
present we mention only some of the simplest properties of ϕpxq and Φpxq, whose
graphs are shown in Figs. 11 and 12.

The function ϕpxq is a symmetric bell-shaped curve, decreasing very rapidly
with increasing |x|: thus ϕp1q “ 0.24197, ϕp2q “ 0.053991, ϕp3q “ 0.004432,
ϕp4q “ 0.000134, ϕp5q “ 0.000016. Its maximum is attained at x “ 0 and is equal
to p2πq´1{2 « 0.399.

The curve Φpxq“p1{?
2πq şx

´8 e´t2{2dt approaches 1 very rapidly as x increases:
Φp1q “ 0.841345, Φp2q “ 0.977250, Φp3q “ 0.998650, Φp4q “ 0.999968,
Φp4.5q “ 0.999997.

For tables of ϕpxq and Φpxq, as well as of other important functions that are used
in probability theory and mathematical statistics, see [11].

It is worth to mention that for calculations, along with Φpxq, a closely related
error function
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Fig. 12 Graph of the normal distribution function Φpxq

erfpxq “ 2?
π

ż x

0

e´t2 dt, x ą 0,

is often used. Obviously, for x ą 0,

Φpxq “ 1

2

”
1 ` erf

´ x?
2

¯ı
, erfpxq “ 2Φp?

2xq ´ 1.

7. At the end of Subsection 3, Sect. 5, we noticed that the upper bound for the
probability of the event tω : |pSn{nq ´ p| ≥ εu, given by Chebyshev’s inequal-
ity, was rather crude. That estimate was obtained from Chebyshev’s inequality
PtX ≥ εu ≤ E X2{ε2 for nonnegative random variables X ≥ 0. We may, how-
ever, use Chebyshev’s inequality in the form

PtX ≥ εu “ PtX2k ≥ ε2ku ≤ E X2k

ε2k
. (33)

However, we can go further by using the “exponential form” of Chebyshev’s in-
equality: if X ≥ 0 and λ ą 0, this states that

PtX ≥ εu “ PteλX ≥ eλεu ≤ E eλpX´εq. (34)

Since the positive number λ is arbitrary, it is clear that

PtX ≥ εu ≤ inf
λą0

E eλpX´εq. (35)
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Let us see what the consequences of this approach are in the case when X “
Sn{n, Sn “ ξ1 ` ¨ ¨ ¨ ` ξn, Ppξi “ 1q “ p, Ppξi “ 0q “ q, i ≥ 1.

Let us set ϕpλq “ E eλξ1 . Then

ϕpλq “ 1 ´ p ` peλ

and, under the hypothesis of the independence of ξ1, ξ2, . . . , ξn,

E eλSn “ rϕpλqsn.

Therefore p0 ă a ă 1q

P
"

Sn

n
≥ a

*
≤ inf

λą0
E eλpSn{n´aq “ inf

λą0
e´nrλa{n´logϕpλ{nqs

“ inf
są0

e´nras´logϕpsqs “ e´n supsą0ras´logϕpsqs. (36)

Similarly,

P
"

Sn

n
≤ a

*
≤ e´n supsă0ras´logϕpsqs. (37)

The function f psq “ as ´ logr1 ´ p ` pess attains its maximum for p ≤ a ≤ 1 at
the point s0 pf 1ps0q “ 0q determined by the equation

es0 “ ap1 ´ pq
pp1 ´ aq .

Consequently,
sup
są0

f psq “ Hpaq,
where

Hpaq “ a log
a
p

` p1 ´ aq log 1 ´ a
1 ´ p

is the function that was used in the proof of the local theorem (Subsection 1).
Thus, for p ≤ a ≤ 1

P
"

Sn

n
≥ a

*
≤ e´nHpaq, (38)

and therefore, since Hpp ` xq ≥ 2x2 and 0 ≤ p ` x ≤ 1, we have, for ε ą 0 and
0 ≤ p ≤ 1,

P
"

Sn

n
´ p ≥ ε

*
≤ e´2nε2 . (39)

We can establish similarly that for a ≤ p ≤ 1

P
"

Sn

n
≤ a

*
≤ e´nHpaq (40)
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and consequently, for every ε ą 0 and 0 ≤ p ≤ 1,

P
"

Sn

n
´ p ≤ ´ε

*
≤ e´2nε2 . (41)

Therefore,

P
"ˇ̌̌

ˇSn

n
´ p

ˇ̌̌
ˇ ≥ ε

*
≤ 2e´2nε2 . (42)

This implies that the number of observations n3pαq which ensures the validity of
the inequality

P
"ˇ̌

ˇ̌Sn

n
´ p

ˇ̌
ˇ̌ ≤ ε

*
≥ 1 ´ α, (43)

for any 0 ≤ p ≤ 1 is given by the formula

n3pαq “
„
logp2{αq

2ε2

j
, (44)

where rxs is the integral part of x. If we neglect “integral parts” and compare n3pαq
with n1pαq “ rp4αε2q´1s, we find that

n1pαq
n3pαq “ 1

2α log 2
α

Ò 8, α Ó 0.

It is clear from this that when α Ó 0, an estimate of the smallest number of observa-
tions needed to ensure (43), which can be obtained from the exponential Chebyshev
inequality, is more precise than the estimate obtained from the ordinary Chebyshev
inequality, especially for small α.

Using the relation

1?
2π

ż 8

x
e´y2{2 dy „ 1?

2πx
e´x2{2, x Ñ 8,

which is easily established with the help of L’Hôpital’s rule, one can show that
k2pαq „ 2 log 2

α , α Ó 0. Therefore,

n2pαq
n3pαq Ñ 1, α Ó 0.

Inequalities like (38)–(42) are known as inequalities for the probability of large
deviations. This terminology can be explained in the following way.

The de Moivre–Laplace integral theorem makes it possible to estimate in a sim-
ple way the probabilities of the events t|Sn ´ np| ≤ x

?
nu characterizing the “stan-

dard” deviation (up to order
?

n) of Sn from np, whereas the inequalities (39), (41),
and (42) provide bounds for the probabilities of the events tω : |Sn ´ np| ≤ xnu,
describing deviations of order greater than

?
n, in fact of order n.
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We shall continue the discussion of probabilities of large deviations in more gen-
eral situations in Sect. 5, Chap. 4, Vol. 2.

8. PROBLEMS

1. Let n “ 100, p “ 0.1, 0.2, 0.3, 0.4, 0.5. Using tables (for example, those
in [11]) of the binomial and Poisson distributions, compare the values of the
probabilities

Pt10 ă S100 ≤ 12u, Pt20 ă S100 ≤ 22u,
Pt33 ă S100 ≤ 35u, Pt40 ă S100 ≤ 42u,

Pt50 ă S100 ≤ 52u
with the corresponding values given by the normal and Poisson approxima-
tions.

2. Let p “ 1
2 and Zn “ 2Sn ´ n (the excess of 1’s over 0’s in n trials). Show that

sup
j

|?πnPtZ2n “ ju ´ e´j2{4n| Ñ 0, n Ñ 8.

3. Show that the rate of convergence in Poisson’s theorem (with p “ λ{n) is
given by

sup
k

ˇ̌
ˇ̌Pnpkq ´ λke´λ

k!

ˇ̌
ˇ̌ ≤ 2λ2

n
.

(It is advisable to read Sect. 12, Chap. 3.)

7 Estimating the Probability of Success in the Bernoulli Scheme

1. In the Bernoulli scheme pΩ, A , Pq with Ω “ tω : ω “ px1, . . . , xnq, xi “ 0, 1qu,
A “ tA : A Ď Ωu, Pptωuq “ ppωq, where

ppωq “ pΣxi qn´Σxi ,

we supposed that p (the probability of “success”) was known.
Let us now suppose that p is not known in advance and that we want to determine

it by observing the outcomes of experiments; or, what amounts to the same thing, by
observations of the random variables ξ1, . . . , ξn, where ξipωq “ xi. This is a typical
problem of mathematical statistics, which can be formulated in various ways. We
shall consider two of the possible formulations: the problem of point estimation and
the problem of constructing confidence intervals.

In the notation used in mathematical statistics, the unknown parameter is denoted
by θ, assuming a priori that θ belongs to the set Θ “ r0, 1s. The set of objects

E “ pΩ,A ,Pθ; θ P Θq with Pθptωuq “ θΣxi p1 ´ θqn´Σxi
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is often said to be the probabilistic-statistical model (corresponding to “n indepen-
dent trials” with probability of “success” θ P Θ), and any function Tn “ Tnpωq with
values in Θ is called an estimator.

If Sn “ ξ1 ` ¨ ¨ ¨ ` ξn and Tn̊ “ Sn{n, it follows from the law of large numbers
that Tn̊ is consistent, in the sense that pε ą 0q

Pθt|Tn̊ ´ θ| ≥ εu Ñ 0, n Ñ 8. (1)

Moreover, this estimator is unbiased: for every θ

Eθ Tn̊ “ θ, (2)

where Eθ is the expectation corresponding to the probability Pθ.
The property of being unbiased is quite natural: it expresses the fact that any

reasonable estimate ought, at least “on the average,” to lead to the desired result.
However, it is easy to see that Tn̊ is not the only unbiased estimator. For example,
the same property is possessed by every estimator

Tn “ b1x1 ` ¨ ¨ ¨ ` bnxn

n
,

where b1 ` ¨ ¨ ¨ ` bn “ n. Moreover, the law of large numbers (1) is also satisfied
by such estimators (at least if |bi| ≤ K ă 8); and so these estimators Tn are just as
“good” as Tn̊ .

By the very meaning of “estimator,” it is natural to suppose that an estimator is
the better, the smaller its deviation from the parameter that is being estimated. On
this basis, we call an estimator T̃n efficient (in the class of unbiased estimators Tn) if

Varθ T̃n “ inf
Tn

Varθ Tn, θ P Θ, (3)

where Varθ Tn is the variance of Tn, i.e., EθpTn ´ θq2.
Let us show that the estimator Tn̊ , considered above, is efficient. We have

Varθ Tn̊ “ Varθ

ˆ
Sn

n

˙
“ Varθ Sn

n2
“ nθp1 ´ θq

n2
“ θp1 ´ θq

n
. (4)

Hence to establish that Tn̊ is efficient, we have only to show that

inf
Tn

Varθ Tn ≥ θp1 ´ θq
n

. (5)

This is obvious for θ “ 0 or 1. Let θ P p0, 1q and

pθpxiq “ θxi p1 ´ θq1´xi .

It is clear that Pθptωuq “ pθpωq, where

pθpωq “
nź

i“1

pθpxiq.
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Let us write

Lθpωq “ log pθpωq.
Then

Lθpωq “ log θ
ÿ

xi ` logp1 ´ θq
ÿ

p1 ´ xiq
and

BLθpωq
Bθ “

řpxi ´ θq
θp1 ´ θq .

Since

1 “ Eθ 1 “
ÿ
ω

pθpωq,

and since Tn is unbiased,

θ ” Eθ Tn “
ÿ
ω

Tnpωqpθpωq,

after differentiating with respect to θ, we find that

0 “
ÿ
ω

Bpθpωq
Bθ “

ÿ
ω

´ Bpθpωq
Bθ

¯
pθpωq pθpωq “ Eθ

„BLθpωq
Bθ

j
,

1 “
ÿ
ω

Tn

´ Bpθpωq
Bθ

¯
pθpωq pθpωq “ Eθ

„
Tn

BLθpωq
Bθ

j
.

Therefore

1 “ Eθ

„
pTn ´ θqBLθpωq

Bθ
j

and by the Cauchy–Bunyakovskii inequality,

1 ≤ E0rTn ´ θs2 ¨ Eθ

„BLθpωq
Bθ

j2

,

whence

EθrTn ´ θs2 ≥ 1

Inpθq , (6)

where

Inpθq “
„BLθpωq

Bθ
j2

is known as Fisher’s information.
From (6) we can obtain a special case of the Rao–Cramér inequality for unbiased

estimators Tn:

inf
Tn

Varθ Tn ≥ 1

Inpθq . (7)
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In the present case

Inpθq “ Eθ

„BLθpωq
Bθ

j2

“ Eθ

„řpξi ´ θq
θp1 ´ θq

j2

“ nθp1 ´ θq
rθp1 ´ θqs2 “ n

θp1 ´ θq ,

which also establishes (5), from which, as we already noticed, there follows the
efficiency of the unbiased estimator Tn̊ “ Sn{n for the unknown parameter θ.

2. It is evident that, in considering Tn̊ as a point estimator for θ, we have intro-
duced a certain amount of inaccuracy. It can even happen that the numerical value
of Tn̊ calculated from observations of x1, . . . , xn differs rather severely from the
true value θ. Hence it would be advisable to determine the size of the error.

It would be too much to hope that Tn̊ pωq differs little from the true value θ for all
sample points ω. However, we know from the law of large numbers that for every
δ ą 0 the probability of the event t|θ ´ Tn̊ pωq| ą δu will be arbitrarily small for
sufficiently large n.

By Chebyshev’s inequality

Pθt|θ ´ Tn̊ | ą δu ≤ Varθ Tn̊

δ2
“ θp1 ´ θq

nδ2

and therefore, for every λ ą 0,

Pθ

#
|θ ´ Tn̊ | ≤ λ

c
θp1 ´ θq

n

+
≥ 1 ´ 1

λ2
.

If we take, for example, λ “ 3, then with Pθ-probability greater than 0.8888
psince 1 ´ p1{32q “ 8

9 « 0.8889q the event

|θ ´ Tn̊ | ≤ 3

c
θp1 ´ θq

n

will be realized, and a fortiori the event

|θ ´ Tn̊ | ≤ 3

2
?

n
,

since θp1 ´ θq ≤ 1
4 .

Therefore

Pθ

"
|θ ´ Tn̊ | ≤ 3

2
?

n

*
“ Pθ

"
Tn̊ ´ 3

2
?

n
≤ θ ≤ Tn̊ ` 3

2
?

n

*
≥ 0.8888.

In other words, we can say with probability greater than 0.8888 that the exact value
of θ is in the interval rTn̊ ´ p3{2?

nq, Tn̊ ` p3{2?
nqs. This statement is sometimes

written in the symbolic form

θ » Tn̊ ˘ 3

2
?

n
p≥ 88%q,

where “ ≥ 88%” means “ in more than 88% of all cases.”



7 Estimating the Probability of Success in the Bernoulli Scheme 73

The interval rTn̊ ´ p3{2?
nq, Tn̊ ` p3{2?

nqs is an example of what are called
confidence intervals for the unknown parameter.

Definition. An interval of the form

rψ1pωq, ψ2pωqs
where ψ1pωq and ψ2pωq are functions of sample points, is called a confidence inter-
val of reliability 1 ´ δ (or of significance level δ) if

Pθtψ1pωq ≤ θ ≤ ψ2pωqu ≥ 1 ´ δ

for all θ P Θ.

The preceding discussion shows that the interval
„

Tn̊ ´ λ

2
?

n
, Tn̊ ` λ

2
?

n

j

has reliability 1 ´p1{λ2q. In point of fact, the reliability of this confidence interval
is considerably higher, since Chebyshev’s inequality gives only crude estimates of
the probabilities of events.

To obtain more precise results we notice that
#
ω : |θ ´ Tn̊ | ≤ λ

c
θp1 ´ θq

n

+
“ tω : ψ1pTn̊ , nq ≤ θ ≤ ψ2pTn̊ , nqu,

where ψ1 “ ψ1pTn̊ , nq and ψ2 “ ψ2pTn̊ , nq are the roots of the quadratic equation

pθ ´ Tn̊ q2 “ λ2

n
θp1 ´ θq,

which describes an ellipse situated as shown in Fig. 13.

Fig. 13
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Now let

Fn
θpxq “ Pθ

#
Sn ´ nθa
nθp1 ´ θq ≤ x

+
.

Then by (24) of Sect. 6

sup
x

|Fn
θpxq ´ Φpxq| ≤ 1a

nθp1 ´ θq .

Therefore if we know a priori that

0 ă Δ ≤ θ ≤ 1 ´ Δ ă 1,

where Δ is a constant, then

sup
x

|Fn
θpxq ´ Φpxq| ≤ 1

Δ
?

n

and consequently

Pθtψ1pTn̊ , nq ≤ θ ≤ ψ2pTn̊ , nqu “ Pθ

#
|θ ´ Tn̊ | ≤ λ

c
θp1 ´ θq

n

+

“ Pθ

#
|Sn ´ nθ|a
nθp1 ´ θq ≤ λ

+

≥ p2Φpλq ´ 1q ´ 2

Δ
?

n
.

Let λ˚ be the smallest λ for which

p2Φpλq ´ 1q ´ 2

Δ
?

n
≥ 1 ´ δ˚,

where δ˚ is a given significance level. Putting δ “ δ˚ ´ p2{Δ?
nq, we find that λ˚

satisfies the equation

Φpλq “ 1 ´ 1

2
δ.

For large n we may neglect the term 2{Δ?
n and assume that λ˚ satisfies

Φpλ˚q “ 1 ´ 1

2
δ˚.

In particular, if λ˚ “ 3 then 1´ δ˚ “ 0.9973 . . . . Then with probability approx-
imately 0.9973

Tn̊ ´ 3

c
θp1 ´ θq

n
≤ θ ≤ Tn̊ ` 3

c
θp1 ´ θq

n
(8)
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or, after iterating and then suppressing terms of order Opn´3{4q, we obtain

Tn̊ ´ 3

c
Tn̊ p1 ´ Tn̊ q

n
≤ θ ≤ Tn̊ ` 3

c
Tn̊ p1 ´ Tn̊ q

n
. (9)

Hence it follows that the confidence interval„
Tn̊ ´ 3

2
?

n
, Tn̊ ` 3

2
?

n

j
(10)

has (for large n) reliability 0.9973 (whereas Chebyshev’s inequality only provided
reliability approximately 0.8889).

To illustrate the practical meaning of this result, suppose that we carry out a large
number N of series of experiments, in each of which we estimate the parameter θ
after n observations. Then in about 99.73% of the N cases the estimate will differ
from the true value of the parameter by at most 3

2
?

n . (On this topic see also the end
of Sect. 5.)

One should remember that the confidence interval (10) is approximate and valid
only for large n. For the construction of the exact confidence interval with appropri-
ate tables and references see [11].

3. PROBLEMS

1. Let it be known a priori that θ takes values in the set Θ0 Ď r0, 1s. When does
an unbiased estimator for θ exist, taking values only in Θ0?

2. Under the conditions of the preceding problem, find an analog of the Rao–
Cramér inequality and discuss the problem of efficient estimators.

3. Under the conditions of the first problem, discuss the construction of confi-
dence intervals for θ.

4. In addition to Problem 5 in Sect. 2 discuss the problem of unbiasedness and
efficiency of the estimator pN assuming that N is sufficiently large, N " M, N "
n. By analogy with the confidence intervals for θ (see (8) and (9)), construct
confidence intervals rpN ´ appNq, pN ` bppNqs for N such that

PN, M; ntpN ´ appNq ≤ N ≤ pN ` bppNqu « 1 ´ α,

where α is a small number.

8 Conditional Probabilities and Expectations with Respect
to Decompositions

1. Let pΩ,A ,Pq be a finite probability space and

D “ tD1, . . . , Dku
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a decomposition of Ω pDi P A , PpDiq ą 0, i “ 1, . . . , k, and D1 ` ¨ ¨ ¨ ` Dk “ Ωq.
Also let A be an event from A and PpA | Diq the conditional probability of A with
respect to Di.

With a set of conditional probabilities tPpA | Diq, i “ 1, . . . , ku we may associate
the random variable

πpωq “
kÿ

i“1

PpA | DiqIDi pωq (1)

(cf. (5) of Sect. 4), that takes the values PpA | Diq on the atoms of Di. To emphasize
that this random variable is associated specifically with the decomposition D , we
denote it by

PpA |Dq or PpA |Dqpωq
and call it the conditional probability of the event A with respect to the decomposi-
tion D .

This concept, as well as the more general concept of conditional probabilities
with respect to a σ-algebra, which will be introduced later, plays an important role
in probability theory, a role that will be developed progressively as we proceed.

We mention some of the simplest properties of conditional probabilities:

PpA ` B |Dq “ PpA |Dq ` PpB |Dq; (2)

if D is the trivial decomposition consisting of the single set Ω then

PpA |Ωq “ PpAq. (3)

The definition of PpA |Dq as a random variable lets us speak of its expectation; by
using this, we can write the formula for total probability (see (3), Sect. 3) in the
following compact form:

E PpA |Dq “ PpAq. (4)

In fact, since

PpA |Dq “
kÿ

i“1

PpA | DiqIDi pωq,

then by the definition of expectation (see (5) and (6), Sect. 4)

E PpA |Dq “
kÿ

i“1

PpA | Diq PpDiq “
kÿ

i“1

PpADiq “ PpAq.

Now let η “ ηpωq be a random variable that takes the values y1, . . . , yk with
positive probabilities:

ηpωq “
kÿ

j“1

yjIDj pωq,

where Dj “ tω : ηpωq “ yju. The decomposition Dη “ tD1, . . . ,Dku is called the
decomposition induced by η. The conditional probability PpA |Dηq will be denoted
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by PpA | ηq or PpA | ηqpωq, and called the conditional probability of A with respect to
the random variable η. We also denote by PpA | η “ yjq the conditional probability
PpA | Djq, where Dj “ tω : ηpωq “ yju.

Similarly, if η1, η2, . . . , ηm are random variables and Dη1,η2,...,ηm is the decom-
position induced by η1, η2, . . . , ηm with atoms

Dy1,y2,...,ym “ tω : η1pωq “ y1, . . . , ηmpωq “ ymu,
then PpA | Dη1,η2,...,ηm q will be denoted by PpA | η1, η2, . . . , ηmq and called the con-
ditional probability of A with respect to η1, η2, . . . , ηm.

Example 1. Let ξ and η be independent identically distributed random variables,
each taking the values 1 and 0 with probabilities p and q. For k “ 0, 1, 2, let us find
the conditional probability Ppξ ` η “ k | ηq of the event A “ tω : ξ ` η “ ku with
respect to η.

To do this, we first notice the following useful general fact: if ξ and η are inde-
pendent random variables with respective values x and y, then

Ppξ ` η “ z | η “ yq “ Ppξ ` y “ zq. (5)

In fact,

Ppξ ` η “ z | η “ yq “ Ppξ ` η “ z, η “ yq
Ppη “ yq

“ Ppξ ` y “ z, η “ yq
Ppη “ yq “ Ppξ ` y “ zq Ppη “ yq

Ppη “ yq
“ Ppξ ` y “ zq.

Using this formula for the case at hand, we find that

Ppξ ` η “ k | ηq “ Ppξ ` η “ k | η “ 0qItη“0upωq
` Ppξ ` η “ k | η “ 1qItη“1upωq

“ Ppξ “ kqItη“0upωq ` Ptξ “ k ´ 1uItη“1upωq.
Thus

Ppξ ` η “ k | ηq “
$&
%

qItη“0upωq, k “ 0,
pItη“0upωq ` qItη“1upωq, k “ 1,
pItη“1upωq, k “ 2,

(6)

or equivalently

Ppξ ` η “ k | ηq “
$&
%

qp1 ´ ηq, k “ 0,
pp1 ´ ηq ` qη, k “ 1,
pη, k “ 2.

(7)
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2. Let ξ “ ξpωq be a random variable with values in the set X “ tx1, . . . , xnu:

ξ “
lÿ

j“1

xjIAj pωq, Aj “ tω : ξ “ xju,

and let D “ tD1, . . . ,Dku be a decomposition. Just as we defined the expectation
of ξ with respect to the probabilities PpAjq, j “ 1, . . . , l,

E ξ “
lÿ

j“1

xj PpAjq, (8)

it is now natural to define the conditional expectation of ξ with respect to D by using
the conditional probabilities PpAj |Dq, j “ 1, . . . , l. We denote this expectation by
Epξ |Dq or Epξ |Dqpωq, and define it by the formula

Epξ |Dq “
lÿ

j“1

xj PpAj |Dq. (9)

According to this definition the conditional expectation Epξ |Dqpωq is a random
variable which, at all sample points ω belonging to the same atom Di, takes the
same value

řl
j“1 xj PpAj | Diq. This observation shows that the definition of Epξ |Dq

could have been expressed differently. In fact, we could first define Epξ | Diq, the
conditional expectation of ξ with respect to Di, by

Epξ | Diq “
lÿ

j“1

xj PpAj | Diq
ˆ

“ ErξIDi s
PpDiq

˙
, (10)

and then define

Epξ |Dqpωq “
kÿ

i“1

Epξ | DiqIDi pωq (11)

(see the diagram in Fig. 14).

Fig. 14

It is also useful to notice that Epξ | Dq and Epξ |Dq are independent of the repre-
sentation of ξ.
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The following properties of conditional expectations follow immediately from
the definitions:

Epaξ ` bη |Dq “ a Epξ |Dq ` b Epη |Dq, a and b constants; (12)

Epξ |Ωq “ E ξ; (13)

EpC |Dq “ C, C constant; (14)

if ξ “ IApωq then
Epξ |Dq “ PpA |Dq. (15)

The last equation shows, in particular, that properties of conditional probabilities
can be deduced directly from properties of conditional expectations.

The following important property extends the formula for total probability (4):

E Epξ |Dq “ E ξ. (16)

For the proof, it is enough to notice that by (4)

E Epξ |Dq “ E
lÿ

j“1

xj PpAj |Dq “
lÿ

j“1

xj E PpAj |Dq “
lÿ

j“1

xj PpAjq “ E ξ.

Let D “ tD1, . . . ,Dku be a decomposition and η “ ηpωq a random variable.
We say that η is measurable with respect to this decomposition, or D-measurable,
if Dη ď D , i.e., η “ ηpωq can be represented in the form

ηpωq “
kÿ

i“1

yiIDi pωq,

where some yi might be equal. In other words, a random variable is D-measurable
if and only if it takes constant values on the atoms of D .

Example 2. If D is the trivial decomposition, D “ tΩu, then η is D-measurable if
and only if η ” C, where C is a constant. Every random variable η is measurable
with respect to Dη .

Suppose that the random variable η is D-measurable. Then

Epξη |Dq “ η Epξ |Dq (17)

and in particular
Epη |Dq “ η pEpη |Dηq “ ηq. (18)

To establish (17) we observe that if ξ “ řl
j“1 xjIAj , then

ξη “
lÿ

j“1

kÿ
i“1

xjyiIAjDi
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and therefore

Epξη |Dq “
lÿ

j“1

kÿ
i“1

xjyi PpAjDi |Dq

“
lÿ

j“1

kÿ
i“1

xjyi

kÿ
m“1

PpAjDi | DmqIDm pωq

“
lÿ

j“1

kÿ
i“1

xjyi PpAjDi | DiqIDi pωq

“
lÿ

j“1

kÿ
i“1

xjyi PpAj | DiqIDi pωq. (19)

On the other hand, since I2Di
“ IDi and IDi ¨ IDm “ 0, i ‰ m, we obtain

η Epξ |Dq “
«

kÿ
i“1

yiIDi pωq
ff

¨
«

lÿ
j“1

xj PpAj |Dq
ff

“
«

kÿ
i“1

yiIDi pωq
ff

¨
kÿ

m“1

«
lÿ

j“1

xj PpAj | Dmq
ff

¨ IDm pωq

“
kÿ

i“1

lÿ
j“1

yixj PpAj | Diq ¨ IDi pωq,

which, with (19), establishes (17).
We shall establish another important property of conditional expectations. Let

D1 and D2 be two decompositions, with D1 ď D2 pD2 is “finer” than D1). Then
the following “telescopic” property holds:

ErEpξ |D2q |D1s “ Epξ |D1q. (20)

For the proof, suppose that

D1 “ tD11, . . . ,D1mu, D2 “ tD21, . . . ,D2nu.
Then if ξ “ řl

j“1 xjIAj , we have

Epξ |D2q “
lÿ

j“1

xj PpAj |D2q,

and it is sufficient to establish that

ErPpAj |D2q |D1s “ PpAj |D1q. (21)
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Since

PpAj |D2q “
nÿ

q“1

PpAj | D2qqID2q ,

we have

ErPpAj |D2q |D1s “
nÿ

q“1

PpAj | D2qq PpD2q |D1q

“
nÿ

q“1

PpAj | D2qq
«

mÿ
p“1

PpD2q | D1pqID1p

ff

“
mÿ

p“1

ID1p ¨
nÿ

q“1

PpAj | D2qq PpD2q | D1pq

“
mÿ

p“1

ID1p ¨
ÿ

tq : D2qĎD1pu
PpAj | D2qq PpD2q | D1pq

“
mÿ

p“1

ID1p ¨
ÿ

tq : D2qĎD1pu

PpAjD2qq
PpD2qq ¨ PpD2qq

PpD1pq

“
mÿ

p“1

ID1p ¨ PpAj | D1pq “ PpAj |D1q,

which establishes (21).
When D is induced by the random variables η1, . . . , ηk (i.e., D “ Dη1,...,ηk q,

the conditional expectation Epξ |Dη1,...,ηk q will be denoted by Epξ | η1, . . . , ηkq,
or Epξ | η1, . . . , ηkqpωq, and called the conditional expectation of ξ with respect to
η1, . . . , ηk.

It follows immediately from the definition of Epξ | ηq that if ξ and η are indepen-
dent, then

Epξ | ηq “ E ξ. (22)

From (18) it also follows that
Epη | ηq “ η. (23)

Using the notation Epξ | ηq for Epξ |Dηq, formula (16), which restates the for-
mula for total probability (4), can be written in the following widely used form:

E Epξ | ηq “ E ξ. (24)

(See also property (27) in Problem 3.)
Property (22) admits the following generalization. Let ξ be independent of D

(i.e., for each Di P D the random variables ξ and IDi are independent). Then

Epξ |Dq “ E ξ.
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As a special case of (20) we obtain the following useful formula:

ErEpξ | η1, η2q | η1s “ Epξ | η1q. (25)

Example 3. Let us find Epξ ` η | ηq for the random variables ξ and η considered in
Example 1. By (22) and (23),

Epξ ` η | ηq “ E ξ ` η “ p ` η.

This result can also be obtained by starting from (8):

Epξ ` η | ηq “
2ÿ

k“0

k Ppξ ` η “ k | ηq “ pp1 ´ ηq ` qη ` 2pη “ p ` η.

Example 4. Let ξ and η be independent and identically distributed random vari-
ables. Then

Epξ | ξ ` ηq “ Epη | ξ ` ηq “ ξ ` η

2
. (26)

In fact, if we assume for simplicity that ξ and η take the values 1, 2, . . . ,m, we
find p1 ≤ k ≤ m, 2 ≤ l ≤ 2mq

Ppξ “ k | ξ ` η “ lq “ Ppξ “ k, ξ ` η “ lq
Ppξ ` η “ lq “ Ppξ “ k, η “ l ´ kq

Ppξ ` η “ lq
“ Ppξ “ kq Ppη “ l ´ kq

Ppξ ` η “ lq “ Ppη “ kq Ppξ “ l ´ kq
Ppξ ` η “ lq

“ Ppη “ k | ξ ` η “ lq.
This establishes the first equation in (26). To prove the second, it is enough to notice
that

2Epξ | ξ ` ηq “ Epξ | ξ ` ηq ` Epη | ξ ` ηq “ Epξ ` η | ξ ` ηq “ ξ ` η.

3. We have already noticed in Sect. 1 that to each decomposition D “ tD1, . . . ,Dku
of the finite set Ω there corresponds an algebra αpDq of subsets of Ω. The converse
is also true: every algebra B of subsets of the finite space Ω generates a decompo-
sition DpB “ αpDqq. Consequently there is a one-to-one correspondence between
algebras and decompositions of a finite space Ω. This should be kept in mind in con-
nection with the concept, which will be introduced later, of conditional expectation
with respect to the special systems of sets called σ-algebras.

For finite spaces, the concepts of algebra and σ-algebra coincide. It will turn out
that if B is an algebra, the conditional expectation Epξ |Bq of a random variable
ξ with respect to B (to be introduced in Sect. 7, Chap. 2) simply coincides with
Epξ |Dq, the expectation of ξ with respect to the decomposition D such that B “
αpDq. In this sense we can, in dealing with finite spaces in the future, not distinguish
between Epξ |Bq and Epξ |Dq, understanding in each case that Epξ |Bq is simply
defined to be Epξ |Dq.
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4. PROBLEMS.

1. Give an example of random variables ξ and η which are not independent but
for which

Epξ | ηq “ E ξ.

(Cf. (22).)
2. The conditional variance of ξ with respect to D is the random variable

Varpξ |Dq “ Erpξ ´ Epξ |Dqq2 |Ds.
Show that

Var ξ “ EVarpξ |Dq ` VarEpξ |Dq.
3. Starting from (17), show that for every function f “ f pηq the conditional ex-

pectation Epξ | ηq has the property

Erf pηq Epξ | ηqs “ Erξf pηqs. (27)

4. Let ξ and η be random variables. Show that inf f Epη ´ f pξqq2 is attained for
f ˚pξq “ Epη | ξq. (Consequently, the best estimator for η in terms of ξ, in the
mean-square sense, is the conditional expectation Epη | ξqq.

5. Let ξ1, . . . , ξn, τ be independent random variables, where ξ1, . . . , ξn are iden-
tically distributed and τ takes the values 1, 2, . . . , n. Show that if Sτ “ ξ1 `
¨ ¨ ¨ ` ξτ is the sum of a random number of the random variables, then

EpSτ | τq “ τ E ξ1, VarpSτ | τq “ τVar ξ1

and
E Sτ “ E τ ¨ E ξ1, Var Sτ “ E τ ¨ Var ξ1 ` Var τ ¨ pE ξ1q2.

6. Establish equation (24).

9 Random Walk: I—Probabilities of Ruin and Mean
Duration in Coin Tossing

1. The value of the limit theorems of Sect. 6 for Bernoulli schemes is not just
that they provide convenient formulas for calculating probabilities PpSn “ kq and
PpA ă Sn ≤ Bq. They have the additional significance of being of a universal na-
ture, i.e., they remain useful not only for independent Bernoulli random variables
that have only two values, but also for variables of much more general character.
In this sense the Bernoulli scheme appears as the simplest model, on the basis of
which we can recognize many probabilistic regularities which are inherent also in
much more general models.
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In this and the next section we shall discuss a number of new probabilistic regu-
larities, some of which are quite surprising. The ones that we discuss are again based
on the Bernoulli scheme, although many results on the nature of random oscillations
remain valid for random walks of a more general kind.

2. Consider the Bernoulli scheme pΩ,A ,Pq, where Ω “ tω : ω “ px1, . . . , xnq, xi “
˘1u, A consists of all subsets of Ω, and Pptωuq “ pνpωqqn´νpωq with νpωq “
př

xi ` nq{2. Let ξipωq “ xi, i “ 1, . . . , n. Then, as we know, the sequence
ξ1, . . . , ξn is a sequence of independent Bernoulli random variables,

Ppξi “ 1q “ p, Ppξi “ ´1q “ q, p ` q “ 1.

Let us put S0 “ 0, Sk “ ξ1 ` ¨ ¨ ¨ ` ξk, 1 ≤ k ≤ n. The sequence S0, S1, . . . , Sn

can be considered as the path of the random motion of a particle starting at zero.
Here Sk`1 “ Sk ` ξk, i.e., if the particle has reached the point Sk at time k, then at
time k ` 1 it is displaced either one unit up (with probability p) or one unit down
(with probability q).

Let A and B be integers, A ≤ 0 ≤ B. An interesting problem about this random
walk is to find the probability that after n steps the moving particle has left the
interval pA,Bq. It is also of interest to ask with what probability the particle leaves
pA,Bq at A or at B.

That these are natural questions to ask becomes particularly clear if we interpret
them in terms of a gambling game. Consider two players (first and second) who start
with respective bankrolls p´Aq and B. If ξi “ `1, we suppose that the second player
pays one unit to the first; if ξi “ ´1, the first pays the second. Then Sk “ ξ1`¨ ¨ ¨`ξk

can be interpreted as the amount won by the first player from the second (if Sk ă 0,
this is actually the amount lost by the first player to the second) after k turns.

At the instant k ≤ n at which for the first time Sk “ B pSk “ Aq the bank-roll of
the second (first) player is reduced to zero; in other words, that player is ruined. (If
k ă n, we suppose that the game ends at time k, although the random walk itself is
well defined up to time n, inclusive.)

Before we turn to a precise formulation, let us introduce some notation.
Let x be an integer in the interval rA,Bs and for 0 ≤ k ≤ n let Sx

k “ x ` Sk,

τx
k “ mint0 ≤ l ≤ k : Sx

l “ A or Bu, (1)

where we agree to take τx
k “ k if A ă Sx

l ă B for all 0 ≤ l ≤ k.
For each k in 0 ≤ k ≤ n and x P rA,Bs, the instant τx

k, called a stopping time
(see Sect. 11), is an integer-valued random variable defined on the sample space Ω
(the dependence of τx

k on ω is not explicitly indicated).
It is clear that for all l ă k the set tω : τx

k “ lu is the event that the random walk
tSx

i , 0 ≤ i ≤ ku, starting at time zero at the point x, leaves the interval pA,Bq at
time l. It is also clear that when l ≤ k the sets tω : τx

k “ l, Sx
l “ Au and tω : τx

k “
l, Sx

l “ Bu represent the events that the wandering particle leaves the interval pA,Bq
at time l through A or B respectively.
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For 0 ≤ k ≤ n, we write

A x
k “

ÿ
0≤l≤k

tω : τx
k “ l, Sx

l “ Au,

Bx
k “

ÿ
0≤l≤k

tω : τx
k “ l, Sx

l “ Bu,
(2)

and let
αkpxq “ PpA x

k q, βkpxq “ PpBx
kq

be the probabilities that the particle leaves pA,Bq through A or B respectively, during
the time interval r0, ks. For these probabilities we can find recurrent relations from
which we can successively determine α1pxq, . . . , αnpxq and β1pxq, . . . , βnpxq.

Let, then, A ă x ă B. It is clear that α0pxq “ β0pxq “ 0. Now suppose
1 ≤ k ≤ n. Then by (3) of Sect. 3

βkpxq “ PpBx
kq “ PpBx

k | Sx
1 “ x ` 1q Ppξ1 “ 1q

` PpBx
k | Sx

1 “ x ´ 1q Ppξ1 “ ´1q
“ pPpBx

k | Sx
1 “ x ` 1q ` qPpBx

k | Sx
1 “ x ´ 1q. (3)

We now show that

PpBx
k | Sx

1 “ x ` 1q “ PpBx`1
k´1q, PpBx

k | Sx
1 “ x ´ 1q “ PpBx´1

k´1q.
To do this, we notice that Bx

k can be represented in the form

Bx
k “ tω : px, x ` ξ1, . . . , x ` ξ1 ` ¨ ¨ ¨ ` ξkq P Bx

ku,
where Bx

k is the set of paths of the form

px, x ` x1, . . . , x ` x1 ` ¨ ¨ ¨ ` xkq
with x1 “ ˘1, which during the time r0, ks first leave pA,Bq at B (Fig. 15).

We represent Bx
k in the form Bx,x`1

k ` Bx,x´1
k , where Bx,x`1

k and Bx,x´1
k are the

paths in Bx
k for which x1 “ `1 or x1 “ ´1, respectively.

Notice that the paths px, x ` 1, x ` 1 ` x2, . . . , x ` 1 ` x2 ` ¨ ¨ ¨ ` xkq in Bx,x`1
k

are in one-to-one correspondence with the paths

px ` 1, x ` 1 ` x2, . . . , x ` 1 ` x2, . . . , x ` 1 ` x2 ` ¨ ¨ ¨ ` xkq
in Bx`1

k´1. The same is true for the paths in Bx,x´1
k . Using these facts, together with

independence, the identical distribution of ξ1, . . . , ξk, and (6) of Sect. 8, we obtain
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Fig. 15 Example of a path from the set Bx
k

PpBx
k | Sx

1 “ x ` 1q
“ PpBx

k | ξ1 “ 1q
“ Ptpx, x ` ξ1, . . . , x ` ξ1 ` ¨ ¨ ¨ ` ξkq P Bx

k | ξ1 “ 1u
“ Ptpx ` 1, x ` 1 ` ξ2, . . . , x ` 1 ` ξ2 ` ¨ ¨ ¨ ` ξkq P Bx`1

k´1u
“ Ptpx ` 1, x ` 1 ` ξ1, . . . , x ` 1 ` ξ1 ` ¨ ¨ ¨ ` ξk´1q P Bx`1

k´1u
“ PpBx`1

k´1q.
In the same way,

PpBx
k | Sx

1 “ x ´ 1q “ PpBx´1
k´1q.

Consequently, by (3), for x P pA,Bq and k ≤ n,

βkpxq “ pβk´1px ` 1q ` qβk´1px ´ 1q, (4)

where
βlpBq “ 1, βlpAq “ 0, 0 ≤ l ≤ n. (5)

Similarly
αkpxq “ pαk´1px ` 1q ` qαk´1px ´ 1q (6)

with

αlpAq “ 1, αlpBq “ 0, 0 ≤ l ≤ n.

Since α0pxq “ β0pxq “ 0, x P pA,Bq, these recurrent relations can (at least in
principle) be solved for the probabilities

α1pxq, . . . , αnpxq and β1pxq, . . . , βnpxq.
Putting aside any explicit calculation of the probabilities, we ask for their values for
large n.
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For this purpose we notice that since Bx
k´1 Ă Bx

k , k ≤ n, we have βk´1pxq ≤
βkpxq ≤ 1. It is therefore natural to expect (and this is actually the case; see Subsec-
tion 3) that for sufficiently large n the probability βnpxq will be close to the solution
βpxq of the equation

βpxq “ pβpx ` 1q ` qβpx ´ 1q (7)

with the boundary conditions

βpBq “ 1, βpAq “ 0 (8)

that result from a formal approach to the limit in (4) and (5).
To solve the problem in (7) and (8), we first suppose that p ‰ q. We see easily

that the equation has the two particular solutions a and bpq{pqx, where a and b are
constants. Hence we look for a general solution of the form

βpxq “ a ` bpq{pqx. (9)

Taking account of (8), we find that for A ≤ x ≤ B

βpxq “ pq{pqx ´ pq{pqA

pq{pqB ´ pq{pqA
. (10)

Let us show that this is the only solution of our problem. It is enough to show
that all solutions of the problem in (7) and (8) admit the representation (9).

Let β̃pxq be a solution with β̃pAq “ 0, β̃pBq “ 1. We can always find constants
ã and b̃ such that

ã ` b̃pq{pqA “ β̃pAq, ã ` b̃pq{pqA`1 “ β̃pA ` 1q.
Then it follows from (7) that

β̃pA ` 2q “ ã ` b̃pq{pqA`2

and generally
β̃pxq “ ã ` b̃pq{pqx.

Consequently the solution (10) is the only solution of our problem.
A similar discussion shows that the only solution of

αpxq “ pαpx ` 1q ` qαpx ´ 1q, x P pA, Bq, (11)

with the boundary conditions

αpAq “ 1, αpBq “ 0 (12)

is given by the formula

αpxq “ pq{pqB ´ pq{pqx

pq{pqB ´ pq{pqA
, A ≤ x ≤ B. (13)
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If p “ q “ 1
2 , the only solutions βpxq and αpxq of (7), (8) and (11), (12) are

respectively

βpxq “ x ´ A
B ´ A

(14)

and

αpxq “ B ´ x
B ´ A

. (15)

We note that
αpxq ` βpxq “ 1 (16)

for 0 ≤ p ≤ 1.
We call αpxq and βpxq the probabilities of ruin for the first and second players,

respectively (when the first player’s bankroll is x ´ A, and the second player’s is
B ´ x) under the assumption of infinitely many turns, which of course presupposes
an infinite sequence of independent Bernoulli random variables ξ1, ξ2, . . ., where
ξi “ `1 is treated as a gain for the first player, and ξi “ ´1 as a loss. The probabil-
ity space pΩ,A ,Pq considered at the beginning of this section turns out to be too
small to allow such an infinite sequence of independent variables. We shall see later
(Sect. 9, Chap. 2) that such a sequence can actually be constructed and that βpxq and
αpxq are in fact the probabilities of ruin in an unbounded number of steps.

We now take up some corollaries of the preceding formulas.
If we take A “ 0, 0 ≤ x ≤ B, then the definition of βpxq implies that this is

the probability that a particle starting at x arrives at B before it reaches 0. It follows
from (10) and (14) (Fig. 16) that

βpxq “
#

x{B, p “ q “ 1{2,
pq{pqx´1
pq{pqB´1 , p ‰ q.

(17)

Fig. 16 Graph of βpxq, the probability that a particle starting from x reaches B before reaching 0

Now let q ą p, which means that the game is unfavorable for the first player,
whose limiting probability of being ruined, namely α “ αp0q, is given by
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α “ pq{pqB ´ 1

pq{pqB ´ pq{pqA
.

Next suppose that the rules of the game are changed: the original bankrolls of the
players are still p´Aq and B, but the payoff for each player is now 1

2 , rather than 1
as before. In other words, now let Ppξi “ 1

2 q “ p, Ppξi “ ´ 1
2 q “ q. In this case let

us denote the limiting probability of ruin for the first player by α1{2. Then

α1{2 “ pq{pq2B ´ 1

pq{pq2B ´ pq{pq2A
,

and therefore

α1{2 “ α ¨ pq{pqB ` 1

pq{pqB ` pq{pqA
ą α,

if q ą p.
Hence we can draw the following conclusion: if the game is unfavorable to the

first player pi.e., q ą pq then doubling the stake decreases the probability of ruin.

3. We now turn to the question of how fast αnpxq and βnpxq approach their limiting
values αpxq and βpxq.

Let us suppose for simplicity that x “ 0 and put

αn “ αnp0q, βn “ βnp0q, γn “ 1 ´ pαn ` βnq.
It is clear that

γn “ PtA ă Sk ă B, 0 ≤ k ≤ nu,
where tA ă Sk ă B, 0 ≤ k ≤ nu denotes the event

č
0≤k≤n

tA ă Sk ă Bu.

Let n “ rm, where r and m are integers and

ζ1 “ ξ1 ` ¨ ¨ ¨ ` ξm,

ζ2 “ ξm`1 ` ¨ ¨ ¨ ` ξ2m,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ζr “ ξmpr´1q`1 ` ¨ ¨ ¨ ` ξrm.

Then if C “ |A| ` B, it is easy to see that

tA ă Sk ă B, 1 ≤ k ≤ rmu Ď t|ζ1| ă C, . . . , |ζr| ă Cu,
and therefore, since ζ1, . . . , ζr are independent and identically distributed,

γn ≤ Pt|ζ1| ă C, . . . , |ζr| ă Cu “
rź

i“1

Pt|ζi| ă Cu “ pPt|ζ1| ă Cuqr. (18)



90 1 Elementary Probability Theory

We notice that Var ζ1 “ mr1 ´ pp ´ qq2s. Hence, for 0 ă p ă 1 and sufficiently
large m,

Pt|ζ1| ă Cu ≤ ε1, (19)

where ε1 ă 1, since Var ζ1 ≤ C2 if Pt|ζ1| ≤ Cu “ 1.
If p “ 0 or p “ 1, then Pt|ζ1| ă Cu “ 0 for sufficiently large m, and conse-

quently (19) is satisfied for 0 ≤ p ≤ 1.
It follows from (18) and (19) that for sufficiently large n

γn ≤ εn, (20)

where ε “ ε
1{m
1 ă 1.

According to (16), α ` β “ 1. Therefore

pα ´ αnq ` pβ ´ βnq “ γn,

and since α ≥ αn, β ≥ βn, we have

0 ≤ α ´ αn ≤ γn ≤ εn,

0 ≤ β ´ βn ≤ γn ≤ εn, ε ă 1.

There are similar inequalities for the differences αpxq ´ αnpxq and βpxq ´ βnpxq.

4. We now consider the question of the mean duration of the random walk.
Let mkpxq “ E τx

k be the expectation of the stopping time τx
k, k ≤ n. Proceeding

as in the derivation of the recurrent relations for βkpxq, we find that, for x P pA,Bq,

mkpxq “ E τx
k “

ÿ
1≤l≤k

l Ppτx
k “ lq

“
ÿ

1≤l≤k

l ¨ rp Ppτx
k “ l | ξ1 “ 1q ` q Ppτx

k “ l | ξ1 “ ´1qs

“
ÿ

1≤l≤k

l ¨ rp Ppτx`1
k´1 “ l ´ 1q ` q Ppτx´1

k´1 “ l ´ 1qs

“
ÿ

0≤l≤k´1

pl ` 1qrp Ppτx`1
k´1 “ lq ` q Ppτx´1

k´1 “ lqs

“ pmk´1px ` 1q ` qmk´1px ´ 1q
`

ÿ
0≤l≤k´1

rp Ppτx`1
k´1 “ lq ` q Ppτx´1

k´1 “ lqs

“ pmk´1px ` 1q ` qmk´1px ´ 1q ` 1.

Thus, for x P pA,Bq and 0 ≤ k ≤ n, the functions mkpxq satisfy the recurrent
relations

mkpxq “ 1 ` pmk´1px ` 1q ` qmk´1px ´ 1q, (21)
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with m0pxq “ 0. From these equations together with the boundary conditions

mkpAq “ mkpBq “ 0, (22)

we can successively find m1pxq, . . . ,mnpxq.
Since mkpxq ≤ mk`1pxq, the limit

mpxq “ lim
nÑ8 mnpxq

exists, and by (21) it satisfies the equation

mpxq “ 1 ` pmpx ` 1q ` qmpx ´ 1q (23)

with the boundary conditions

mpAq “ mpBq “ 0. (24)

To solve this equation, we first suppose that

mpxq ă 8, x P pA,Bq. (25)

Then if p ‰ q there is a particular solution of the form x{pq ´ pq and the general
solution (see (9)) can be written in the form

mpxq “ ´x
p ´ q

` a ` b

ˆ
q
p

˙x

.

Then by using the boundary conditions mpAq “ mpBq “ 0 we find that

mpxq “ 1

p ´ q
pBβpxq ` Aαpxq ´ xs, (26)

where βpxq and αpxq are defined by (10) and (13). If p “ q “ 1
2 , the general solution

of (23) has the form
mpxq “ a ` bx ´ x2,

and since mpAq “ mpBq “ 0 we have

mpxq “ pB ´ xqpx ´ Aq. (27)

It follows, in particular, that if the players start with equal bankrolls pB “ ´Aq,
then

mp0q “ B2.

If we take B “ 10, and suppose that each turn takes a second, then the (limiting)
time to the ruin of one player is rather long: 100 seconds.

We obtained (26) and (27) under the assumption that mpxq ă 8, x P pA,Bq. Let
us now show that in fact mpxq is finite for all x P pA,Bq. We consider only the case
x “ 0; the general case can be analyzed similarly.
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Let p “ q “ 1
2 . We introduce the random variable Sτn “ Sτn pωq defined in terms

of the sequence S0, S1, . . . , Sn and the stopping time τn “ τ0n by the equation

Sτn “
nÿ

k“0

SkpωqItτn“kupωq. (28)

The descriptive meaning of Sτn is clear: it is the position reached by the random
walk at the stopping time τn. Thus, if τn ă n, then Sτn “ A or B; if τn “ n, then
A ≤ Sτn ≤ B.

Let us show that when p “ q “ 1
2 ,

E Sτn “ 0, (29)

E S2
τn

“ E τn. (30)

To establish the first equation we notice that

E Sτn “
nÿ

k“0

ErSkItτn“kupωqs

“
nÿ

k“0

ErSnItτn“kupωqs `
nÿ

k“0

ErpSk ´ SnqItτn“kupωqs

“ E Sn `
nÿ

k“0

ErpSk ´ SnqItτn“kupωqs, (31)

where we evidently have E Sn “ 0. Let us show that

nÿ
k“0

ErpSk ´ SnqItτn“kupωqs “ 0.

To do this, we notice that tτn ą ku “ tA ă S1 ă B, . . . ,A ă Sk ă Bu when
0 ≤ k ă n. The event tA ă S1 ă B, . . . ,A ă Sk ă Bu can evidently be written in
the form

tω : pξ1, . . . , ξkq P Aku, (32)

where Ak is a subset of t´1, `1uk. In other words, this set is determined by just the
values of ξ1, . . . , ξk and does not depend on ξk`1, . . . , ξn. Since

tτn “ ku “ tτn ą k ´ 1uztτn ą ku,
this is also a set of the form (32). It then follows from the independence of
ξ1, . . . , ξn and from Problem 10 of Sect. 4 that for any 0 ≤ k ă n the random
variables Sn ´ Sk and Itτn“ku are independent, and therefore

ErpSn ´ SkqItτn“kus “ ErSn ´ Sks ¨ E Itτn“ku “ 0.

Hence we have established (29).
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We can prove (30) by the same method:

E S2
τn

“
nÿ

k“0

E S2
k Itτn“ku “

nÿ
k“0

EprSn ` pSk ´ Snqs2Itτn“kuq

“
nÿ

k“0

rE S2
n Itτn“ku ` 2E SnpSk ´ SnqItτn“ku

` EpSn ´ Skq2Itτn“kus “ E S2
n ´

nÿ
k“0

EpSn ´ Skq2Itτn“ku

“ n ´
nÿ

k“0

pn ´ kq Ppτn “ kq “
nÿ

k“0

k Ppτn “ kq “ E τn.

Thus we have (29) and (30) when p “ q “ 1
2 . For general p and q pp ` q “ 1q it

can be shown similarly that

E Sτn “ pp ´ qq ¨ E τn, (33)

ErSτn ´ τn ¨ E ξ1s2 “ Var ξ1 ¨ E τn, (34)

where E ξ1 “ p ´ q, Var ξ1 “ 1 ´ pp ´ qq2.
With the aid of the results obtained so far we can now show that limnÑ8 mnp0q “

mp0q ă 8.
If p “ q “ 1

2 , then by (30)

E τn ≤ maxpA2, B2q. (35)

If p ‰ q, then by (33),

E τn ≤ maxp|A|,Bq
|p ´ q| , (36)

from which it is clear that mp0q ă 8.
We also notice that when p “ q “ 1

2

E τn “ E S2
τn

“ A2αn ` B2βn ` ErS2
n ItAăSnăBuItτn“nus

and therefore

A2αn ` B2βn ≤ E τn ≤ A2αn ` B2βn ` maxpA2, B2qγn.

It follows from this and (20) that as n Ñ 8, E τn converges with exponential rate
to

mp0q “ A2α ` B2β “ A2 ¨ B
B ´ A

´ B2 ¨ A
B ´ A

“ |AB|.
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There is a similar result when p ‰ q:

E τn Ñ mp0q “ αA ` βB
p ´ q

exponentially fast.

5. PROBLEMS

1. Establish the following generalizations of (33) and (34):

E Sx
τx

n
“ x ` pp ´ qq E τx

n,

ErSx
τx

n
´ τx

n ¨ E ξ1s2 “ Var ξ1 ¨ E τx
n ` x2.

2. Investigate the limits of αpxq, βpxq, and mpxq when the level A Ó ´8.
3. Let p “ q “ 1

2 in the Bernoulli scheme. What is the order of E |Sn| for large
n?

4. Two players toss their own symmetric coins, independently. Show that the
probability that each has the same number of heads after n tosses is
2´2n

řn
k“0pCk

nq2. Hence deduce the equation
řn

k“0pCk
nq2 “ Cn

2n (see also
Problem 4 in Sect. 2).

Let σn be the first time when the number of heads for the first player coin-
cides with the number of heads for the second player (if this happens within n
tosses; σn “ n ` 1 if there is no such time). Find Eminpσn, nq.

10 Random Walk: II—Reflection Principle—Arcsine Law

1. As in the preceding section, we suppose that ξ1, ξ2, . . . , ξ2n is a sequence of
independent identically distributed Bernoulli random variables with

Ppξi “ 1q “ p, Ppξi “ ´1q “ q,
Sk “ ξ1 ` ¨ ¨ ¨ ` ξk, 1 ≤ k ≤ 2n; S0 “ 0.

We define
σ2n “ mint1 ≤ k ≤ 2n : Sk “ 0u,

putting σ2n “ 8 if Sk ‰ 0 for 1 ≤ k ≤ 2n.
The descriptive meaning of σ2n is clear: it is the time of first return to zero.

Properties of this time are studied in the present section, where we assume that the
random walk is symmetric, i.e., p “ q “ 1

2 .
For 0 ≤ k ≤ n we write

u2k “ PpS2k “ 0q, f2k “ Ppσ2n “ 2kq. (1)

It is clear that u0 “ 1 and
u2k “ Ck

2k ¨ 2´2k.
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Our immediate aim is to show that for 1 ≤ k ≤ n the probability f2k is given by

f2k “ 1

2k
u2pk´1q. (2)

It is clear that

tσ2n “ 2ku “ tS1 ‰ 0, S2 ‰ 0, . . . , S2k´1 ‰ 0, S2k “ 0u
for 1 ≤ k ≤ n, and by symmetry

f2k “ PtS1 ‰ 0, . . . , S2k´1 ‰ 0, S2k “ 0u
“ 2PtS1 ą 0, . . . , S2k´1 ą 0, S2k “ 0u. (3)

A sequence pS0, . . . , Skq is called a path of length k; we denote by LkpAq the
number of paths of length k having some specified property A. Then

f2k “ 2
ÿ

pa2k`1,...,anq
L2npS1 ą 0, . . . , S2k´1 ą 0, S2k “ 0,

S2k`1 “ a2k`1, . . . , S2n “ a2k`1 ` ¨ ¨ ¨ ` a2nq ¨ 2´2n

“ 2L2kpS1 ą 0, . . . , S2k´1 ą 0, S2k “ 0q ¨ 2´2k, (4)

where the summation is over all sets pa2k`1, . . . , a2nq with ai “ ˘1.
Consequently the determination of the probability f2k reduces to calculating the

number of paths L2kpS1 ą 0, . . . , S2k´1 ą 0, S2k “ 0q.

Lemma 1. Let a and b be nonnegative integers, a ´ b ą 0 and k “ a ` b. Then

LkpS1 ą 0, . . . , Sk´1 ą 0, Sk “ a ´ bq “ a ´ b
k

Ca
k . (5)

PROOF. In fact,

LkpS1 ą 0, . . . , Sk´1 ą 0, Sk “ a ´ bq
“ LkpS1 “ 1, S2 ą 0, . . . , Sk´1 ą 0, Sk “ a ´ bq
“ LkpS1 “ 1, Sk “ a ´ bq ´ LkpS1 “ 1, Sk “ a ´ b;

and D i, 2 ≤ i ≤ k ´ 1, such that Si ≤ 0q. (6)

In other words, the number of positive paths pS1, S2, . . . , Skq that originate at (1, 1)
and terminate at pk, a ´ bq is the same as the total number of paths from (1, 1) to
pk, a ´ bq after excluding the paths that touch or intersect the time axis.˚

˚ A path pS1, . . . , Skq is called positive (or nonnegative) if all Si ą 0 pSi ≥ 0q; a path is said to
touch the time axis if Sj ≥ 0 or else Sj ≤ 0, for 1 ≤ j ≤ k, and there is an i, 1 ≤ i ≤ k, such that
Si “ 0; and a path is said to intersect the time axis if there are two times i and j such that Si ą 0

and Sj ă 0.
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We now notice that

LkpS1 “ 1, Sk “ a ´ b; D i, 2 ≤ i ≤ k ´ 1, such that Si ≤ 0q
“ LkpS1 “ ´1, Sk “ a ´ bq, (7)

i.e., the number of paths from α “ p1, 1q to β “ pk, a ´ bq, which touch or intersect
the time axis, is equal to the total number of paths that connect α˚ “ p1, ´1q
with β. The proof of this statement, known as the reflection principle, follows
from the easily established one-to-one correspondence between the paths A “
pS1, . . . , Sa, Sa`1, . . . , Skq joining α and β, and paths B “ p´S1, . . . ,´Sa, Sa`1,
. . . , Skq joining α˚ and β (Fig. 17); a is the first point where A and B reach zero.

From (6) and (7) we find

LkpS1 ą 0, . . . , Sk´1 ą 0, Sk “ a ´ bq
“ LkpS1 “ 1, Sk “ a ´ bq ´ LkpS1 “ ´1, Sk “ a ´ bq
“ Ca´1

k´1 ´ Ca
k´1 “ a ´ b

k
Ca

k ,

which establishes (5).
[\

Fig. 17 The reflection principle

Turning to the calculation of f2k, we find that by (4) and (5) (with a “ k, b “
k ´ 1q,

f2k “ 2L2kpS1 ą 0, . . . , S2k´1 ą 0, S2k “ 0q ¨ 2´2k

“ 2L2k´1pS1 ą 0, . . . , S2k´1 “ 1q ¨ 2´2k

“ 2 ¨ 2´2k ¨ 1

2k ´ 1
Ck
2k´1 “ 1

2k
u2pk´1q.

Hence (2) is established.
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We present an alternative proof of this formula, based on the following observa-
tion. A straightforward verification shows that

1

2k
u2pk´1q “ u2pk´1q ´ u2k. (8)

At the same time, it is clear that

tσ2n “ 2ku “ tσ2n ą 2pk ´ 1quztσ2n ą 2ku,
tσ2n ą 2lu “ tS1 ‰ 0, . . . , S2l ‰ 0u

and therefore

tσ2n “ 2ku “ tS1 ‰ 0, . . . , S2pk´1q ‰ 0uztS1 ‰ 0, . . . , S2k ‰ 0u.
Hence

f2k “ PtS1 ‰ 0, . . . , S2pk´1q ‰ 0u ´ PtS1 ‰ 0, . . . , S2k ‰ 0u,
and consequently, because of (8), in order to show that f2k “ p1{2kqu2pk´1q it is
enough to show only that

L2kpS1 ‰ 0, . . . , S2k ‰ 0q “ L2kpS2k “ 0q. (9)

For this purpose we notice that evidently

L2kpS1 ‰ 0, . . . , S2k ‰ 0q “ 2L2kpS1 ą 0, . . . , S2k ą 0q.
Hence to verify (9) we need only to establish that

2L2kpS1 ą 0, . . . , S2k ą 0q “ L2kpS1 ≥ 0, . . . , S2k ≥ 0q (10)

and
L2kpS1 ≥ 0, . . . , S2k ≥ 0q “ L2kpS2k “ 0q. (11)

Fig. 18
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Now (10) will be established if we show that we can establish a one-to-one cor-
respondence between the paths A “ pS1, . . . , S2kq for which at least one Si “ 0, and
the positive paths B “ pS1, . . . , S2kq.

Let A “ pS1, . . . , S2kq be a nonnegative path for which the first zero occurs
at the point a (i.e., Sa “ 0q. Let us construct the path, starting at pa, 2q, pSa `
2, Sa`1 ` 2, . . . , S2k ` 2q (indicated by the broken lines in Fig. 18). Then the path
B “ pS1, . . . , Sa´1, Sa ` 2, . . . , S2k ` 2q is positive.

Conversely, let B “ pS1, . . . , S2kq be a positive path and b the last instant at
which Sb “ 1 (Fig. 19). Then the path

A “ pS1, . . . , Sb, Sb`1 ´ 2, . . . , Sk ´ 2q
is nonnegative. It follows from these constructions that there is a one-to-one corre-
spondence between the positive paths and the nonnegative paths with at least one
Si “ 0. Therefore formula (10) is established.

Fig. 19

We now establish (11). From symmetry and (10) it is enough to show that

L2kpS1 ą 0, . . . , S2k ą 0q ` L2kpS1 ≥ 0, . . . , S2k ≥ 0 and D i, 1 ≤ i ≤ 2k, such that
Si “ 0) “ L2kpS2k “ 0q.

The set of paths pS2k “ 0q can be represented as the sum of the two sets C1 and
C2, where C1 contains the paths pS0, . . . , S2kq that have just one minimum, and C2

contains those for which the minimum is attained at at least two points.
Let C1 P C1 (Fig. 20) and let γ be the minimum point. We put the path C1 “

pS0, S1, . . . , S2kq in correspondence with the path C1̊ obtained in the following way
(Fig. 21). We reflect pS0, S1, . . . , Slq around the vertical line through the point l, and
displace the resulting path to the right and upward, thus releasing it from the point
p2k, 0q. Then we move the origin to the point pl,´mq. The resulting path C1̊ will
be positive.

In the same way, if C2 P C2 we can use the same device to put it into correspon-
dence with a nonnegative path C2̊ .

Conversely, let C1̊ “ pS1 ą 0, . . . , S2k ą 0q be a positive path with S2k “ 2m
(see Fig. 21). We make it correspond to the path C1 that is obtained in the following
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Fig. 20

Fig. 21

way. Let p be the last point at which Sp “ m. Reflect pSp, . . . , S2mq with respect
to the vertical line x “ p and displace the resulting path downward and to the left
until its right-hand end coincides with the point p0, 0q. Then we move the origin to
the left-hand end of the resulting path (this is just the path drawn in Fig. 20). The
resulting path C1 “ pS0, . . . , S2kq has a unique minimum and S2k “ 0. A similar
construction applied to paths pS1 ≥ 0, . . . , S2k ≥ 0 and D i, 1 ≤ i ≤ 2k, with Si “ 0q
leads to paths for which there are at least two minima and S2k “ 0. Hence we have
established a one-to-one correspondence, which establishes (11).

Therefore we have established (9) and consequently also the formula f2k “
u2pk´1q ´ u2k “ p1{2kqu2pk´1q.

By Stirling’s formula

u2k “ Ck
2k ¨ 2´2k „ 1?

πk
, k Ñ 8.
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Therefore

f2k „ 1

2
?
πk3{2 , k Ñ 8.

Hence it follows that the expectation of the first time when zero is reached,
namely

Eminpσ2n, 2nq “
nÿ

k“1

2k Ppσ2n “ 2kq ` 2nu2n

“
nÿ

k“1

u2pk´1q ` 2nu2n,

can be arbitrarily large.
In fact,

ř8
k“1 u2pk´1q “ 8, and consequently the limiting value of the mean time

for the walk to reach zero (in an unbounded number of steps) is 8.
This property accounts for many of the unexpected properties of the symmetric

random walk under consideration. For example, it would be natural to suppose that
after time 2n the mean value of the number of zero net scores in a game between two
equally matched players pp “ q “ 1

2 q, i.e., the number of instants i at which Si “ 0,
would be proportional to 2n. However, in fact the number of zeros has order

?
2n

(see (17) in Sect. 9, Chap. 7, Vol. 2). Hence it follows, in particular, that, contrary to
intuition, the “typical” walk pS0, S1, . . . , Snq does not have a sinusoidal character
(so that roughly half the time the particle would be on the positive side and half
the time on the negative side), but instead must resemble a stretched-out wave. The
precise formulation of this statement is given by the arcsine law, which we proceed
to investigate.
2. Let P2k, 2n be the probability that during the interval r0, 2ns the particle spends 2k
units of time on the positive side.˚

Lemma 2. Let u0 “ 1 and 0 ≤ k ≤ n. Then

P2k, 2n “ u2k ¨ u2n´2k. (12)

PROOF. It was shown above that f2k “ u2pk´1q ´ u2k. Let us show that

u2k “
kÿ

r“1

f2r ¨ u2pk´rq. (13)

˚ We say that the particle is on the positive side in the interval rm ´ 1, ms if one, at least, of the
values Sm´1 and Sm is positive.
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Since tS2k “ 0u Ď tσ2n ≤ 2ku, we have

tS2k “ 0u “ tS2k “ 0u X tσ2n ≤ 2ku “
ÿ

1≤l≤k

tS2k “ 0u X tσ2n “ 2lu.

Consequently

u2k “ PpS2k “ 0q “
ÿ

1≤l≤k

PpS2k “ 0, σ2n “ 2lq

“
ÿ

1≤l≤k

PpS2k “ 0 |σ2k “ 2lq Ppσ2n “ 2lq.

But

PpS2k “ 0 |σ2n “ 2lq “ PpS2k “ 0 | S1 ‰ 0, . . . , S2l´1 ‰ 0, S2l “ 0q
“ PpS2l ` pξ2l`1 ` ¨ ¨ ¨ ` ξ2kq “ 0 | S1 ‰ 0, . . . , S2l´1 ‰ 0, S2l “ 0q
“ PpS2l ` pξ2l`1 ` ¨ ¨ ¨ ` ξ2kq “ 0 | S2l “ 0q
“ Ppξ2l`1 ` ¨ ¨ ¨ ` ξ2k “ 0q “ PpS2pk´lq “ 0q.

Therefore
u2k “

ÿ
1≤l≤k

PtS2pk´lq “ 0u Ptσ2n “ 2lu,

which proves (13).
We turn now to the proof of (12). It is obviously true for k “ 0 and k “ n. Now

let 1 ≤ k ≤ n ´ 1. If the particle is on the positive side for exactly 2k ă 2n instants,
it must pass through zero. Let 2r be the time of first return to zero. There are two
possibilities: either Sl ≥ 0 for all 0 ă l ≤ 2r, or Sl ≤ 0 for all 0 ă l ≤ 2r.

The number of paths of the first kind is easily seen to be
`
1
22

2rf2r

˘
22pn´rqP2pk´rq,2pn´rq “ 1

2 ¨ 22nf2rP2pk´rq,2pn´rq.

The corresponding number of paths of the second kind is

1
2 ¨ 22nf2rP2k,2pn´rq.

Consequently, for 1 ≤ k ≤ n ´ 1,

P2k,2n “ 1

2

kÿ
r“1

f2rP2pk´rq,2pn´rq ` 1

2

kÿ
r“1

f2rP2k,2pn´rq. (14)
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Let us suppose that P2k, 2m “ u2k ¨ u2m´2k holds for m “ 1, . . . , n ´ 1. Then we
find from (13) and (14) that

P2k,2n “ 1
2u2n´2k

kř
r“1

f2ru2k´2r ` 1
2u2k

kř
r“1

f2ru2n´2r´2k

“ 1
2u2n´2ku2k ` 1

2u2ku2n´2k “ u2ku2n´2k.

This completes the proof of the lemma.
[\
Now let γp2nq be the number of time units that the particle spends on the positive

axis in the interval r0, 2ns. Then, when x ă 1,

P
"
1

2
ă γp2nq

2n
≤ x

*
“

ÿ
tk : 1{2ăp2k{2nq≤xu

P2k,2n.

Since

u2k „ 1?
πk

as k Ñ 8, we have

P2k,2n “ u2ku2pn´kq „ 1

π
a

kpn ´ kq ,

as k Ñ 8 and n ´ k Ñ 8.
Therefore

ÿ
tk : 1{2ăp2k{2nq≤xu

P2k,2n ´
ÿ

tk : 1{2ăp2k{2nq≤xu

1

πn

„
k
n

ˆ
1 ´ k

n

˙j´1{2
Ñ 0, n Ñ 8,

whence

ÿ
tk : 1{2ăp2k{2nq≤xu

P2k,2n ´ 1

π

ż x

1{2
dta

tp1 ´ tq Ñ 0, n Ñ 8.

But, by symmetry, ÿ
tk : k{n≤1{2u

P2k,2n Ñ 1

2

and
1

π

ż x

1{2
dta

tp1 ´ tq “ 2

π
arcsin

?
x ´ 1

2
.

Consequently we have proved the following theorem.
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Theorem (Arcsine Law). The probability that the fraction of the time spent by the
particle on the positive side is at most x tends to 2π´1 arcsin

?
x:

ÿ
tk : k{n≤xu

P2k,2n Ñ 2π´1 arcsin
?

x. (15)

We remark that the integrand uptq “ ptp1 ´ tqq´1{2 in the integral

1

π

ż x

0

dta
tp1 ´ tq

represents a U-shaped curve that tends to infinity as t Ñ 0 or 1.
Hence it follows that, for large n,

P
"
0 ă γp2nq

2n
≤ Δ

*
ą P

"
1

2
ă γp2nq

2n
≤ 1

2
` Δ

*
,

i.e., it is more likely that the fraction of the time spent by the particle on the positive
side is close to zero or one, than to the intuitive value 1

2 .
Using a table of arcsines and noting that the convergence in (15) is indeed quite

rapid, we find that

P
"
γp2nq
2n

≤ 0.024

*
« 0.1,

P
"
γp2nq
2n

≤ 0.1

*
« 0.2,

P
"
γp2nq
2n

≤ 0.2

*
« 0.3,

P
"
γp2nq
2n

≤ 0.65

*
« 0.6.

Hence if, say, n “ 1000, then in about one case in ten, the particle spends only 24
units of time on the positive axis and therefore spends the greatest amount of time,
976 units, on the negative axis.

3. PROBLEMS

1. How fast does Eminpσ2n, 2nq Ñ 8 as n Ñ 8?
2. Let τn “ mint1 ≤ k ≤ n : Sk “ 1u, where we take τn “ 8 if Sk ă 1

for 1 ≤ k ≤ n. What is the limit of Eminpτn, nq as n Ñ 8 for symmetric
pp “ q “ 1

2 q and for asymmetric pp ‰ qq walks?
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3. Using the ideas and methods of Sect. 10, show that the symmetric (p “ q “
1{2) Bernoulli random walk tSk, k ≤ nu with S0 “ 0, Sk “ ξ1 ` ¨ ¨ ¨ ` ξk

fulfills the following equations (N is a positive integer):

P
!
max
1≤k≤n

Sk ≥ N, Sn ă N
)

“ PtSn ą Nu,

P
!
max
1≤k≤n

Sk ≥ N
)

“ 2PtSn ≥ Nu ´ PtSn “ Nu,

P
!
max
1≤k≤n

Sk “ N
)

“ PtSn “ Nu ` PtSn “ N ` 1u.

11 Martingales: Some Applications to the Random Walk

1. The Bernoulli random walk discussed above was generated by a sequence
ξ1, . . . , ξn of independent random variables. In this and the next section we intro-
duce two important classes of dependent random variables, those that constitute
martingales and Markov chains.

The theory of martingales will be developed in detail in Chapter 7, Vol. 2. Here
we shall present only the essential definitions, prove a theorem on the preservation
of the martingale property for stopping times, and apply this to deduce the “ ballot
theorem.” In turn, the latter theorem will be used for another proof of the statement
(5), Sect. 10, which was obtained above by applying the reflection principle.

2. Let pΩ,A ,Pq be a finite probability space and D1ďD2 ď ¨ ¨ ¨ ď Dn a sequence
of decompositions.

Definition 1. A sequence of random variables ξ1, . . . , ξn is called a martingale (with
respect to the decompositions D1 ď D2 ď ¨ ¨ ¨ ď Dn) if

(1) ξk is Dk-measurable,
(2) Epξk`1 |Dkq “ ξk, 1 ≤ k ≤ n ´ 1.

In order to emphasize the system of decompositions with respect to which the
random variables ξ “ pξ1, . . . , ξnq form a martingale, we shall use the notation

ξ “ pξk, Dkq1≤k≤n, (1)

where for the sake of simplicity we often do not mention explicitly that 1 ≤ k ≤ n.
When Dk is induced by ξ1, . . . , ξn, i.e.,

Dk “ Dξ1,...,ξk ,

instead of saying that ξ “ pξk, Dkq is a martingale, we simply say that the sequence
ξ “ pξkq is a martingale.
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Here are some examples of martingales.

Example 1. Let η1, . . . , ηn be independent Bernoulli random variables with

Ppηk “ 1q “ Ppηk “ ´1q “ 1
2 ,

Sk “ η1 ` ¨ ¨ ¨ ` ηk and Dk “ Dη1,...,ηk .

We observe that the decompositions Dk have a simple structure:

D1 “ tD`,D´u,
where D` “ tω : η1 “ `1u, D´ “ tω : η1 “ ´1u;

D2 “ tD``, D`´, D´`, D´´u,
where D`` “ tω : η1 “ `1, η2 “ `1u, . . . , D´´ “ tω : η1 “ ´1, η2 “ ´1u,
etc.

It is also easy to see that Dη1,...,ηk “ DS1,...,Sk .
Let us show that pSk, Dkq1≤k≤n form a martingale. In fact, Sk is Dk-measurable,

and by (12) and (18) of Sect. 8

EpSk`1 |Dkq “ EpSk ` ηk`1 |Dkq
“ EpSk |Dkq ` Epηk`1 |Dkq “ Sk ` E ηk`1 “ Sk.

If we put S0 “ 0 and take D0 “ tΩu, the trivial decomposition, then the sequence
pSk, Dkq0≤k≤n also forms a martingale.

Example 2. Let η1, . . . , ηn be independent Bernoulli random variables with
Ppηi “ 1q “ p, Ppηi “ ´1q “ q. If p ‰ q, each of the sequences ξ “ pξkq
with

ξk “
ˆ

q
p

˙Sk

, ξk “ Sk ´ kpp ´ qq, where Sk “ η1 ` ¨ ¨ ¨ ` ηk,

is a martingale.

Example 3. Let η be a random variable, D1 ď ¨ ¨ ¨ ď Dn, and

ξk “ Epη |Dkq. (2)

Then the sequence ξ “ pξk, Dkq1≤k≤n is a martingale. In fact, it is evident that
Epη |Dkq is Dk-measurable, and by (20) of Sect. 8

Epξk`1 |Dkq “ ErEpη |Dk`1q |Dks “ Epη |Dkq “ ξk.

In this connection we notice that if ξ “ pξk, Dkq is any martingale, then by (20)
of Sect. 8
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ξk “ Epξk`1 |Dkq “ ErEpξk`2 |Dk`1q |Dks
“ Epξk`2 |Dkq “ ¨ ¨ ¨ “ Epξn |Dkq. (3)

Consequently the set of martingales ξ “ pξk, Dkq is exhausted by the martingales
of the form (2). (We note that for infinite sequences ξ “ pξk, Dkqk≥1 this is, in
general, no longer the case; see Problem 6 in Sect. 1 of Chap. 7, Vol. 2.)

Example 4. Let η1, . . . , ηn be a sequence of independent identically distributed ran-
dom variables, Sk “ η1 ` ¨ ¨ ¨ ` ηk, and D1 “ DSn , D2 “ DSn,Sn´1

, . . . , Dn “
DSn,Sn´1,...,S1 . Let us show that the sequence ξ “ pξk, Dkq with

ξ1 “ Sn

n
, ξ2 “ Sn´1

n ´ 1
, . . . , ξk “ Sn`1´k

n ` 1 ´ k
, . . . , ξn “ S1

is a martingale. In the first place, it is clear that Dk ď Dk`1 and ξk is Dk-measurable.
Moreover, we have by symmetry, for j ≤ n ´ k ` 1,

Epηj |Dkq “ Epη1 |Dkq (4)

(compare (26), Sect. 8). Therefore

pn ´ k ` 1q Epη1 |Dkq “
n´k`1ÿ

j“1

Epηj |Dkq “ EpSn´k`1 |Dkq “ Sn´k`1,

and consequently

ξk “ Sn´k`1

n ´ k ` 1
“ Epη1 |Dkq,

and it follows from Example 3 that ξ “ pξk, Dkq is a martingale.

Remark. From this martingale property of the sequence ξ “ pξk, Dkq1≤k≤n, it is
clear why we will sometimes say that the sequence pSk{kq1≤k≤n forms a reversed
martingale. (Compare Problem 5 in Sect. 1, Chap. 7, Vol. 2).

Example 5. Let η1, . . . , ηn be independent Bernoulli random variables with

Ppηi “ `1q “ Ppηi “ ´1q “ 1
2 ,

Sk “ η1 ` ¨ ¨ ¨ ` ηk. Let A and B be integers, A ă 0 ă B. Then with 0 ă λ ă π{2,
the sequence ξ “ pξk, Dkq with Dk “ DS1,...,Sk and

ξk “ pcosλq´k exp

"
iλ

ˆ
Sk ´ B ` A

2

˙*
, 1 ≤ k ≤ n, (5)

is a complex martingale (i.e., the real and imaginary parts of ξk, 1 ≤ k ≤ n, form
martingales).
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3. It follows from the definition of a martingale that the expectation E ξk is the same
for every k:

E ξk “ E ξ1.

It turns out that this property persists if time k is replaced by a stopping time. In
order to formulate this property we introduce the following definition.

Definition 2. A random variable τ “ τpωq that takes the values 1, 2, . . . , n is called
a stopping time (with respect to decompositions pDkq1≤k≤n, D1 ď D2 ď ¨ ¨ ¨ ď Dnq
if, for any k “ 1, . . . , n, the random variable Itτ“kupωq is Dk-measurable.

If we consider Dk as the decomposition induced by observations for k steps (for
example, Dk “ Dη1,....ηk , the decomposition induced by the variables η1, . . . , ηk),
then the Dk-measurability of Itτ“kupωq means that the realization or nonrealization
of the event tτ “ ku is determined only by observations for k steps (and is indepen-
dent of the “future”).

If Bk “ αpDkq, then the Dk-measurability of Itτ“kupωq is equivalent to the as-
sumption that

tτ “ ku P Bk. (6)

We have already encountered specific examples of stopping times: the times τx
k and

σ2n introduced in Sects. 9 and 10. Those times are special cases of stopping times
of the form

τA “ mint0 ă k ≤ n : ξk P Au,
σA “ mint0 ≤ k ≤ n : ξk P Au, (7)

which are the times (respectively the first time after zero and the first time) for a
sequence ξ0, ξ1, . . . , ξn to attain a point of the set A.

4. Theorem 1. Let ξ “ pξk, Dkq1≤k≤n be a martingale and τ a stopping time with
respect to the decompositions pDkq1≤k≤n. Then

Epξτ |D1q “ ξ1, (8)

where

ξτ “
nÿ

k“1

ξkItτ“kupωq (9)

and
E ξτ “ E ξ1. (10)

PROOF (compare the proof of (29) in Sect. 9). Let D P D1. Using (3) and the prop-
erties of conditional expectations, we find that
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Epξτ | Dq “ EpξτIDq
PpDq

“ 1

PpDq
nÿ

l“1

Epξl ¨ Itτ“lu ¨ IDq

“ 1

PpDq
nÿ

l“1

ErEpξn |Dlq ¨ Itτ“lu ¨ IDs

“ 1

PpDq
nÿ

l“1

ErEpξnItτ“lu ¨ ID |Dlqs

“ 1

PpDq
nÿ

l“1

ErξnItτ“lu ¨ IDs

“ 1

PpDq EpξnIDq “ Epξn | Dq,

and consequently
Epξτ |D1q “ Epξn |D1q “ ξ1.

The equation E ξτ “ E ξ1 then follows in an obvious way.
This completes the proof of the theorem.
[\

Corollary. For the martingale pSk, Dkq1≤k≤n of Example 1, and any stopping time
τ (with respect to pDkq) we have the formulas

E Sτ “ 0, E S2
τ “ E τ, (11)

known as Wald’s identities (cf. (29) and (30) in Sect. 9; see also Problem 1 and
Theorem 3 in Sect. 2, Chap. 7, Vol. 2).

Let us use Theorem 1 to establish the following proposition.

Theorem 1 (Ballot Theorem). Let η1, . . . , ηn be a sequence of independent identi-
cally distributed random variables taking finitely many values from the set p0, 1, . . . q
and

Sk “ η1 ` ¨ ¨ ¨ ` ηk, 1 ≤ k ≤ n.

Then (P-a.s.)

PtSk ă k for all k, 1 ≤ k ≤ n | Snu “
ˆ
1 ´ Sn

n

˙`
, (12)

where a` “ maxpa, 0q.

PROOF. On the set tω : Sn ≥ nu the formula is evident. We therefore prove (12) for
the sample points at which Sn ă n.
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Let us consider the martingale ξ “ pξk, Dkq1≤k≤n introduced in Example 4, with
ξk “ Sn`1´k{pn ` 1 ´ kq and Dk “ DSn`1´k,...,Sn .

We define
τ “ mint1 ≤ k ≤ n : ξk ≥ 1u,

taking τ “ n on the set {ξk ă 1 for all k, 1 ≤ k ≤ n} “ tmax1≤l≤npSl{lq ă 1u. It is
clear that ξτ “ ξn “ S1 “ 0 on this set, and therefore

"
max
1≤l≤n

Sl

l
ă 1

*
“

"
max
1≤l≤n

Sl

l
ă 1, Sn ă n

*
Ď tξτ “ 0u. (13)

Now let us consider the outcomes for which simultaneously max1≤l≤npSl{lq ≥ 1
and Sn ă n. Write σ “ n ` 1 ´ τ. It is easy to see that

σ “ maxt1 ≤ k ≤ n : Sk ≥ ku
and therefore (since Sn ă n) we have σ ă n, Sσ ≥ σ, and Sσ`1 ă σ ` 1. Con-
sequently ησ`1 “ Sσ`1 ´ Sσ ă pσ ` 1q ´ σ “ 1, i.e., ησ`1 “ 0. Therefore
σ ≤ Sσ “ Sσ`1 ă σ ` 1, and consequently Sσ “ σ and

ξτ “ Sn`1´τ

n ` 1 ´ τ
“ Sσ

σ
“ 1.

Therefore "
max
1≤l≤n

Sl

l
≥ 1, Sn ă n

*
Ď tξτ “ 1u. (14)

From (13) and (14) we find that
"
max
1≤l≤n

Sl

l
≥ 1, Sn ă n

*
“ tξτ “ 1u X tSn ă nu.

Therefore, on the set tSn ă nu, we have

P
"
max
1≤l≤n

Sl

l
≥ 1

ˇ̌
ˇ Sn

*
“ Ptξτ “ 1 | Snu “ Epξτ | Snq,

where the last equation follows because ξτ takes only the two values 0 and 1.
Let us notice now that Epξτ | Snq “ Epξτ |D1q, and (by Theorem 1) Epξτ |D1q “

ξ1 “ Sn{n. Consequently, on the set tSn ă nu we have

PtSk ă k for all k such that 1 ≤ k ≤ n | Snu “ 1 ´ pSn{nq.
This completes the proof of the theorem.
[\
We now apply this theorem to obtain a different proof of Lemma 1 of Sect. 10,

and explain why it is called the ballot theorem.



110 1 Elementary Probability Theory

Let ξ1, . . . , ξn be independent Bernoulli random variables with

Ppξi “ 1q “ Ppξi “ ´1q “ 1
2 ,

Sk “ ξ1 ` ¨ ¨ ¨ ` ξk and a, b nonnegative integers such that a ´ b ą 0, a ` b “ n.
We are going to show that

PtS1 ą 0, . . . , Sn ą 0 | Sn “ a ´ bu “ a ´ b
a ` b

. (15)

In fact, by symmetry,

PtS1 ą 0, . . . , Sn ą 0 | Sn “ a ´ bu
“ PtS1 ă 0, . . . , Sn ă 0 | Sn “ ´pa ´ bqu
“ PtS1 ` 1 ă 1, . . . , Sn ` n ă n | Sn ` n “ n ´ pa ´ bqu
“ Ptη1 ă 1, . . . , η1 ` ¨ ¨ ¨ ` ηn ă n | η1 ` ¨ ¨ ¨ ` ηn “ n ´ pa ´ bqu
“

„
1 ´ n ´ pa ´ bq

n

j`
“ a ´ b

n
“ a ´ b

a ` b
,

where we have put ηk “ ξk ` 1 and applied (12).
Now formula (5) of Sect. 10 established in Lemma 1 of Sect. 10 by using the

reflection principle follows from (15) in an evident way.
Let us interpret ξi “ `1 as a vote for candidate A and ξi “ ´1 as a vote for B.

Then Sk is the difference between the numbers of votes cast for A and B at the time
when k votes have been recorded, and

PtS1 ą 0, . . . , Sn ą 0 | Sn “ a ´ bu
is the probability that A was always ahead of B given that A received a votes in all,
B received b votes, and a ´ b ą 0, a ` b “ n. According to (15) this probability is
pa ´ bq{n.

5. PROBLEMS

1. Let D0 ď D1 ď ¨ ¨ ¨ ď Dn be a sequence of decompositions with D0 “ tΩu,
and let ηk be Dk-measurable variables, 1 ≤ k ≤ n. Show that the sequence
ξ “ pξk, Dkq with

ξk “
kÿ

l“1

rηl ´ Epηl |Dl´1qs

is a martingale.
2. Let the random variables η1, . . . , ηk satisfy Epηk| η1, . . ., ηk´1q “ 0, 2 ≤ k ≤ n.

Show that the sequence ξ “ pξkq1≤k≤n with ξ1 “ η1 and

ξk`1 “
kÿ

i“1

ηi`1fipη1, . . . , ηiq, 1 ≤ k ≤ n ´ 1,

where fi are given functions, is a martingale.
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3. Show that every martingale ξ “ pξi, Dkq has uncorrelated increments: if a ă
b ă c ă d then

Covpξd ´ ξc, ξb ´ ξaq “ 0.

4. Let ξ “ pξ1, . . . , ξnq be a random sequence such that ξk is Dk-measurable
pD1 ď D2 ď ¨ ¨ ¨ ď Dn). Show that a necessary and sufficient condition
for this sequence to be a martingale (with respect to the system pDkq) is that
E ξτ “ E ξ1 for every stopping time τ (with respect to pDkq). (The phrase “for
every stopping time” can be replaced by “for every stopping time that assumes
two values.”)

5. Show that if ξ “ pξk, Dkq1≤k≤n is a martingale and τ is a stopping time, then

ErξnItτ“kus “ ErξkItτ“kus
for every k.

6. Let ξ “ pξk, Dkq and η “ pηk, Dkq be two martingales, ξ1 “ η1 “ 0. Show
that

E ξnηn “
nÿ

k“2

Epξk ´ ξk´1qpηk ´ ηk´1q

and in particular that

E ξ2n “
nÿ

k“2

Epξk ´ ξk´1q2.

7. Let η1, . . . , ηn be a sequence of independent identically distributed random
variables with E ηi “ 0. Show that the sequences ξ “ pξkq with

ξk “
˜

kÿ
i“1

ηi

¸2

´ k E η21 ,

ξk “ exptλpη1 ` ¨ ¨ ¨ ` ηkqu
pE expλη1qk

are martingales.
8. Let η1, . . . , ηn be a sequence of independent identically distributed random

variables taking values in a finite set Y . Let f0pyq “ Ppη1 “ yq ą 0, y P Y ,
and let f1pyq be a nonnegative function with

ř
yPY f1pyq “ 1. Show that the

sequence ξ “ pξk, D
η
k q with Dη

k “ Dη1,...,ηk ,

ξk “ f1pη1q ¨ ¨ ¨ f1pηkq
f0pη1q ¨ ¨ ¨ f0pηkq ,

is a martingale. (The variables ξk, known as likelihood ratios, are extremely
important in mathematical statistics.)
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12 Markov Chains: Ergodic Theorem, Strong
Markov Property

1. We have discussed the Bernoulli scheme with

Ω “ tω : ω “ px1, . . . , xnq, xi “ 0, 1u,
where the probability Pptωuq “ ppωq of each outcome is given by

ppωq “ ppx1q ¨ ¨ ¨ ppxnq, (1)

with ppxq “ pxq1´x. With these hypotheses, the variables ξ1, . . . , ξn with ξipωq “ xi

are independent and identically distributed with

Ppξ1 “ xq “ ¨ ¨ ¨ “ Ppξn “ xq “ ppxq, x “ 0, 1.

If we replace (1) by
ppωq “ p1px1q ¨ ¨ ¨ pnpxnq,

where pipxq “ px
i p1 ´ piq1´x, 0 ≤ pi ≤ 1, the random variables ξ1, . . . , ξn are still

independent, but in general are differently distributed:

Ppξ1 “ xq “ p1pxq, . . . ,Ppξn “ xq “ pnpxq.
We now consider a generalization that leads to dependent random variables that

form what is known as a Markov chain.
Let us suppose that

Ω “ tω : ω “ px0, x1, . . . , xnq, xi P Xu,
where X is a finite set. Let there be given nonnegative functions p0pxq, p1px, yq, . . .,
pnpx, yq such that

ÿ
xPX

p0pxq “ 1,

ÿ
yPX

pkpx, yq “ 1, k “ 1, . . . , n; x P X. (2)

For each ω “ px0, x1, . . . , xnq, put Pptωuq “ ppωq, where

ppωq “ p0px0qp1px0, x1q ¨ ¨ ¨ pnpxn´1, xnq. (3)

It is easily verified that
ř

ωPΩ ppωq “ 1, and consequently the set of numbers ppωq
together with the space Ω and the collection of its subsets defines a probabilistic
model pΩ,A ,Pq, which it is usual to call a model of experiments that form a Markov
chain.
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Let us introduce the random variables ξ0, ξ1, . . . , ξn with ξipωq “ xi for ω “
px1, . . . , xnq. A simple calculation shows that

Ppξ0 “ aq “ p0paq,
Ppξ0 “ a0, . . . , ξk “ akq “ p0pa0qp1pa0, a1q ¨ ¨ ¨ pkpak´1, akq. (4)

We now establish the validity of the following fundamental property of condi-
tional probabilities in the probability model pΩ,A ,Pq at hand:

Ptξk`1 “ ak`1 | ξk “ ak, . . . , ξ0 “ a0u “ Ptξk`1 “ ak`1 | ξk “ aku (5)

(under the assumption that Ppξk “ ak, . . . , ξ0 “ a0q ą 0).
By (4) and the definition of conditional probabilities (Sect. 3)

Ptξk`1 “ ak`1 | ξk “ ak, . . . , ξ0 “ a0u
“ Ptξk`1 “ ak`1, . . . , ξ0 “ a0u

Ptξk “ ak, . . . , ξ0 “ a0u
“ p0pa0qp1pa0, a1q ¨ ¨ ¨ pk`1pak, ak`1q

p0pa0q ¨ ¨ ¨ pkpak´1, akq “ pk`1pak, ak`1q.

In a similar way we verify

Ptξk`1 “ ak`1 | ξk “ aku “ pk`1pak, ak`1q, (6)

which establishes (5).
Let Dξ

k “ Dξ0,...,ξk be the decomposition induced by ξ0, . . . , ξk, and Bξ
k “

αpDξ
k q.

Then, in the notation introduced in Sect. 8, it follows from (5) that

Ptξk`1 “ ak`1 |Bξ
k u “ Ptξk`1 “ ak`1 | ξku (7)

or
Ptξk`1 “ ak`1 | ξ0, . . . , ξku “ Ptξk`1 “ ak`1 | ξku.

Remark 1. We interrupt here our exposition in order to make an important comment
regarding the formulas (5) and (7) and events of zero probability.

Formula (5) was established assuming that Ptξk “ ak, . . . , ξ0 “ a0u ą 0 (hence
also Ptξk “ aku ą 0). In essence, this was needed only because conditional proba-
bilities PpA | Bq have been defined (so far!) only under the assumption PpBq ą 0.

Let us notice, however, that if B “ tξk “ ak, . . . , ξ0 “ a0u and PpBq “ 0 (and
therefore also PpCq “ 0 for C “ tξk “ aku), then the “path” tξ0 “ a0, . . . , ξk “ aku
has to be viewed as unrealizable one, and then the question about the conditional
probability of the event tξk`1 “ aku given that this unrealizable “path” occurs is of
no practical interest.

In this connection we will for definiteness define the conditional probability
PpA | Bq by the formula
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PpA | Bq “
#

PpABq
PpBq , if PpBq ą 0,

0, if PpBq “ 0.

With this definition the formulas (5) and (7) hold without any additional assump-
tions like Ptξk “ ak, . . . , ξ0 “ a0u ą 0.

Let us emphasize that the difficulty related to the events of zero probability is very
common for probability theory. We will give in Sect. 7, Chap. 2, a general definition
of conditional probabilities (with respect to arbitrary decompositions, σ-algebras,
etc.), which is both very natural and “works” in “zero probability” setups.

Now, if we use the evident equation

PpAB | Cq “ PpA | BCq PpB | Cq,
we find from (7) that

Ptξn “ an, . . . , ξk`1 “ ak`1 |Bξ
k u “ Ptξn “ an, . . . , ξk`1 “ ak`1 | ξku (8)

or

Ptξn “ an, . . . , ξk`1 “ ak`1 | ξ0, . . . , ξku
“ Ptξn “ an, . . . , ξk`1 “ ak`1 | ξku. (9)

This equation admits the following intuitive interpretation. Let us think of ξk

as the position of a particle “at present,” with pξ0, . . . , ξk´1q being the “past,” and
pξk`1, . . . , ξnq the “future.” Then (9) says that if the past and the present are given,
the future depends only on the present and is independent of how the particle arrived
at ξk, i.e., is independent of the past pξ0, . . . , ξk´1q.

Let ˚

P “ tξk´1 “ ak´1, . . . , ξ0 “ a0u,
N “ tξk “ aku,
F “ tξn “ an, . . . , ξk`1 “ ak`1u.

Then it follows from (9) that

PpF |NPq “ PpF |Nq,
from which we easily find that

PpFP |Nq “ PpF |Nq PpP |Nq. (10)

In other words, it follows from (7) that for a given present N, the future F and the
past P are independent. It is easily shown that the converse also holds: if (10) holds
for all k “ 0, 1, . . . , n ´ 1, then (7) holds for every k “ 0, 1, . . . , n ´ 1.

˚ “Present” is denoted by N (“Now”) to distinguish from P “ “Past”.—Translator.
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The property of the independence of future and past, or, what is the same thing,
the lack of dependence of the future on the past when the present is given, is
called the Markov property, and the corresponding sequence of random variables
ξ0, . . . , ξn is a Markov chain.

Consequently if the probabilities ppωq of the sample points are given by (3), the
sequence pξ0, . . . , ξnq with ξipωq “ xi forms a Markov chain.

We give the following formal definition.

Definition. Let pΩ,A ,Pq be a (finite) probability space and let ξ “ pξ0, . . . , ξnq be
a sequence of random variables with values in a (finite) set X. If (7) is satisfied, the
sequence ξ “ pξ0, . . . , ξnq is called a (finite) Markov chain.

The set X is called the phase space or state space of the chain. The set of prob-
abilities pp0pxqq, x P X, with p0pxq “ Ppξ0 “ xq is the initial distribution, and the
matrix }pkpx, yq}, x, y P X, with pkpx, yq “ Ptξk “ y | ξk´1 “ xu is the matrix of
transition probabilities (from state x to state y) at time k “ 1, . . . , n.

When the transition probabilities pkpx, yq do not depend on k, that is, pkpx, yq “
ppx, yq, the sequence ξ “ pξ0, . . . , ξnq is called a homogeneous Markov chain with
transition matrix }ppx, yq}.

Notice that the matrix }ppx, yq} is stochastic: its elements are nonnegative and
the sum of the elements in each row is 1:

ř
y ppx, yq “ 1, x P X.

We shall suppose that the phase space X is a finite set of integers (X “
t0, 1, . . . ,Nu, X “ t0,˘1, . . . ,˘Nu, etc.), and use the traditional notation pi “
p0piq and pij “ ppi, jq.

It is clear that the properties of homogeneous Markov chains are completely de-
termined by the initial probabilities pi and the transition probabilities pij. In specific
cases we describe the evolution of the chain, not by writing out the matrix }pij} ex-
plicitly, but by a (directed) graph whose vertices are the states in X, and an arrow
from state i to state j with the number pij over it indicates that it is possible to pass
from point i to point j with probability pij. When pij “ 0, the corresponding arrow
is omitted.

Example 1. Let X “ t0, 1, 2u and

}pij} “
¨
˝1 0 0

1
2 0 1

2
2
3 0 1

3

˛
‚.
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The following graph corresponds to this matrix:

Here state 0 is said to be absorbing: if the particle gets into this state it remains there,
since p00 “ 1. From state 1 the particle goes to the adjacent states 0 or 2 with equal
probabilities; state 2 has the property that the particle remains there with probability
1
3 and goes to state 0 with probability 2

3 .

Example 2. Let X “ t0, ˘ 1, . . . , ˘Nu, p0 “ 1, pNN “ p´N,´N “ 1, and, for
|i| ă N,

pij “
$&
%

p, j “ i ` 1,
q, j “ i ´ 1,
0 otherwise.

(11)

The transitions corresponding to this chain can be presented graphically in the fol-
lowing way pN “ 3q:

This chain corresponds to the two-player game discussed earlier, when each player
has a bankroll N and at each turn the first player wins ` 1 from the second with
probability p, and loses (wins ´1) with probability q. If we think of state i as the
amount won by the first player from the second, then reaching state N or ´N means
the ruin of the second or first player, respectively.

In fact, if η1, η2, . . . , ηn are independent Bernoulli random variables with Ppηi “
`1q “ p, Ppηi “ ´1q “ q, S0 “ 0 and Sk “ η1 ` ¨ ¨ ¨ ` ηk the amounts won by
the first player from the second, then the sequence S0, S1, . . . , Sn is a Markov chain
with p0 “ 1 and transition matrix (11), since

PtSk`1 “ j | Sk “ ik, Sk´1 “ ik´1, . . . , S1 “ i1u
“ PtSk ` ηk`1 “ j | Sk “ ik, Sk´1 “ ik´1, . . . , S1 “ i1u
“ PtSk ` ηk`1 “ j | Sk “ iku “ Ptηk`1 “ j ´ iku.

This Markov chain has a very simple structure:

Sk`1 “ Sk ` ηk`1, 0 ≤ k ≤ n ´ 1,

where η1, η2, . . . , ηn is a sequence of independent random variables.
The same considerations show that if ξ0, η1, . . . , ηn are independent random vari-

ables then the sequence ξ0, ξ1, . . . , ξn with

ξk`1 “ fkpξk, ηk`1q, 0 ≤ k ≤ n ´ 1, (12)

is also a Markov chain.
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lt is worth noting in this connection that a Markov chain constructed in this way
can be considered as a natural probabilistic analog of a (deterministic) sequence
x “ px0, . . . , xnq generated by the recurrent equations

xk`1 “ fkpxkq.
We now give another example of a Markov chain of the form (12); this example

arises in queueing theory.

Example 3. At a taxi stand let taxis arrive at unit intervals of time (one at a time). If
no one is waiting at the stand, the taxi leaves immediately. Let ηk be the number of
passengers who arrive at the stand at time k, and suppose that η1, . . . , ηn are inde-
pendent random variables. Let ξk be the length of the waiting line at time k, ξ0 “ 0.
Then if ξk “ i, at the next time k ` 1 the length ξk`1 of the waiting line is equal to

j “
"
ηk`1 if i “ 0,
i ´ 1 ` ηk`1 if i ≥ 1.

In other words,

ξk`1 “ pξk ´ 1q` ` ηk`1, 0 ≤ k ≤ n ´ 1,

where a` “ maxpa, 0q, and therefore the sequence ξ “ pξ0, . . . , ξnq is a Markov
chain.

Example 4. This example comes from the theory of branching processes. A
branching process with discrete time is a sequence of random variables ξ0, ξ1, . . . , ξn,
where ξk is interpreted as the number of particles in existence at time k, and the pro-
cess of creation and annihilation of particles is as follows: each particle, indepen-
dently of the other particles and of the “prehistory” of the process, is transformed
into j particles with probability pj, j “ 0, 1, . . . ,M. (This model of the process
of creation and annihilation is called the Galton–Watson model, see [6] and Prob-
lem 18 in Sect. 5, Chap. VIII of [90]).

We suppose that at the initial time there is just one particle, ξ0 “ 1. If at time k
there are ξk particles (numbered 1, 2, . . . , ξk), then by assumption ξk`1 is given as a
random sum of random variables,

ξk`1 “ η
pkq
1 ` ¨ ¨ ¨ ` η

pkq
ξk

,

where η
pkq
i is the number of particles produced by particle number i. It is clear that

if ξk “ 0 then ξk`1 “ 0. If we suppose that all the random variables ηpkq
j , k ≥ 0, are

independent of each other, we obtain

Ptξk`1 “ ik`1 | ξk “ ik, ξk´1 “ ik´1, . . .u “ Ptξk`1 “ ik`1 | ξk “ iku
“ Ptηpkq

1 ` ¨ ¨ ¨ ` η
pkq
ik “ ik`1u.

It is evident from this that the sequence ξ0, ξ1, . . . , ξn is a Markov chain.
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A particularly interesting case is that in which each particle either vanishes with
probability q or divides in two with probability p, p ` q “ 1. In this case it is easy
to calculate that

pij “ Ptξk`1 “ j | ξk “ iu
is given by the formula

pij “
"

Cj{2
i pj{2qi´j{2, j “ 0, 2, . . . , 2i,

0 in all other cases.

2. Let ξ “ pξk,p,Pq be a homogeneous Markov chain with initial vector (row)
p “ }pi} and transition matrix P “ }pij}. It is clear that

pij “ Ptξ1 “ j | ξ0 “ iu “ ¨ ¨ ¨ “ Ptξn “ j | ξn´1 “ iu.
We shall use the notation

ppkq
ij “ Ptξk “ j | ξ0 “ iu p“ Ptξk`l “ j | ξl “ iuq

for the probability of a transition from state i to state j in k steps, and

ppkq
j “ Ptξk “ ju

for the probability of the particle to be at point j at time k. Also let

ppkq “ }pk
i }, P

pkq “ }ppkq
ij }.

Let us show that the transition probabilities ppkq
ij satisfy the Kolmogorov–Chapman

equation
ppk`lq

ij “
ÿ
α

ppkq
iα pplq

αj , (13)

or, in matrix form,
P

pk`lq “ P
pkq ¨ Pplq. (14)

The proof is extremely simple: using the formula for total probability and the
Markov property, we obtain

ppk`lq
ij “ Ppξk`l “ j | ξ0 “ iq “

ÿ
α

Ppξk`l “ j, ξk “ α | ξ0 “ iq

“
ÿ
α

Ppξk`l “ j | ξk “ αq Ppξk “ α | ξ0 “ iq “
ÿ
α

pplq
αj p

pkq
iα .

The following two cases of (13) are particularly important:
the backward equation

ppl`1q
ij “

ÿ
α

piαpplq
αj (15)



12 Markov Chains: Ergodic Theorem, Strong Markov Property 119

and the forward equation
ppk`1q

ij “
ÿ
α

ppkq
iα pαj (16)

(see Figs. 22 and 23). The forward and backward equations can be written in the
following matrix forms

P
pk`1q “ P

pkq ¨ P, (17)

P
pk`1q “ P ¨ Ppkq. (18)

Fig. 22 For the backward equation

Similarly, we find for the (unconditional) probabilities ppkq
j that

ppk`lq
j “

ÿ
α

ppkq
α pplq

αj , (19)

or in matrix form
ppk`lq “ ppkq ¨ Pplq.

In particular,
ppk`1q “ ppkq ¨ P pforward equationq

and
ppk`1q “ pp1q ¨ Ppkq pbackward equationq.

Since P
p1q “ P, pp0q “ p, it follows from these equations that

P
pkq “ P

k, ppkq “ p ¨ Pk.

Consequently for homogeneous Markov chains the k-step transition probabilities
ptkq

ij are the elements of the kth powers of the matrix P, so that many properties of
such chains can be investigated by the methods of matrix analysis.
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Fig. 23 For the forward equation

Example 5. Consider a homogeneous Markov chain with the two states 0 and 1 and
the transition matrix

P “
ˆ

p00 p01
p10 p11

˙
.

It is easy to calculate that

P
2 “

ˆ
p200 ` p01p10 p01pp00 ` p11q
p10pp00 ` p11q p211 ` p01p10

˙

and (by induction)

P
n “ 1

2 ´ p00 ´ p11

ˆ
1 ´ p11 1 ´ p00
1 ´ p11 1 ´ p00

˙

`pp00 ` p11 ´ 1qn

2 ´ p00 ´ p11

ˆ
1 ´ p00 ´p1´ p00q

´p1 ´ p11q 1´ p11

˙

(under the assumption that |p00 ` p11 ´ 1| ă 1).
Hence it is clear that if the elements of P satisfy |p00`p11´1| ă 1 (in particular,

if all the transition probabilities pij are positive), then as n Ñ 8

P
n Ñ 1

2 ´ p00 ´ p11

ˆ
1´ p11 1´ p00
1´ p11 1´ p00

˙
, (20)

and therefore

lim
n

ppnq
i0 “ 1 ´ p11

2 ´ p00 ´ p11
, lim

n
ppnq

i1 “ 1 ´ p00
2 ´ p00 ´ p11

, i “ 0, 1.

Consequently if |p00 ` p11 ´ 1| ă 1, such a Markov chain exhibits regular
behavior of the following kind: the influence of the initial state on the probability
of finding the particle in one state or another eventually becomes negligible pppnq

ij
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approach limits πj, independent of i and forming a probability distribution: π0 ≥ 0,
π1 ≥ 0, π0 ` π1 “ 1); if also all pij ą 0 then π0 ą 0 and π1 ą 0. (Compare with
Theorem 1 below.)

3. The following theorem describes a wide class of Markov chains that have the
property called ergodicity: the limits πj “ limn pij not only exist, are independent of
i, and form a probability distribution pπj ≥ 0,

ř
j πj “ 1q, but also πj ą 0 for all

j (such a distribution πj is said to be ergodic, see Sect. 3, Chap. 8, Vol. 2 for more
detail).

Theorem 1 (Ergodic Theorem). Let P “ }pij} be the transition matrix of a Markov
chain with a finite state space X “ t1, 2, . . . , Nu.

(a) If there is an n0 such that
min

i,j
ppn0q

ij ą 0, (21)

then there are numbers π1, . . . , πN such that

πj ą 0,
ÿ

j

πj “ 1 (22)

and
ppnq

ij Ñ πj, n Ñ 8 (23)

for every j P X and i P X.
(b) Conversely, if there are numbers π1, . . . , πN satisfying (22) and (23), there is

an n0 such that (21) holds.
(c) The numbers pπ1, . . . , πNq satisfy the equations

πj “
ÿ
α

παpαj, j “ 1, . . . ,N. (24)

PROOF. (a) Let
mpnq

j “ min
i

ppnq
ij , Mpnq

j “ max
i

ppnq
ij .

Since
ppn`1q

ij “
ÿ
α

piαppnq
αj , (25)

we have

mpn`1q
j “ min

i
ppn`1q

ij “ min
i

ÿ
α

piαppnq
αj ≥ min

i

ÿ
α

piα min
α

ppnq
αj “ mpnq

j ,

whence mpnq
j ≤ mpn`1q

j and similarly Mpnq
j ≥ Mpn`1q

j . Consequently, to establish
(23) it will be enough to prove that

Mpnq
j ´ mpnq

j Ñ 0, n Ñ 8, j “ 1, . . . , N.
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Let ε “ mini,j ppn0q
ij ą 0. Then

ppn0`nq
ij “

ÿ
α

ppn0q
iα ppnq

αj “
ÿ
α

rppn0q
iα ´ εppnq

jα sppnq
αj ` ε

ÿ
α

ppnq
jα ppnq

αj

“
ÿ
α

rppn0q
iα ´ εppnq

jα sppnq
αj ` εpp2nq

jj .

But ppn0q
iα ´ εppnq

jα ≥ 0; therefore

ppn0`nq
ij ≥ mpnq

j ¨
ÿ
α

rppn0q
iα ´ εppnq

jα s ` εpp2nq
jj “ mpnq

j p1 ´ εq ` εpp2nq
jj ,

and consequently

mpn0`nq
j ≥ mpnq

j p1 ´ εq ` εpp2nq
jj .

In a similar way
Mpn0`nq

j ≤ Mpnq
j p1 ´ εq ` εpp2nq

jj .

Combining these inequalities, we obtain

Mpn0`nq
j ´ mpn0`nq

j ≤ pMpnq
j ´ mpnq

j q ¨ p1 ´ εq
and consequently

Mpkn0`nq
j ´ mpkn0`nq

j ≤ pMpnq
j ´ mpnq

j qp1 ´ εqk Ó 0, k Ñ 8.

Thus Mpnβq
j ´ mpnβq

j Ñ 0 for some subsequence nβ , nβ Ñ 8. But the difference

Mpnq
j ´ mpnq

j is monotonic in n, and therefore Mpnq
j ´ mpnq

j Ñ 0, n Ñ 8.

If we put πj “ limn mpnq
j , it follows from the preceding inequalities that

|ppnq
ij ´ πj| ≤ Mpnq

j ´ mpnq
j ≤ p1 ´ εqrn{n0s´1

for n ≥ n0, that is, ppnq
ij converges to its limit πj geometrically (i.e., as fast as a

geometric progression).
It is also clear that mpnq

j ≥ mpn0q
j ≥ ε ą 0 for n ≥ n0, and therefore πj ą 0.

(b) Inequality (21) follows from (23) since the number of states is finite and
πj ą 0.

(c) Equations (24) follow from (23) and (25).
This completes the proof of the theorem. [\

4. The system of equations (compare with (24))

xj “
ÿ
α

xαpαj, j “ 1, . . . ,N, p24˚q
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plays a major role in the theory of Markov chains. Any nonnegative solution
q “ pq1, . . . , qNq of this system satisfying

ř
α qα “ 1 is said to be a stationary or

invariant probability distribution for the Markov chain with transition matrix }pij}.
The reason for this terminology is as follows.

Take the distribution q “ pq1, . . . , qNq for the initial one, i.e., let pj “ qj, j “
1, . . . ,N. Then

pp1q
j “

ÿ
α

qαpαj “ qj

and in general ppnq
j “ qj. In other words, if we take q “ pq1, . . . , qNq as the initial

distribution, this distribution is unchanged as time goes on, i.e., for any k

Ppξk “ jq “ Ppξ0 “ jq, j “ 1, . . . ,N.

Moreover, with initial distribution q “ pq1, . . . , qNq the Markov chain ξ “ pξ,q,Pq
is stationary: the joint distribution of the vector pξk, ξk`1, . . . , ξk`lq is independent
of k for all l (assuming that k ` l ≤ n).

Property (21) guarantees both the existence of limits πj “ lim ppnq
ij , which are

independent of i, and the existence of an ergodic distribution, i.e., of a distribution
(π1, . . . , πN) with πj ą 0. The distribution pπ1, . . . , πNq is also a stationary distri-
bution. Let us now show that the set pπ1, . . . , πNq is the only stationary distribution.

In fact, let pπ̃1, . . . , π̃Nq be another stationary distribution. Then

π̃j “
ÿ
α

π̃αpαj “ ¨ ¨ ¨ “
ÿ
α

π̃αppnq
αj ,

and since ppnq
αj Ñ πj we have

π̃j “
ÿ
α

pπ̃α ¨ πjq “ πj.

We note that a stationary probability distribution (even unique) may exist for a
nonergodic chain. In fact, if

P “
ˆ
0 1
1 0

˙
,

then

P
2n “

ˆ
0 1
1 0

˙
, P

2n`1 “
ˆ
1 0
0 1

˙
,

and consequently the limits lim ppnq
ij do not exist. At the same time, the system

qj “
ÿ
α

qαpαj, j “ 1, 2,
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reduces to

q1 “ q2,

q2 “ q1,

of which the unique solution pq1, q2q satisfying q1 ` q2 “ 1 is p1
2 ,

1
2 q.

We also notice that for this example the system p24˚q with xj “ qj has the form

q0 “ q0p00 ` q1p10,

q1 “ q0p01 ` q1p11,

from which, by the condition q0 ` q1 “ 1, we find that the unique stationary distri-
bution pq0, q1q coincides with the one obtained above:

q0 “ 1 ´ p11
2 ´ p00 ´ p11

, q1 “ 1 ´ p00
2 ´ p00 ´ p11

.

We now consider some corollaries of the ergodic theorem.
Let A Ď X be a set of states, and

IApxq “
"
1, x P A,
0, x R A.

Consider

vApnq “ IApξ0q ` ¨ ¨ ¨ ` IApξnq
n ` 1

which is the fraction of the time spent by the particle in the set A. Since

ErIApξkq | ξ0 “ is “ Ppξk P A | ξ0 “ iq “
ÿ
jPA

ppkq
ij p“ ppkq

i pAqq,

we have

ErvApnq | ξ0 “ is “ 1

n ` 1

nÿ
k“0

ppkq
i pAq

and in particular

Ervtjupnq | ξ0 “ is “ 1

n ` 1

nÿ
k“0

ppkq
ij .

It is known from analysis (see also Lemma 1 in Sect. 3, Chap. 4, Vol. 2) that if
an Ñ a then pa0 ` ¨ ¨ ¨ ` anq{pn ` 1q Ñ a, n Ñ 8. Hence if ppkq

ij Ñ πj, k Ñ 8,
then

E vtjupnq Ñ πj, E vApnq Ñ πA, where πA “
ÿ
jPA

πj.

For ergodic chains one can in fact prove more, namely that the following result holds
for IApξ0q, . . ., IApξnq, . . ..
Law of Large Numbers. If ξ0, ξ1, . . . form an ergodic Markov chain with a finite
state space, then
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Pt|vApnq ´ πA| ą εu Ñ 0, n Ñ 8, (26)

for every ε ą 0, every set A Ď X and every initial distribution.

Before we undertake the proof, let us notice that we cannot apply the results
of Sect. 5 directly to IApξ0q, . . . , IApξnq, . . . , since these variables are, in general,
dependent. However, the proof can be carried through along the same lines as for
independent variables if we again use Chebyshev’s inequality, and apply the fact
that for an ergodic chain with finitely many states there is a number ρ, 0 ă ρ ă 1,
such that

|ppnq
ij ´ πj| ≤ C ¨ ρn. (27)

Let us consider states i and j (which might be the same) and show that, for ε ą 0,

Pt|vtjupnq ´ πj| ą ε | ξ0 “ iu Ñ 0, n Ñ 8. (28)

By Chebyshev’s inequality,

Pt|vtjupnq ´ πj| ą ε | ξ0 “ iu ă Et|vtjupnq ´ πj|2 | ξ0 “ iu
ε2

.

Hence we have only to show that

Et|vtjupnq ´ πj|2 | ξ0 “ iu Ñ 0, n Ñ 8.

A simple calculation shows that

Et|vtjupnq ´ πj|2 | ξ0 “ iu “ 1

pn ` 1q2 ¨ E

$&
%

«
nÿ

k“0

pItjupξkq ´ πjq
ff2 ˇ̌

ˇ ξ0 “ i

,.
-

“ 1

pn ` 1q2
nÿ

k“0

nÿ
l“0

mpk,lq
ij ,

where

mpk,lq
ij “ EtrItjupξkqItjupξlqs | ξ0 “ iu

´πj ¨ ErItjupξkq | ξ0 “ is ´ πj ¨ ErItjupξlq | ξ0 “ is ` π2
j

“ ppsq
ij ¨ pptq

jj ´ πj ¨ ppkq
ij ´ πj ¨ pplq

ij ` π2
j ,

s “ minpk, lq and t “ |k ´ l|.
By (27),

ppnq
ij “ πj ` ε

pnq
ij , |εpnq

ij | ≤ Cρn.

Therefore

|mpk,lq
ij | ≤ C1rρs ` ρt ` ρk ` ρls,
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where C1 is a constant. Consequently

1

pn ` 1q2
nÿ

k“0

nÿ
l“0

mpk,lq
ij ≤ C1

pn ` 1q2
nÿ

k“0

nÿ
l“0

rρs ` ρt ` ρk ` ρls

≤ 4C1

pn ` 1q2 ¨ 2pn ` 1q
1 ´ ρ

“ 8C1

pn ` 1qp1 ´ ρq Ñ 0, n Ñ 8.

Then (28) follows from this, and we obtain (26) in an obvious way.

5. In Sect. 9 we gave, for a random walk S0, S1, . . . generated by a Bernoulli scheme,
recurrent equations for the probability and the expectation of the exit time at either
boundary. We now derive similar equations for Markov chains.

Let ξ “ pξ0, . . . , ξNq be a Markov chain with transition matrix }pij} and phase
space X “ t0,˘1, . . . ,˘Nu. Let A and B be two integers, ´N ≤ A ≤ 0 ≤ B ≤ N,
and x P X. Let Bk`1 be the set of paths px0, x1, . . . , xkq, xi P X, that leave the
interval pA, Bq for the first time at the upper end, i.e., leave pA, Bq by going into the
set pB, B ` 1, . . . ,Nq.

For A ≤ x ≤ B, put

βkpxq “ Ptpξ0, . . . , ξkq P Bk`1 | ξ0 “ xu.
In order to find these probabilities (for the first exit of the Markov chain from pA, Bq
through the upper boundary) we use the method that was applied in the deduction
of the backward equations.

We have

βkpxq “ Ptpξ0, . . . , ξkq P Bk`1 | ξ0 “ xu
“

ÿ
y

pxy ¨ Ptpξ0, . . . , ξkq P Bk`1 | ξ0 “ x, ξ1 “ yu,

where, as is easily seen by using the Markov property and the homogeneity of the
chain,

Ptpξ0, . . . , ξkq P Bk`1 | ξ0 “ x, ξ1 “ yu
“ Ptpx, y, ξ2, . . . , ξkq P Bk`1 | ξ0 “ x, ξ1 “ yu
“ Ptpy, ξ2, . . . , ξkq P Bk | ξ1 “ yu
“ Ptpy, ξ1, . . . , ξk´1q P Bk | ξ0 “ yu “ βk´1pyq.

Therefore
βkpxq “

ÿ
y

pxyβk´1pyq

for A ă x ă B and 1 ≤ k ≤ n. Moreover, it is clear that

βkpxq “ 1, x “ B, B ` 1, . . . ,N,
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and
βkpxq “ 0, x “ ´N, . . . ,A.

In a similar way we can find equations for αkpxq, the probabilities for first exit
from pA, Bq through the lower boundary.

Let τk “ mint0 ≤ l ≤ k : ξl R pA, Bqu, where τk “ k if the set t¨u “ ∅. Then the
same method, applied to mkpxq “ Epτk | ξ0 “ xq, leads to the following recurrent
equations:

mkpxq “ 1 `
ÿ

y

mk´1pyqpxy

phere 1 ≤ k ≤ n, A ă x ă Bq. We define

mkpxq “ 0, x R pA, Bq.
It is clear that if the transition matrix is given by (11) the equations for αkpxq, βkpxq

and mkpxq become the corresponding equations from Sect. 9, where they were ob-
tained by essentially the same method that was used here.

These equations have the most interesting applications in the limiting case when
the walk continues for an unbounded length of time. Just as in Sect. 9, the corre-
sponding equations can be obtained by a formal limiting process pk Ñ 8q.

By way of example, we consider the Markov chain with states t0, 1, . . . ,Bu and
transition probabilities

p00 “ 1, pBB “ 1,

and

pij “
$&
%

pi ą 0, j “ i ` 1,
ri, j “ i,
qi ą 0, j “ i ´ 1,

for 1 ≤ i ≤ B ´ 1, where pi ` qi ` ri “ 1.
For this chain, the corresponding graph is

It is clear that states 0 and B are absorbing, whereas for every other state i the
particle stays there with probability ri, moves one step to the right with probability
pi, and to the left with probability qi.

Let us find αpxq “ limkÑ8 αkpxq, the limit of the probability that a particle
starting at the point x arrives at state zero before reaching state B. Taking limits as
k Ñ 8 in the equations for αkpxq, we find that

αpjq “ qjαpj ´ 1q ` rjαpjq ` pjαpj ` 1q
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when 0 ă j ă B, with the boundary conditions

αp0q “ 1, αpBq “ 0.

Since rj “ 1 ´ qj ´ pj, we have

pjpαpj ` 1q ´ αpjqq “ qjpαpjq ´ αpj ´ 1qq
and consequently

αpj ` 1q ´ αpjq “ ρjpαp1q ´ 1q,
where

ρj “ q1 ¨ ¨ ¨ qj

p1 ¨ ¨ ¨ pj
, ρ0 “ 1.

But

αpj ` 1q ´ 1 “
jÿ

i“0

pαpi ` 1q ´ αpiqq.

Therefore

αpj ` 1q ´ 1 “ pαp1q ´ 1q ¨
jÿ

i“0

ρi.

If j “ B ´ 1, we have αpj ` 1q “ αpBq “ 0, and therefore

αp1q ´ 1 “ ´ 1řB´1
i“0 ρi

,

whence

αp1q “
řB´1

i“1 ρiřB´1
i“0 ρi

and αpjq “
řB´1

i“j ρiřB´1
i“0 ρi

, j “ 1, . . . ,B.

(This should be compared with the results of Sect. 9.)
Now let mpxq “ limk mkpxq, the limiting value of the average time taken to arrive

at one of the states 0 or B. Then mp0q “ mpBq “ 0,

mpxq “ 1 `
ÿ

y

mpyqpxy

and consequently for the example that we are considering,

mpjq “ 1 ` qjmpj ´ 1q ` rjmpjq ` pjmpj ` 1q
for all j “ 1, 2, . . . ,B ´ 1. To find mpjq we put

Mpjq “ mpjq ´ mpj ´ 1q, j “ 1, . . . ,B.
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Then
pjMpj ` 1q “ qjMpjq ´ 1, j “ 1, . . . ,B ´ 1,

and consequently we find that

Mpj ` 1q “ ρjMp1q ´ Rj,

where

ρj “ q1 ¨ ¨ ¨ qj

p1 ¨ ¨ ¨ pj
, Rj “ 1

pj

„
1 ` qj

pj´1
` ¨ ¨ ¨ ` qj ¨ ¨ ¨ q2

pj´1 ¨ ¨ ¨ p1

j
.

Therefore

mpjq “ mpjq ´ mp0q “
j´1ÿ
i“0

Mpi ` 1q

“
j´1ÿ
i“0

pρimp1q ´ Riq “ mp1q
j´1ÿ
i“0

ρi ´
j´1ÿ
i“0

Ri.

It remains only to determine mp1q. But mpBq “ 0, and therefore

mp1q “
řB´1

i“0 RiřB´1
i“0 ρi

,

and for 1 ă j ≤ B,

mpjq “
j´1ÿ
i“0

ρi ¨
řB´1

i“0 RiřB´1
i“0 ρi

´
j´1ÿ
i“0

Ri.

(This should be compared with the results in Sect. 9 for the case ri “ 0, pi “ p,
qi “ q.q
6. In this subsection we consider a stronger version of the Markov property (8),
namely that it remains valid if time k is replaced by a random time (see Theorem 2
below). The significance of this, the strong Markov property, will be illustrated in
particular by the example of the derivation of the recurrent relations (38), which
play an important role in the classification of the states of Markov chains (Chapter 8,
Vol. 2).

Let ξ “ pξ1, . . . , ξnq be a homogeneous Markov chain with transition matrix
}pij}; let Dξ “ pDξ

k q0≤k≤n be a system of decompositions, Dξ
k “ Dξ0,...,ξk . Let Bξ

k

denote the algebra αpDξ
k q generated by the decomposition Dξ

k .
We first put the Markov property (8) into a somewhat different form. Let B P Bξ

k .
Let us show that then

Ptξn “ an, . . . , ξk`1 “ ak`1 | B X pξk “ akqu
“ Ptξn “ an, . . . , ξk`1 “ ak`1 | ξk “ aku (29)
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(assuming that PtB X pξk “ akqu ą 0). In fact, B can be represented in the form

B “
ÿ˚tξ0 “ a0̊ , . . . , ξk “ ak̊ u,

where
ř˚ extends over some set of collections pa0̊ , . . . , ak̊ q. Consequently

Ptξn “ an, . . . , ξk`1 “ ak`1 | B X pξk “ akqu
“ Ptpξn “ an, . . . , ξk “ akq X Bu

Ptpξk “ akq X Bu
“

ř˚ Ptpξn “ an, . . . , ξk “ akq X pξ0 “ a0̊ , . . . , ξk “ ak̊ qu
Ptpξk “ akq X Bu . (30)

But, by the Markov property,

Ptpξn “ an, . . . , ξk “ akq X pξ0 “ a0̊ , . . . , ξk “ ak̊ qu

“
$&
%

Ptξn “ an, . . . , ξk`1 “ ak`1 | ξ0 “ a0̊ , . . . , ξk “ ak̊ u
ˆ Ptξ0 “ a0̊ , . . . , ξk “ ak̊ u if ak “ ak̊ ,

0 if ak ‰ ak̊ ,

“
$&
%

Ptξn “ an, . . . , ξk`1 “ ak`1 | ξk “ aku Ptξ0 “ a0̊ , . . . , ξk “ ak̊ u
if ak “ ak̊ ,

0 if ak ‰ ak̊ ,

“
$&
%

Ptξn “ an, . . . , ξk`1 “ ak`1 | ξk “ aku Ptpξk “ akq X Bu
if ak “ ak̊ ,

0 if ak ‰ ak̊ .

Therefore the sum
ř˚ in (30) is equal to

Ptξn “ an, . . . , ξk`1 “ ak`1 | ξk “ aku Ptpξk “ akq X Bu.
This establishes (29).

Let τ be a stopping time (with respect to the system Dξ “ pDξ
k q0≤k≤n; see

Definition 2 in Sect. 11).

Definition. We say that a set B in the algebra Bξ
n belongs to the system of sets Bξ

τ
if, for each k, 0 ≤ k ≤ n,

B X tτ “ ku P Bξ
k . (31)

It is easily verified that the collection of such sets B forms an algebra (called the
algebra of events observed at time τ).

Theorem 2. Let ξ “ pξ0, . . . , ξnq be a homogeneous Markov chain with transition
matrix }pij}, τ a stopping time (with respect to Dξ), B P Bξ

τ and A “ tω : τ ` l ≤ nu.
Then if PtA X B X pξτ “ a0qu ą 0, the following strong Markov properties hold:

Ptξτ`l “ al, . . . , ξτ`1 “ a1 | A X B X pξτ “ a0qu
“ Ptξτ`l “ al, . . . , ξτ`1 “ a1 | A X pξτ “ a0qu, (32)
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and if PtA X pξτ “ a0qu ą 0 then

Ptξτ`l “ al, . . . , ξτ`1 “ a1 | A X pξτ “ a0qu “ pa0a1 . . . pal´1al . (33)

PROOF. For the sake of simplicity, we give the proof only for the case l “ 1. Since
B X pτ “ kq P Bξ

k , we have, according to (29),

Ptξτ`1 “ a1, A X B X pξτ “ a0qu
“

ÿ
k≤n´1

Ptξk`1 “ a1, ξk “ a0, τ “ k, Bu

“
ÿ

k≤n´1

Ptξk`1 “ a1 | ξk “ a0, τ “ k, Bu Ptξk “ a0, τ “ k, Bu

“
ÿ

k≤n´1

Ptξk`1 “ a1 | ξk “ a0u Ptξk “ a0, τ “ k, Bu

“ pa0a1

ÿ
k≤n´1

Ptξk “ a0, τ “ k, Bu “ pa0a1 PtA X B X pξτ “ a0qu,

which simultaneously establishes (32) and (33) (for (33) we have to take B “ Ωq.
[\

Remark 2. When l “ 1, the strong Markov property (32), (33) is evidently equiva-
lent to the property that

Ptξτ`1 P C | A X B X pξτ “ a0qu “ Pa0pCq, (34)

for every C Ď X, where
Pa0pCq “

ÿ
a1PC

pa0a1 .

In turn, (34) can be restated as follows: on the set A “ tτ ≤ n ´ 1u,

Ptξτ`1 P C |Bξ
τ u “ Pξτ pCq, (35)

which is a form of the strong Markov property that is commonly used in the general
theory of homogeneous Markov processes.

Remark 3. If we use the conventions described in Remark 1, the properties (32) and
(33) remain valid without assuming that the probabilities of the events AXtξτ “ a0u
and A X B X tξτ “ a0u are positive.
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7. Let ξ “ pξ0, . . . , ξnq be a homogeneous Markov chain with transition matrix }pij},
and let

f pkq
ii “ Ptξk “ i, ξl ‰ i, 1 ≤ l ≤ k ´ 1 | ξ0 “ iu (36)

and
f pkq
ij “ Ptξk “ j, ξl ‰ j, 1 ≤ l ≤ k ´ 1 | ξ0 “ iu (37)

for i ‰ j be respectively the probability of first return to state i at time k and the
probability of first arrival at state j at time k.

Let us show that

ppnq
ij “

nÿ
k“1

f pkq
ij ppn´kq

jj , where pp0q
jj “ 1. (38)

The intuitive meaning of the formula is clear: to go from state i to state j in n
steps, it is necessary to reach state j for the first time in k steps p1 ≤ k ≤ nq and then
to go from state j to state j in n ´ k steps. We now give a rigorous derivation.

Let j be given and
τ “ mint1 ≤ k ≤ n : ξk “ ju,

assuming that τ “ n ` 1 if t¨u “ ∅. Then f pkq
ij “ Ptτ “ k | ξ0 “ iu and

ppnq
ij “ Ptξn “ j | ξ0 “ iu

“
ÿ

1≤k≤n

Ptξn “ j, τ “ k | ξ0 “ iu

“
ÿ

1≤k≤n

Ptξτ`n´k “ j, τ “ k | ξ0 “ iu, (39)

where the last equation follows because ξτ`n´k “ ξn on the set tτ “ ku. Moreover,
the set tτ “ ku “ tτ “ k, ξτ “ ju for every k, 1 ≤ k ≤ n. Therefore if Ptξ0 “
i, τ “ ku ą 0, it follows from Theorem 2 that

Ptξτ`n´k “ j | ξ0 “ i, τ “ ku “ Ptξτ`n´k “ j | ξ0 “ i, τ “ k, ξτ “ ju
“ Ptξτ`n´k “ j | ξτ “ ju “ ppn´kq

jj

and by (37)

ppnq
ij “

nÿ
k“1

Ptξτ`n´k “ j | ξ0 “ i, τ “ ku Ptτ “ k | ξ0 “ iu

“
nÿ

k“1

ppn´kq
jj f pkq

ij ,

which establishes (38).
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8. PROBLEMS

1. Let ξ “ pξ0, . . . , ξnq be a Markov chain with values in X and f “ f pxq px P Xq
a function. Will the sequence pf pξ0q, . . . , f pξnqq form a Markov chain? Will
the “reversed” sequence

pξn, ξn´1, . . . , ξ0q
form a Markov chain?

2. Let P “ }pij}, 1 ≤ i, j ≤ r, be a stochastic matrix and λ an eigenvalue of the
matrix, i.e., a root of the characteristic equation det }P ´ λE} “ 0. Show that
λ1 “ 1 is an eigenvalue and that all the other eigenvalues have moduli not
exceeding 1. If all the eigenvalues λ1, . . . , λr are distinct, then ppkq

ij admits the
representation

ppkq
ij “ πj ` aijp2qλk

2 ` ¨ ¨ ¨ ` aijprqλk
r ,

where πj, aijp2q, . . . , aijprq can be expressed in terms of the elements of P. (It
follows from this algebraic approach to the study of Markov chains that, in
particular, when |λ2| ă 1, . . . , |λr| ă 1, the limit limk ppkq

ij exists for every j
and is independent of i.)

3. Let ξ “ pξ0, . . . , ξnq be a homogeneous Markov chain with state space X and
transition matrix P “ }pxy}. Let us denote by

Tϕpxq “ Erϕpξ1q | ξ0 “ xs
˜

“
ÿ

y

ϕpyqpxy

¸

the operator of transition for one step. Let the nonnegative function ϕ satisfy

Tϕpxq “ ϕpxq, x P X.

Show that the sequence of random variables

ζ “ pζk, D
ξ
k q with ζk “ ϕpξkq

is a martingale.
4. Let ξ “ pξn,p,Pq and ξ̃ “ pξ̃n, p̃,Pq be two Markov chains with differ-

ent initial distributions p “ pp1, . . . , prq and p̃ “ pp̃1, . . . , p̃rq. Let ppnq “
pppnq

1 , . . . , ppnq
r q and p̃pnq “ pp̃pnq

1 , . . . , p̃pnq
r q. Show that if mini,j pij ≥ ε ą 0

then
rÿ

i“1

| p̃pnq
i ´ ppnq

i | ≤ 2p1 ´ rεqn.

5. Let P and Q be stochastic matrices. Show that PQ and αP ` p1 ´ αqQ with
0 ≤ α ≤ 1 are also stochastic matrices.

6. Consider a homogeneous Markov chain pξ0, . . . , ξnq with values in X “ t0, 1u
and transition matrix ˆ

1 ´ p p
q 1 ´ q

˙
,



134 1 Elementary Probability Theory

where 0 ă p ă 1, 0 ă q ă 1. Let Sn “ ξ0 ` ¨ ¨ ¨ ` ξn. As a generalization of
the de Moivre–Laplace theorem (Sect. 6) show that

P

#
Sn ´ p

p`q nb
npqp2´p´qq

pp`qq3
≤ x

+
Ñ Φpxq, n Ñ 8.

Check that when p ` q “ 1, the variables ξ0, . . . , ξn are independent and the
above statement reduces to

P
!Sn ´ pn?

npq
≤ x

)
Ñ Φpxq, n Ñ 8.

13 Generating Functions

1. In discrete probability theory, which deals with a finite or countable set of out-
comes, and more generally, in discrete mathematics, the method of generating func-
tions, going back to L. Euler (eighteenth century), is one of the most powerful alge-
braic tools for solving combinatorial problems, arising, in particular, in probability
theory.

Before giving formal definitions related to generating functions, we will formu-
late two probabilistic problems, for which the generating functions provide a very
useful method of solving them.

2. Galileo’s problem. Three true dice with faces marked as 1, 2, . . . , 6 are thrown
simultaneously and independently. Find the probability P that the sum of the scores
equals 10. (It will be shown that P “ 1

8 .)

3. Lucky tickets problem. We buy a ticket chosen at random from the set of tickets
bearing six-digits numbers from 000 000 to 999 999 (totally 106 tickets). What is
the probability P that the number of the ticket we bought is such that the sum of
the first three digits equals the sum of the last three? (The random choice of a ticket
means that each of them can be bought with equal probability 10´6.)

We will see in what follows that the method of generating functions is useful
not only for solving probabilistic problems. This method is applicable to obtaining
formulas for elements of sequences satisfying certain recurrence relations. For ex-
ample, the Fibonacci numbers Fn, n ≥ 0, satisfy the recurrence Fn “ Fn´1 ` Fn´2

for n ≥ 2 with F0 “ F1 “ 1. We will obtain by the method of generating functions
(Subsection 6) that

Fn “ 1?
5

„ˆ
1 ` ?

5

2

˙n`1

´
ˆ
1 ´ ?

5

2

˙n`1j
.
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It will also be shown how this method can be used for finding integer-valued solu-
tions of equations

X1 ` ¨ ¨ ¨ ` Xn “ r

under various restrictions on Xi, i “ 1, . . . , n, and a given r from the set t0, 1, 2, . . .u.

4. Now we will give the formal definitions.
Let A “ Apxq be a real-valued function, x P R, which is representable, for |x| ă λ,

λ ą 0, by a series
Apxq “ a0 ` a1x ` a2x2 ` ¨ ¨ ¨ (1)

with coefficients
a “ pa0, a1, a2, . . .q.

It is clear that the knowledge of Apxq, |x| ă λ, enables us to uniquely recover
the coefficients a “ pa0, a1, a2, . . .q. This explains why A “ Apxq is called the
generating function of the sequence a “ pa0, a1, a2, . . .q.

Along with functions A “ Apxq determined by series (1), it is often expedient to
use the exponential generating functions

Epxq “ a0 ` a1
x
1!

` a2
x2

2!
` ¨ ¨ ¨ , (2)

which are named so for the obvious reason that the sequence pa0, a1, a2, . . .q ”
p1, 1, 1, . . .q generates the exponential function exppxq (see Example 3 in Sect. 14).

In many problems it is useful to employ generating functions of two-sided infinite
sequences

a “ p. . . , a´2, a´1, a0, a1, a2, . . .q
(see the example in Subsection 7).

If ξ “ ξpωq is a random variable taking the values 0, 1, 2, . . . with probabilities
p0, p1, p2, . . .

`
i.e., pi “ Ppξ “ iq,

ř8
i“0 pi “ 1

˘
, then the function

Gpxq “
8ÿ

i“0

pix
i (3)

is certainly defined for |x| ≤ 1.
This function, which is the generating function of the sequence pp0, p1, p2, . . .q,

is nothing but the expectation E xξ, which was defined in Sect. 4 for finite sequences
pp0, p1, p2, . . .q, and will be defined in the general case in Sect. 6, Chap. 2.

In the probability theory the function

Gpxq “ E xξ
˜

“
8ÿ

i“0

pix
i

¸
, (4)

for obvious reasons, is called the generating function of the random variable ξ “
ξpωq.
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5. Let us indicate some useful properties, which follow from the bijective (one-to-
one) correspondence

panqn≥0 Ø Apxq, (5)

where Apxq is determined by the series (1).
If along with (5) we have

pbnqn≥0 Ø Bpxq, (6)

then for any constants c and d

pcan ` dbnqn≥0 Ø cApxq ` dBpxq; (7)

moreover, Apxq and Bpxq fulfill the convolution property

ˆ nÿ
i“0

aibn´i

˙
n≥0

Ø ApxqBpxq. (8)

Besides the convolution operation we point out the following ones:

– the composition (or substitution) operation

pA ˝ Bqpxq “ ApBpxqq, (9)

which means that if A and B satisfy (5) and (6), then

pA ˝ Bqpxq “
ÿ
n≥0

an

ˆÿ
i≥0

bix
i

˙n

; (10)

– the (formal) differentiation operation acting on Apxq by the formula

DpApxqq “
8ÿ

n“0

pn ` 1qan`1xn. (11)

The operator D has the following properties, which are well known for the or-
dinary differentiation:

DpABq “ DpAq B ` A DpBq, DpA ˝ Bq “ pDpAq ˝ Bq DpBq. (12)

6. To illustrate the method of generating functions we start with the example of
finding the number Npr; nq of solutions pX1, . . . ,Xnq of the equation

X1 ` ¨ ¨ ¨ ` Xn “ r (13)
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with nonnegative integer-valued Xj’s subject to the constraints

X1 P �
kp1q
1 , kp2q

1 , . . .
(
,

. . . . . . . . . . . . . . . . .

Xn P �
kp1q

n , kp2q
n , . . .

(
,

(14)

where 0 ≤ kp1q
j ă kp2q

j ă . . . ≤ r, j “ 1, . . . , n, and r P t0, 1, 2, . . .u.
For example, if we ask for integer-valued solutions X1, X2, X3 of the equation

X1 ` X2 ` X3 “ 3

subject to the constraints 0 ≤ Xi ≤ 3, i “ 1, 2, 3, then we can find by exhaustive
search all the 10 solutions: p1, 1, 1q, p0, 1, 2q, p0, 2, 1q, p1, 0, 2q, p1, 2, 0q, p2, 0, 1q,
p2, 1, 0q, p0, 0, 3q, p0, 3, 0q, p3, 0, 0q. But of course such a search becomes very time
consuming for large n and r.

Let us introduce the following generating functions:

A1pxq “ xkp1q
1 ` xkp2q

1 ` ¨ ¨ ¨ ,
. . . . . . . . . . . . . . . . . . . . . . .

Anpxq “ xkp1q
n ` xkp2q

n ` ¨ ¨ ¨ ,
(15)

constructed in accordance with conditions (14), and consider their product Apxq “
A1pxq ¨ ¨ ¨ Anpxq:

Apxq “ `
xkp1q

1 ` xkp2q
1 ` ¨ ¨ ¨ ˘ ¨ ¨ ¨ `

xkp1q
n ` xkp2q

n ` ¨ ¨ ¨ ˘
. (16)

When we multiply out the expressions in parentheses, there appear terms of the form
xk with some coefficients. Take k “ r. Then we see that xr is the sum of the products

of the terms xk
pi1q
1 , ¨ ¨ ¨ , xkpinq

n with

kpi1q
1 ` ¨ ¨ ¨ ` kpinq

n “ r. (17)

But the number of different possibilities of obtaining (17) is exactly the number
Npr; nq of solutions to the system (13)–(14). Thus we have established the following
simple, but important lemma.

Lemma. The number Npr; nq of integer-valued solutions to the system (13)–(14) is
the coefficient of xr in the product A1pxq ¨ ¨ ¨ Anpxq of generating functions (15).

7. Examples. (a) Let all the sets
�

kp1q
i , kp2q

i , . . .
(

have the form t0, 1, 2, . . .u. Then

A1pxq ¨ ¨ ¨ Anpxq “ p1 ` x ` x2 ` ¨ ¨ ¨ qn

and the coefficient Npr; nq of xr in the expansion of p1 ` x ` x2 ` ¨ ¨ ¨ qn equals the
number of integer-valued solutions of (13) subject to the condition Xi ≥ 0.
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Since
p1 ` x ` x2 ` ¨ ¨ ¨ qn “

ÿ
r≥0

Cr
n`r´1xr, (18)

in this case the number of solutions is

Npr; nq “ Cr
n`r´1 (19)

(see Problem 7).

(b) Now we turn to Galileo’s problem formulated in Subsection 1.
If the ith die falls on the number Xi (Xi “ 1, . . . , 6), i “ 1, 2, 3, then the number

of all possibilities of summing them to 10 is the number Np10; 3q of integer-valued
solutions of the equation

X1 ` X2 ` X3 “ 10

such that 1 ≤ Xi ≤ 6, i “ 1, 2, 3.
The total number of possibilities pX1,X2,X3q when throwing three dice is 63 “

216. Therefore the probability of interest equals

P “ Np10; 3q
216

.

By the Lemma, Np10; 3q equals the coefficient of x10 in the expansion of px ` x2 `
. . . ` x6q3 in powers of x. In order to find this coefficient, notice that

x ` x2 ` ¨ ¨ ¨ ` x6 “ xp1 ` x ` ¨ ¨ ¨ ` x5q “ xp1 ´ x6qp1 ` x ` x2 ` ¨ ¨ ¨ ` x5 ` ¨ ¨ ¨ q.
Consequently

px ` x2 ` ¨ ¨ ¨ ` x6q3 “ x3p1 ´ x6q3p1 ` x ` x2 ` ¨ ¨ ¨ q3. (20)

As we have seen in (18),

p1 ` x ` x2 ` ¨ ¨ ¨ q3 “ C0
2 ` C1

3x ` C2
4x2 ` ¨ ¨ ¨ (21)

By the binomial formula

pa ` bqn “
nÿ

k“0

Ck
nakbn´k (22)

we find that
p1 ´ x6q3 “ C0

3 ´ C1
3x6 ` C2

3x12 ´ C3
3x18.
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Thus using (20) and (21) we obtain

px ` x2 ` ¨ ¨ ¨ ` x6q3 “ x3p1 ` 3x ` 6x2 ` ¨ ¨ ¨ ` 36x7qp1 ´ 3x6 ` 3x12 ´ x18q.
Hence we see that the coefficient of x10 is equal to 36 ´ 9 “ 27. Therefore the
required probability is

P “ 27

216
“ 1

8
.

(c) The problem on lucky tickets is solved in a similar manner.
Indeed, let the vector pX1, . . . ,X6q consist of independent identically distributed

random variables such that

pk ” PpXi “ kq “ 1

10

for all k “ 0, 1, . . . , 9 and i “ 1, . . . , 6.
The generating function of Xi is

GXi pxq “ E xXi “
9ÿ

k“0

pkxk “ 1

10
p1 ` x ` ¨ ¨ ¨ ` x9q “ 1

10

1 ´ x10

1 ´ x
.

Since X1, . . . ,X6 are assumed independent, we have

GX1`X2`X3
pxq “ GX4`X5`X6

pxq “ 1

103
p1 ´ x10q3
p1 ´ xq3 ,

and the generating function GYpxq of Y “ pX1 ` X2 ` X3q ´ pX4 ` X5 ` X6q is given
by the formula

GYpxq “ GX1`X2`X3
pxq GX4`X5`X6

´1

x

¯
“ 1

106
1

x27

´1 ´ x10

1 ´ x

¯6

. (23)

Writing GYpxq as

GYpxq “
8ÿ

k“´8
qkxk, (24)

we see that the required probability

PpX1 ` X2 ` X3 “ X4 ` X5 ` X6q,
i.e., PpY “ 0q, equals the coefficient q0 (of x0) in the representation (24) for GYpxq.

We have

1

x27

´1 ´ x10

1 ´ x

¯6 “ 1

x27
p1 ´ x10q6p1 ` x ` x2 ` ¨ ¨ ¨ q6.
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It is seen from (18) that

p1 ` x ` x2 ` ¨ ¨ ¨ q6 “
ÿ
r≥0

Cr
r`5xr. (25)

The binomial formula (22) yields

p1 ´ x10q6 “
6ÿ

k“0

p´1qkCk
6x10k. (26)

Thus

GYpxq “ 1

106
1

x27

ˆÿ
r≥0

Cr
r`5xr

˙ˆ 6ÿ
k“0

p´1qkCk
6x10k

˙ ˆ
“

8ÿ
k“0

qkxk

˙
. (27)

Multiplying the sums involved we can find (after simple, but rather tedious calcula-
tions) that the coefficient asked for is equal to

q0 “ 55 252

106
“ 0.055252, (28)

which is the required probability PpY “ 0q that X1 ` X2 ` X3 “ X4 ` X5 ` X6 (i.e.,
that the sum of the first three digits equals the sum of the last three).

(d) Now we apply the method of generating functions to obtaining the solutions
of difference equations, which appear in the problems of combinatorial probability.

In Subsection 1 we mentioned the Fibonacci numbers Fn, which first appeared
(in connection with counting the number of rabbits in the nth generation) in the book
Liber abacci published in 1220 by Leonardo Pisano known also as Fibonacci.

In terms of the number theory Fn is the number of representations of n as an
ordered sum of 1s and 2s. Clearly, F1 “ 1, F2 “ 2 (since 2 “ 1 ` 1 “ 2), F3 “ 3
(since 3 “ 1 ` 1 ` 1 “ 1 ` 2 “ 2 ` 1).

Using this interpretation one can show that Fn’s satisfy the recurrence relations

Fn “ Fn´1 ` Fn´2, n ≥ 2 (29)

(with F0 “ F1 “ 1). Let

Gpxq “
8ÿ

n“0

Fnxn (30)

be the generating function of the sequence tFn, n ≥ 0u. Clearly,

Gpxq “ 1 ` x `
ÿ
n≥0

Fn`2xn`2. (31)
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By (29) we have
Fn`2xn`2 “ xpFn`1xn`1q ` x2pFnxnq,

and therefore
ÿ
n≥0

Fn`2xn`2 “ x
ÿ
n≥0

Fn`1xn`1 ` x2
ÿ
n≥0

Fnxn.

This equality and (31) yield

Gpxq ´ 1 ´ x “ xrGpxq ´ 1s ` x2Gpxq.
Hence

Gpxq “ 1

1 ´ x ´ x2
. (32)

Note that
1 ´ x ´ x2 “ ´px ´ aqpx ´ bq, (33)

where

a “ 1

2

`´1 ´ ?
5

˘
, b “ 1

2

`´1 ` ?
5

˘
. (34)

Now (32) and (33) imiply

Gpxq “ 1

a ´ b

” 1

a ´ x
´ 1

b ´ x

ı
“ 1

a ´ b

„
1

a

ÿ
n≥0

´ x
a

¯n ´ 1

b

ÿ
n≥0

´ x
b

¯n
j

“
ÿ
n≥0

xn

„
1

a ´ b

ˆ
1

an`1
´ 1

bn`1

˙j
. (35)

Since Gpxq “ ř
n≥0 xnFn, we obtain from (35) that

Fn “ 1

a ´ b

„
1

an`1
´ 1

bn`1

j
.

Substituting for a and b their values (34) we find that

Fn “ 1?
5

„ˆ
1 ` ?

5

2

˙n`1

´
ˆ
1 ´ ?

5

2

˙n`1j
, (36)

where
1 ` ?

5

2
“ 1, 6180 . . . ,

1 ´ ?
5

2
“ ´0, 6180 . . .

(e) The method of generating functions is very efficient for finding various prob-
abilities related to random walks. We will illustrate it by two models of a simple
random walk considered in Sects. 2 and 9.
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Let S0 “ 0 and Sk “ ξ1 ` ¨ ¨ ¨ ` ξk be a sum of independent identically dis-
tributed random variables, k ≥ 1, where each ξi takes two values `1 and ´1 with
probabilities p and q. Let Pnpiq “ PpSn “ iq be the probability that the random walk
tSk, 0 ≤ k ≤ nu occurs at the point i at time n. (Clearly, i P t0,˘1, . . . ,˘nu.)

In Sect. 2 (Subsection 1) we obtained by means of combinatorial arguments that

Pnpiq “ C
n`i
2

n p
n`i
2 q

n´i
2 (37)

(for integer n`i
2 ). Let us show how we could arrive at this solution using the method

of generating functions.
By the formula for total probability (see Sects. 3 and 8)

PpSn “ iq “ PpSn “ i | Sn´1 “ i ´ 1q PpSn´1 “ i ´ 1q
` PpSn “ i | Sn´1 “ i ` 1q PpSn´1 “ i ` 1q

“ Ppξ1 “ 1q PpSn´1 “ i ´ 1q ` Ppξ1 “ ´1q PpSn´1 “ i ` 1q
“ p PpSn´1 “ i ´ 1q ` q PpSn´1 “ i ` 1q.

Consequently, for i “ 0,˘1,˘2, . . ., we obtain the recurrence relations

Pnpiq “ p Pn´1pi ´ 1q ` q Pn´1pi ` 1q, (38)

which hold for any n ≥ 1 with P0p0q “ 1, P0piq “ 0 for i ‰ 0.
Let us introduce the generating functions

Gkpxq “
8ÿ

i“´8
Pkpiqxi

ˆ
“

kÿ
i“´k

Pkpiqxi

˙
. (39)

By (38)

Gnpxq “
8ÿ

i“´8
pPn´1pi ´ 1qxi `

8ÿ
i“´8

qPn´1pi ` 1qxi

“ px
8ÿ

i“´8
Pn´1pi ´ 1qxi´1 ` qx´1

8ÿ
i“´8

Pn´1pi ` 1qxi`1

“ ppx ` qx´1qGn´1pxq “ . . . “ ppx ` qx´1qnG0pxq

“ ppx ` qx´1qn,

since G0pxq “ 1.
The Lemma implies that Pnpiq is the coefficient of xi in the expansion of the

generating function Gnpxq in powers of x. Using the binomial formula (22) we obtain
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ppx ` qx´1qn “
nÿ

k“0

Ck
nppxqkpqx´1qn´k

“
nÿ

k“0

Ck
npkqn´kx2k´n “

nÿ
i“´n

C
n`i
2

n p
n`i
2 q

n´i
2 xi.

Hence the probability Pnpiq, which is the coefficient of xi, is given by (37).
Let now S0 “ 0, Sk “ ξ1 ` . . . ` ξk be again the sum of independent iden-

tically distributed random variables ξi taking in this case the values 1 and 0 with
probabilities p and q.

According to formula (1) of Sect. 2,

Pnpiq “ Ci
npiqn´i. (40)

This formula can be obtained by the method of generating functions as follows.
Since for i ≥ 1

Pnpiq “ pPn´1pi ´ 1q ` qPn´1piq
and Pnp0q “ qn, we find for the generating functions

Gkpxq “
8ÿ

i“0

Pkpiqxi

that
Gnpxq “ ppx ` qqGn´1pxq “ . . . “ ppx ` qqnG0pxq “ ppx ` qqn,

because G0pxq “ 1.
The formula Gnpxq “ ppx ` qqn just obtained and the binomial formula (22)

imply that the coefficient of xi in the expansion of Gnpxq is Ci
npiqn´i, which by the

Lemma yields (40).

(f) The following example shows how we can prove various combinatorial iden-
tities using the properties of generating functions (and, in particular, the convolution
property (9)).

For example, there is a well-known identity:

pC0
n q2 ` pC1

n q2 ` ¨ ¨ ¨ ` pCn
nq2 “ C2

2n. (41)

Let us prove it using the above Lemma.
By the binomial formula (22),

p1 ` xq2n “ C0
2n ` C1

2nx ` C2
2nx2 ` ¨ ¨ ¨ ` Cn

2nxn ` ¨ ¨ ¨ ` C2n
2n. (42)

Hence
G2npxq “ p1 ` xq2n (43)

is the generating function of the sequence tCk
2n, 0 ≤ k ≤ 2nu with Cn

2n being the
coefficient of xn in (42).
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Rewrite p1 ` xq2n as

p1 ` xq2n “ p1 ` xqnp1 ` xqn. (44)

Then
G2npxq “ Gpaq

n pxqGpbq
n pxq

with

Gpaq
n pxq “ p1 ` xqn “

nÿ
k“0

akxk and Gpbq
n pxq “ p1 ` xqn “

nÿ
k“0

bkxk,

where, obviously, using again (22)

ak “ bk “ Ck
n.

We employ now the convolution formula (9) to find that the coefficient of xn in the
product Gpaq

n pxqGpbq
n pxq equals

a0bn ` a1bn´1 ` ¨ ¨ ¨ ` anb0 “ C0
n Cn

n ` C1
n Cn´1

n ` ¨ ¨ ¨ ` Cn
nC0

n

“ pC0
n q2 ` pC1

n q2 ` ¨ ¨ ¨ ` pCn
nq2, (45)

because Cn´k
n “ Ck

n.
Since at the same time the coefficient of xn in the expansion of G2npxq is Cn

2n and

G2npxq “ Gpaq
n pxqGpbq

n pxq, the required formula (41) follows from (45).
If we examine the above proof of (41), which relies on the equality (44), we can

easily see that making use of the equality

p1 ` xqnp1 ` xqm “ p1 ` xqn`m

instead of (44) and applying again the convolution formula (9), we obtain the fol-
lowing identity:

nÿ
j“1

Cj
nCk´j

m “ Ck
n`m, (46)

which is known as “Wandermonde’s convolution.”

(g) Finally, we consider a classical example of application of the method of gen-
erating functions for finding the extinction probability of a branching process.

We continue to consider Example 4 of Sect. 12 assuming that the time parameter
k is not limited by n, but may take any value 0, 1, 2, . . . .

Let ξk, k ≥ 0, be the number of particles (individuums) at time k, ξ0 “ 1.
According to Example 4 of Sect. 12 we assume that

ξk`1 “ η
pkq
1 ` ¨ ¨ ¨ ` η

pkq
ξk

, k ≥ 0 (47)
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(the Galton–Watson model; see [6] and Problem 18 in Sect. 5, Chap. VIII of [90]),
where tηpkq

i , i ≥ 1, k ≥ 0u is a sequence of independent identically distributed
random variables having the same distribution as a random variable η, with proba-
bilities

pk “ Ppη “ kq, k ≥ 0,
8ÿ

k“0

pk “ 1.

It is also assumed that for each k the random variables η
pkq
i are independent of

ξ1, . . . , ξk. (Thus the process of “creation–annihilation” evolves in such a way that
each particle independently of others and of the “prehistory” turns into j particles
with probabilities pj, j ≥ 0.)

Let τ “ inftk ≥ 0: ξk “ 0u be the extinction time (of the family). It is customary
to let τ “ 8 if ξk ą 0 for all k ≥ 0.

In the theory of branching processes the variable ξk`1 is interpreted as the num-
ber of “parents” in the pk ` 1qth generation and η

pkq
i as the number of “children”

produced by the ith parent of the kth generation.
Let

Gpxq “
8ÿ

k“0

pkxk, |x| ≤ 1,

be the generating function of the random variable η (i.e., Gpxq “ E xη) and Fkpxq “
E xξk the generating function of ξk.

The recurrence formula (47) and the property (16) (Sect. 8) of conditional expec-
tations imply that

Fk`1pxq “ E xξk`1 “ E Epxξk`1 | ξkq.
We have by the independence assumption

Epxξk`1 | ξk “ iq “ E
`
xη

pkq
1 `¨¨¨`η

pkq
i

˘ “ “
Gpxq‰i

,

and therefore
Fk`1pxq “ E

“
Gpxq‰ξk “ FkpGpxqq.

According to (9) we may write

Fk`1pxq “ pFk ˝ Gqpxq,
i.e., the generating function Fk`1 is a composition of generating functions Fk and G.

One of the central problems of the theory of branching processes is obtaining the
probability

q “ Ppτ ă 8q,
i. e. the probability of extinction for a finite time.

Note that since tξk “ 0u Ď tξk`1 “ 0u, we have

Ppτ ă 8q “ P
ˆ 8ď

k“1

tξk “ 0u
˙

“ lim
NÑ8 PpξN “ 0q.



146 1 Elementary Probability Theory

But PpξN “ 0q “ FNp0q. Hence

q “ lim
NÑ8 FNp0q.

Note also that if ξ0 “ 1, then

F0pxq “ x, F1pxq “ pF0 ˝ Gqpxq “ pG ˝ F0qpxq,
F2pxq “ pF1 ˝ Gqpxq “ pG ˝ Gqpxq “ pG ˝ F1qpxq

and, in general,

FNpxq “ pFN´1 ˝ Gqpxq “ rG ˝ G ˝ ¨ ¨ ¨ ˝ Gsloooooooomoooooooon
N

pxq “ G ˝ rG ˝ ¨ ¨ ¨ ˝ Gsloooooomoooooon
N´1

pxq,

whence
FNpxq “ pG ˝ FN´1qpxq,

so that q “ limNÑ8 FNp0q satisfies the equation

q “ Gpqq, 0 ≤ q ≤ 1.

The examination of the solutions to this equation shows that

(a) if E η ą 1, then the extinction probability 0 ă q ă 1;
(b) if E η ≤ 1, then the extinction probability q “ 1.

(For details and an outline of the proof see [10], Sect. 36, Chap. 8, and [90],
Sect. 5, Chap. VIII, Problems 18–21.)

8. The above problems show that we often need to determine the coefficients ai in
the expansion of a generating function

Gpxq “
ÿ
i≥0

aix
i.

Here we state some standard generating functions whose series expansions are
well known from calculus:

1

1 ´ x
“ 1 ` x ` x2 ` ¨ ¨ ¨

and therefore p1 ´ xq´1 is the generating function of the sequence p1, 1, . . .q;

p1 ` xqn “ 1 ` C1
n x1 ` C2

n x2 ` ¨ ¨ ¨ ` Cn
nxn;

1 ´ xm`1

1 ´ x
“ 1 ` x ` x2 ` ¨ ¨ ¨ ` xm;

1

p1 ´ xqn
“ 1 ` C1

n x1 ` C2
n`1x2 ` ¨ ¨ ¨ ` Ck

n`k´1xk ` . . .
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Many sequences well known in calculus (the Bernoulli and Euler numbers, and so
on) are defined by means of exponential generating functions:

Bernoulli numbers (b0, b1, . . .):

x
ex ´ 1

“
8ÿ

n“0

bn
xn

n!´
b0 “ 1, b1 “ ´1

2
, b2 “ 1

6
, b3 “ 0, b4 “ ´ 1

30
, b5 “ 0, . . .

¯
;

Euler numbers (e0, e1, . . .):

2ex

e2x ` 1
“

8ÿ
n“0

en
xn

n!

pe0 “ 1, e1 “ 0, e2 “ ´1, e3 “ 0, e4 “ ´5, e5 “ 0,

e6 “ ´61, e7 “ 0, e8 “ 1385, . . .q.
9. Let ξ1 and ξ2 be two independent random variables having the Poisson distribu-
tions with parameters λ1 ą 0 and λ2 ą 0 respectively (see Sect. 6 and Table 1.2 in
Sect. 2, Chap. 2):

Ppξi “ kq “ λk
i e´λi

k!
, k “ 0, 1, 2, . . . , i “ 1, 2. (48)

It is not hard to calculate the generating functions Gξi pxq (|x| ≤ 1):

Gξi pxq “ E xξi “
8ÿ

i“0

Ppξi “ kqxk “ e´λip1´xq. (49)

Hence, by independence of ξ1 and ξ2, we find that the generating function Gξ1`ξ2pxq
of the sum ξ1 ` ξ2 is given by

Gξ1`ξ2pxq “ E xξ1`ξ2 “ Epxξ1xξ2q “ E xξ1 ¨ E xξ2

“ Gξ1pxq ¨ Gξ2pxq “ e´λ1p1´xq ¨ e´λ2p1´xq “ e´pλ1`λ2qp1´xq. (50)

(The equality Epxξ1xξ2q “ E xξ1 ¨ E xξ2 , which was used here, follows from inde-
pendence of xξ1 and xξ2 due to the properties of expectation, see property (5) in
Subsection 5 of Sect. 4 and Theorem 6 in Sect. 6, Chap. 2.)

We see from (48)–(50) that the sum of independent random variables ξ1 and ξ2
having the Poisson distributions with parameters λ1 and λ2 has again the Poisson
distribution with parameter λ1 ` λ2.
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Obtaining the distribution of the difference ξ1 ´ ξ2 of the random variables ξ1
and ξ2 at hand is a more difficult problem. Using again their independence we find
that

Gξ1´ξ2pxq “ Gξ1pxq Gξ2

`
1
x

˘ “ e´λ1p1´xq e´λ2p1´1{xq

“ e´pλ1`λ2q`λ1x`λ2p1{xq “ e´pλ1`λ2q e
?
λ1λ2pt`1{tq,

where t “ x
a
λ1{λ2.

It is known from calculus that for λ P R

eλpt`1{tq “
8ÿ

k“´8
tkIkp2λq,

where Ikp2λq is the modified Bessel function of the first kind of order k (see,
e.g. [40], vol. 2, pp. 504–507]):

Ikp2λq “ λk
8ÿ

r“0

λ2r

r! Γpk ` r ` 1q , k “ 0,˘1,˘2, . . .

Thus

Ppξ1 ´ ξ2 “ kq “ e´pλ1`λ2q
ˆ
λ1

λ2

˙k{2
Ik

`
2

a
λ1λ2

˘

for k “ 0,˘1,˘2, . . . .

10. PROBLEMS

1. Find the generating functions of the sequences tar, r ≥ 0u with

(aq ar “ r!, (bq ar “ 2r2, (cq ar “ 1

r
.

2. Find the generating functions for the number of integer-valued solutions of the
systems

X1 ` X2 ` ¨ ¨ ¨ ` Xn ≤ r with 1 ≤ Xi ≤ 4,

X1 ` 2X2 ` ¨ ¨ ¨ ` nXn “ r with Xi ≥ 0.

3. Using the method of generating functions compute

nÿ
k“0

kpCk
nq2,

nÿ
k“0

k2Ck
n.
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4. Let a1, . . . , ak be different positive numbers. Show that the number Npk; nq of
partitions of the number n into a sum of the numbers from ta1, . . . , aku is the
coefficient of xn in the series expansion of the product

p1 ` xa1 ` x2a1 ` ¨ ¨ ¨ qp1 ` xa2 ` x2a2 ` ¨ ¨ ¨ q ¨ ¨ ¨ p1 ` xak ` x2ak ` ¨ ¨ ¨ q.
(The partitions allow for repeated ai’s, e.g., 8 “ 2`2`2`2 “ 3`3`2, but
the order of summation is immaterial, i.e., the representations 3 ` 2 and 2 ` 3
of the number 5 are counted as the same.)

5. Let a and b be two different positive numbers. Show that the number of non-
negative solutions of the system

aX1 ` bX2 “ n

is the coefficient of xn in the expansion of

p1 ` xa ` x2a ` ¨ ¨ ¨ qp1 ` xb ` x2b ` ¨ ¨ ¨ q.
6. Show that:

(a) The number of possible allocations of n indistinguishable balls over m
different boxes equals Cn

n`m´1;
(b) The number of vectors pX1, . . . ,Xmq with nonnegative integer com-

ponents satisfying the equation X1 ` ¨ ¨ ¨ ` Xm “ n, is also equal to
Cn

n`m´1;
(c) The number of possible choices of n balls when sampling with replace-

ment from an urn with m different balls is again equal to Cn
n`m´1.

Hint. Establish that in each of the cases (a), (b) and (c) the required number is
the coefficient of xn in the expansion of p1 ` x ` x2 ` ¨ ¨ ¨ qm.

7. Prove the formula (18).
8. Establish the formula (28) for q0.
9. (Euler’s problem.) There are loads of integer weight (in grams). The question

is which loads can be weighed using weights of 1, 2, 22, 23, . . . , 2m, . . . grams
and in how many ways it can be done.

10. Let Gξpxq “ E xξ
` “ ř

k≥0 xkpk

˘
be the generating function of a random

variable ξ. Show that

E ξ “ G1
ξp1q,

E ξ2 “ G2
ξp1q ` G1

ξp1q,
Var ξ “ G2

ξp1q ` G1
ξp1q ´ pG1

ξp1qq2,
where G1

ξpxq and G2
ξpxq are the first and second derivatives (with respect to x)

of Gξpxq.
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11. Let ξ be an integer-valued random variable taking values 0, 1, . . . . Define
mprq “ E ξpξ ´ 1q ¨ ¨ ¨ pξ ´ r ` 1q, r “ 1, 2, . . . . Show that the quantities
mprq, which are called factorial moments (of order r), can be obtained from the
generating function Gξpxq by the formulas:

mprq “ Gprq
ξ p1q,

where Gprq
ξ is the rth derivative of Gξpxq.

14 Inclusion–Exclusion Principle

1. When dealing with subsets A,B,C, . . . of a finite set Ω it is very suitable to use the
so-called Venn diagrams, which provide an intuitively conceivable way of counting
the number of outcomes ω P Ω contained in combinations of these sets such as, e.g.,
A Y B Y C, A Y B X C etc.

If we denote by NpDq the number of elements of a set D, then we see from the
above diagrams that

NpA Y Bq “ NpAq ` NpBq ´ NpABq, (1)

where the term NpABq, i.e., the number of elements in the intersection AB “ AXB is
subtracted (“exclusion”) because in the sum NpAq ` NpBq (“inclusion) the elements
of the intersection of A and B are counted twice.

In a similar way, for three sets A, B, and C we find that

NpA Y B Y Cq “ “
NpAq ` NpBq ` NpCq‰

´ “
NpABq ` NpACq ` NpBCq‰ ` NpABCq. (2)

The three terms appearing here correspond to “inclusion,” “exclusion” and “inclu-
sion.”

When using the classical method of assigning probabilities PpAq by the formula

PpAq “ NpAq
NpΩq

(formula (10) in Sect. 1, Chap. 1), and in the general case (Sect. 2, Chap. 2), where
we employ the finite additivity property of probability, we obtain the following for-
mulas similar to (1) and (2):



14 Inclusion–Exclusion Principle 151

PpA Y Bq “ PpAq ` PpBq ´ PpABq, (3)

PpA Y B Y Cq “ “
PpAq ` PpBq ` PpCq‰

´ “
PpABq ` PpACq ` PpBCq‰

` PpABCq. (4)

If we use the (easily verifiable) De Morgan’s laws (see Problem 1 in Sect. 1)

A Y B “ A X B, A X B “ A Y B, (5)

which establish relations between the three basic set operations (union, intersection,
and taking the complement), then we find from (1) that

NpA Bq “ NpΩq ´ rNpAq ` NpBqs ` NpABq, (6)

and similarly

NpA B Cq “ NpΩq ´ “
NpAq ` NpBq ` NpCq‰

` “
NpABq ` NpACq ` NpBCq‰

´ NpABCq. (7)

The event A B (“ A X B) consists of outcomes ω which belong both to A and B, i.e.,
of those ω which belong neither to A, nor to B. Now we give examples where this
interpretation allows us to reduce the problem of counting the number of outcomes
under consideration to counting the numbers of the type NpA Bq, NpA B Cq, which
may be counted using formulas (6) and (7). (An extension of these formulas to an
arbitrary number of sets is given in the theorem below.)

Example 1. Consider a group of 30 students (NpΩq “ 30). In this group 10 students
study the foreign language A (NpAq “ 10) and 15 students study the language B
(NpBq “ 15), while 5 of them study both languages (NpABq “ 5). The question is,
how many students study neither of these languages. Clearly, this number is NpA Bq.
According to (6)

NpA Bq “ 30 ´ r10 ` 15 ´ 5s “ 10.

Thus there are 10 students who do not study either of these languages.

Example 2 (From Number Theory). How many integers between 1 and 300
(A) are not divisible by 3?
(B) are not divisible by 3 or 5?
(C) are not divisible by 3 or 5 or 7?
Here NpΩq “ 300.
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(A) Let NpAq be the number of integers (in the interval [1,. . . ,300]) divisible
by 3. Clearly, NpAq “ 1

3 ¨ 300 “ 100. Therefore the number of integers which are
not divisible by 3 is NpAq “ NpΩq ´ NpAq “ 300 ´ 100 “ 200.

(B) Let NpBq be the number of integers divisible by 5. Then NpBq “ 1
5 ¨ 300 “

60. Further, NpABq is the number of integers divisible both by 3 and 5. Clearly,
NpABq “ 1

15 ¨ 300 “ 20.
The required number of integers divisible neither by 3, nor by 5 is

NpA Bq “ NpΩq ´ NpAq ´ NpBq ` NpABq “ 300 ´ 100 ´ 60 ` 20 “ 160.

(C) Let NpCq be the number of integers divisible by 7. Then NpCq “
Y
300
7

]
“ 42

and NpACq “
Y
300
21

]
“ 14, NpBCq “

Y
300
35

]
“ 8, NpABq “ 20, NpABCq “ 2.

Consequently by formula (7)

NpA B Cq “ 300 ´ r100 ` 60 ` 42s ` r20 ` 14 ` 8s ´ 2 “ 138.

Thus the number of integers between 1 and 300 not divisible by any of 3, 5 or 7 is
138.

2. The formulas (1), (2), (6), and (7) can be extended in a natural way to an arbitrary
number of subsets A1, . . . ,An, n ≥ 2, of Ω.

Theorem. The following formulas of inclusion–exclusion hold:

(a)

NpA1 Y . . . Y Anq “
ÿ

1≤i≤n

NpAiq ´
ÿ

1≤i1ăi2≤n

NpAi1 X Ai1q ` ¨ ¨ ¨

` p´1qm`1
ÿ

1≤i1ă...ăim≤n

NpAi1 X ¨ ¨ ¨ X Aim q ` ¨ ¨ ¨

` p´1qn`1NpA1 X ¨ ¨ ¨ X Anq, (8)

or, in a more concise form,

N

ˆ nď
i“1

Ai

˙
“

ÿ
∅‰SĎT

p´1qNpSq`1N

ˆč
iPS

Ai

˙
, (9)

where T “ t1, . . . , nu;
(b)

NpA1 X . . . X Anq “
ÿ

1≤i≤n

NpAiq ´
ÿ

1≤i1ăi2≤n

NpAi1 Y Ai2q ` ¨ ¨ ¨

` p´1qm`1
ÿ

1≤i1ă...ăim≤n

NpAi1 Y ¨ ¨ ¨ Y Aim q ` ¨ ¨ ¨

` p´1qn`1NpA1 Y ¨ ¨ ¨ Y Anq, (10)
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or, in a more concise form,

N

ˆ nč
i“1

Ai

˙
“

ÿ
∅‰SĎT

p´1qNpSq`1N

ˆď
iPS

Ai

˙
; (11)

(c)

N
`
A1 Y ¨ ¨ ¨ Y An

˘ “ NpΩq ´ NpA1 X ¨ ¨ ¨ X Anq, (12)

N
`
A1 X ¨ ¨ ¨ X An

˘ “ NpΩq ´ NpA1 Y ¨ ¨ ¨ Y Anq, (13)

or, taking into account (11) and (8),

N

ˆ nď
i“1

Ai

˙
“

ÿ
SĎT

p´1qNpSqN

ˆď
iPS

Ai

˙
, (14)

N

ˆ nč
i“1

Ai

˙
“

ÿ
SĎT

p´1qNpSqN

ˆč
iPS

Ai

˙
. (15)

PROOF. It suffices to prove only formula (8) because all others can be derived from
it substituting the events by their complements (by De Morgan’s laws (5)).

Formula (8) could be proved by induction (Problem 1). But the proof relying on
the properties of indicators of sets is more elegant.

Let

IApωq “
#
1, ω P A,

0, ω R A,

be the indicator of the set A. If B “ A1 Y ¨ ¨ ¨ Y An, then by (5)

B “ A1 X ¨ ¨ ¨ X An

and

IB “ 1 ´ IB “ 1 ´ IA1
¨ ¨ ¨ IAn

“ 1 ´ p1 ´ IA1
q ¨ ¨ ¨ p1 ´ IAn q “

“
nÿ

i“1

IAi ´
ÿ

1≤i1ăi2≤n

IAi1
IAi2

` ¨ ¨ ¨

` p´1qm`1
ÿ

1≤i1ă...ăim≤n

IAi1
. . . IAim

` ¨ ¨ ¨ ` p´1qnIA1
. . . IAn . (16)

All the indicators involved here are functions of ω: IB “ IBpωq, IAi “ IAi pωq, IAi
“

IAi
pωq. Summing in (16) over all ω P Ω and taking into account that
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ÿ
ωPΩ

IBpωq “ NpBq,
ÿ
ωPΩ

ˆ nÿ
i“1

IAi pωq
˙

“
nÿ

i“1

NpAiq,
ÿ
ωPΩ

ˆ ÿ
1≤i1ăi2≤n

IAi1
pωqIAi1

pωq
˙

“
ÿ
ωPΩ

ˆ ÿ
1≤i1ăi2≤n

IAi1XAi1
pωq

˙
“

ÿ
1≤i1ăi2≤n

NpAi1 X Ai1q

(17)

etc., we arrive at (8). [\
Remark. It is worth to note that the summation

ř
1≤i1ă¨¨¨ăim≤n in the above formu-

las is extended over all unordered subsets of cardinality m of the set t1, 2, . . . , nu.
The number of such subsets is Cm

n (see Table 1.1 in Sect. 1.)

3. The above formulas were derived under the assumption that Ω consists of finitely
many outcomes (NpΩq ă 8). Under this assumption the classical definition of the
probability of an event A as

PpAq “ NpAq
NpΩq , A Ď Ω, (18)

immediately shows that the theorem remains valid if we replace throughout NpAiq
by PpAiq.

For example, formula (9) for the probability of the event
Ťn

i“1 Ai becomes

P
ˆ nď

i“1

Ai

˙
“

ÿ
∅‰SĎT

p´1qNpSq`1 P
ˆč

iPS

Ai

˙
, (19)

where T “ t1, . . . , nu.
In fact, all these formulas for the probabilities of events

Ťn
i“1 Ai,

Şn
i“1 Ai,Ťn

i“1 Ai,
Şn

i“1 Ai remain valid not only in the case of the classical definition of
probabilities by (18).

Indeed, the proof for NpΩq ă 8 was based on relation (16) for the indicators of
events. If we take expectations of the left- and right-hand sides of this relation, then
in the left-hand side we obtain E IB “ PpBq, while in the right-hand side we obtain
combinations of terms like E IAi1

¨ ¨ ¨ IAim
. Since IAi1

¨ ¨ ¨ IAim
“ IAi1X¨¨¨XAim

, we have

E IAi1
¨ ¨ ¨ IAim

“ E IAi1X¨¨¨XAim
“ PpAi1 X ¨ ¨ ¨ X Aim q.

From this formula and (16) we obtain the required inclusion–exclusion formula for
PpBq “ PpA1 Y . . . Y Anq, which implies all other formulas for the events

Şn
i“1 Ai,Ťn

i“1 Ai,
Şn

i“1 Ai.
It is noticeable that in the proof just performed the assumption NpΩq ă 8 was

not actually used, and this proof remains valid also for general probability spaces
pΩ,F ,Pq to be treated in the next chapter.
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4. In addition to the two examples illustrating the use of the inclusion–exclusion
formula consider the derangements problem.

Example 3. Suppose that Ω consists of n! permutations of p1, 2, . . . , nq. Consider
the permutations ˆ

1, 2, . . . , n
a1, a2, . . . , an

˙

with the property that there is no number i such that ai “ i.
We will show that the number Dn, n ≥ 1, of such permutations (“the number of

derangements”) is given by the formula

Dn “ n!
nÿ

k“0

p´1qk

k!
„ n!

e
pn Ñ 8q. (20)

(For n “ 0 this formula yields D0 “ 1.)
Let Ai be the event that ai “ i. It is clear that

NpAiq “ pn ´ 1q!.
Similarly, for i ‰ j

NpAiAjq “ pn ´ 2q!
and, in general,

NpAi1Ai2 ¨ ¨ ¨ Aik q “ pn ´ kq!. (21)

Using (13) and (8), the number of interest,

Dn “ N
`
A1 X A2 X ¨ ¨ ¨ X An

˘
,

can be represented as

Dn “ NpΩq ´ S1 ` S2 ` ¨ ¨ ¨ ` p´1qmSm ` ¨ ¨ ¨ ` p´1qnSn, (22)

where
Sm “

ÿ
1≤i1ăi2ă...ăim≤n

NpAi1Ai2 ¨ ¨ ¨ Aim q. (23)

As was pointed out in the remark at the end of Subsection 2, the number of terms
in the sum (23) equals Cm

n . Hence, taking into account (21), we find that

Sm “ pn ´ mq!Cm
n , (24)
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and therefore (22) implies

Dn “ n! ´ C1
n ¨ pn ´ 1q! ` C2

n ¨ pn ´ 2q! ` ¨ ¨ ¨
` p´1qm ¨ Cm

n pn ´ mq! ` ¨ ¨ ¨ ` p´1qnCn
n ¨ 0!

“
nÿ

m“0

p´1qmCm
n pn ´ mq!.

We have here Cm
n pn ´ mq! “ n!

m! . Consequently,

Dn “ n!
nÿ

m“0

p´1qm

m!
, (25)

so that the probability of the “complete derangement” is

P
`
A1 ¨ ¨ ¨ An

˘ “ NpA1 ¨ ¨ ¨ Anq
n!

“
nÿ

m“0

p´1qm

m!
“ 1 ´ 1 ` 1

2!
´ 1

3!
` ¨ ¨ ¨ ` p´1qn

n!
.

Since
ř8

m“0
p´1qm

m! “ 1
e , we have

P
`
A1 ¨ ¨ ¨ An

˘ “ 1

e
` O

´ 1

pn ` 1q!
¯

and

Dn „ n!
e
.

The formula (25) could also be obtained by the method of (exponential) generat-
ing functions.

Namely, let D0 “ 1 (according to (20)) and note that D1 “ 0 and Dn for any
n ≥ 2 satisfies the following recurrence relations:

Dn “ pn ´ 1q“
Dn´1 ` Dn´2

‰
(26)

(the proof of this is left to the reader as Problem 3), which imply that

Dn ´ nDn´1 “ ´“
Dn´1 ´ pn ´ 1qDn´2

‰
.

Hence by the downward induction we find that

Dn “ nDn´1 ` p´1qn,

whence we obtain for the exponential generating function Epxq of the sequence
tDn, n ≥ 0u
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Epxq “
8ÿ

n“0

Dn
xn

n!
“ 1 `

ÿ
n≥2

Dn
xn

n!
“ 1 `

ÿ
n≥2

�
nDn ` p´1qn

(xn

n!

“ 1 `
ÿ
n≥0

Dn

n!
xn ` “

e´x ´ p1 ´ xq‰ “ xEpxq ` “
e´x ´ p1 ´ xq‰

.

Thus

Epxq “ e´x

1 ´ x
(27)

and therefore

Epxq “
´
1 ´ x ` x2

2
´ x3

3!
` ¨ ¨ ¨

¯
p1 ` x ` x2 ` ¨ ¨ ¨ q. (28)

Writing the right-hand side of this formula as
ř

n≥0 Dn
xn

n! one can derive that the
coefficients Dn have the form (25). However, we see that this result obtains by the
method of inclusion–exclusion easier than by the method of generating functions.

8. PROBLEMS

1. Prove the formulas (8)–(9) and (10)–(11) by induction.
2. Let B1 be the event that exactly one of the events A1, . . . ,An occurs. Show that

PpB1q “
nÿ

i“1

PpAiq´2
ÿ

1≤i1ăi2≤n

PpAi1Ai2q`¨ ¨ ¨`p´1qn`1n PpA1 ¨ ¨ ¨ Anq.

Hint. Use the formula

IB1
“

nÿ
i“1

IAi

ź
j‰i

p1 ´ IAj q.

3. Prove the following generalization of (15): for any set I such that ∅ Ď I Ď
T “ t1, . . . , nu it holds

N
ˆˆ č

iPTzI

Ai

˙Şˆ č
iPI

Ai

˙˙
“

ÿ
IĎSĎT

p´1qNpSzIqN
ˆ č

iPS

Ai

˙
.

4. Using the method of inclusion–exclusion find the number of all integer-valued
solutions of the equation X1 ` X2 ` X3 ` X4 “ 25 satisfying the constraints

´10 ≤ Xi ≤ 10.

Solve this problem also by the method of generating functions. Which method
gives the solution of this problem faster?

5. Prove the formula (26).
6. Using the formula (8) find the number of allocations of n different balls over

m different boxes subject to the constraint that at least one box remains empty.
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7. Find the number of allocations of n different balls over m indistinguishable
boxes subject to the condition that neither box remains empty.

8. Let A “ Apnq and B “ Bpmq be two sets consisting of n and m elements
respectively.
A mapping F : A Ñ B is said to be a function if to each a P A it makes
correspond some b P B.
A mapping I : A Ñ B is said to be an injection if to different elements of A it
makes correspond different elements of B. (In this case n ≤ m.)
A mapping S : A Ñ B is said to be a surjection (or onto function) if for any
b P B there is an a P A such that Spaq “ b. (In this case n ≥ m.)
A mapping B : A Ñ B is said to be a bijection if it is both injection and
surjection. (In this case n “ m.)
Using the inclusion–exclusion principle show that NpFq, NpIq, NpSq, and NpBq
(i.e., the number of functions, injections, surjections, and bijections) are given
by the following formulas:

NpFq “ mn,

NpIq “ pmqn p“ mpm ´ 1q ¨ ¨ ¨ pm ´ n ` 1qq,

NpSq “
mÿ

i“0

p´1qiCi
mpm ´ iqn,

NpBq “ n!

ˆ
“

nÿ
i“0

p´1qiCi
npn ´ iqn

˙
.



Chapter 2
Mathematical Foundations of Probability
Theory

The theory of probability, as a mathematical discipline, can and should be developed
from axioms in exactly the same way as Geometry and Algebra. This means that after
we have defined the elements to be studied and their basic relations, and have stated the
axioms by which these relations are to be governed, all further exposition must be based
exclusively on these axioms, independent of the usual concrete meaning of these elements
and their relations.

A. N. Kolmogorov, “Foundations of the Theory of Probability” [51].

1 Probabilistic Model for an Experiment with Infinitely Many
Outcomes: Kolmogorov’s Axioms

1. The models introduced in the preceding chapter enabled us to give a probabilistic–
statistical description of experiments with a finite number of outcomes. For example,
the triple pΩ,A ,Pq with

Ω “ tω : ω “ pa1, . . . , anq, ai “ 0, 1u, A “ tA : A Ď Ωu
and ppωq “ pΣai qn´Σai is a model for the experiment in which a coin is tossed n
times “independently” with probability p of falling head. In this model the number
NpΩq of outcomes, i.e., the number of points in Ω, is the finite number 2n.

We now consider the problem of constructing a probabilistic model for the ex-
periment consisting of an infinite number of independent tosses of a coin when at
each step the probability of falling head is p.

It is natural to take the set of outcomes to be the set

Ω “ tω : ω “ pa1, a2, . . .q, ai “ 0, 1u,
i.e., the space of sequences ω “ pa1, a2, . . .q whose elements are 0 or 1.

© Springer Science+Business Media New York 2016
A.N. Shiryaev, Probability-1, Graduate Texts
in Mathematics 95, DOI 10.1007/978-0-387-72206-1 2
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What is the cardinality NpΩq of Ω ? It is well known that every number a P r0, 1q
has a unique binary expansion (containing an infinite number of zeros)

a “ a1
2

` a2
22

` ¨ ¨ ¨ pai “ 0, 1q.

Hence it is clear that there is a one-to-one correspondence between the points ω
of Ω and the points a of the set r0, 1q, and therefore Ω has the cardinality of the
continuum.

Consequently if we wish to construct a probabilistic model to describe exper-
iments like tossing a coin infinitely many times, we must consider spaces Ω of a
rather complicated nature.

We shall now try to see what probabilities ought reasonably to be assigned (or as-
sumed) in a model of infinitely many independent tosses of a fair coin

`
p ` q “ 1

2

˘
.

Since we may take Ω to be the set [0, 1), our problem can be considered as the
problem of choosing points at random from this set. For reasons of symmetry, it is
clear that all outcomes ought to be equiprobable. But the set [0, 1) is uncountable,
and if we suppose that its probability is 1, then it follows that the probability ppωq of
each outcome certainly must equal zero. However, this assignment of probabilities
pppωq “ 0, ω P r0, 1qq does not lead very far. The fact is that we are ordinarily
not interested in the probability of one outcome or another, but in the probability
that the result of the experiment is in one or another specified set A of outcomes
(an event). In elementary probability theory we use the probabilities ppωq to find
the probability PpAq of the event A : PpAq “ ř

ωPA ppωq. In the present case, with
ppωq “ 0, ω P r0, 1q, we cannot define, for example, the probability that a point
chosen at random from [0, 1) belongs to the set r0, 1

2 q. At the same time, it is
intuitively clear that this probability should be 1

2 .
These remarks should suggest that in constructing probabilistic models for un-

countable spaces Ω we must assign probabilities not to individual outcomes but to
subsets of Ω. The same reasoning as in the first chapter shows that the collection
of sets to which probabilities are assigned must be closed with respect to unions,
intersections, and complements. Here the following definition is useful.

Definition 1. Let Ω be a set of points ω. A system A of subsets of Ω is called an
algebra if

(a) Ω P A ,
(b) A, B P A ñ A Y B P A , A X B P A ,
(c) A P A ñ A P A .

(Notice that in condition (b) it is sufficient to require only that either A Y B P A or
that A X B P A , since by De Morgan’s laws (see (5) in Sect. 14, Chap. 1) A Y B “
A X B and A X B “ A Y B.)

The next definition is needed in formulating the concept of a probabilistic model.

Definition 2. Let A be an algebra of subsets of Ω. A set function μ “ μpAq, A P A ,
taking values in r0, 8s, is called a finitely additive measure defined on A if
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μpA ` Bq “ μpAq ` μpBq (1)

for every pair of disjoint sets A and B in A .

A finitely additive measure μ with μpΩq ă 8 is called finite, and when μpΩq “ 1
it is called a finitely additive probability measure, or a finitely additive probability.

2. We now define a probabilistic model (in the extended sense) of an experiment
with outcomes in the set Ω.

Definition 3. An ordered triple pΩ,A ,Pq, where

(a) Ω is a set of points ω;
(b) A is an algebra of subsets of Ω;
(c) P is a finitely additive probability on A,

is a probabilistic model, or a probabilistic “theory” (of an experiment) in the ex-
tended sense.

It turns out, however, that this model is too broad to lead to a fruitful mathemat-
ical theory. Consequently we must restrict both the class of subsets of Ω that we
consider, and the class of admissible probability measures.

Definition 4. A system F of subsets of Ω is a σ-algebra if it is an algebra and
satisfies the following additional condition (stronger than (b) of Definition 1):

(b˚) if An P F , n “ 1, 2, . . . , then
ď

An P F ,
č

An P F

(it is sufficient to require either that
Ť

An P F or that
Ş

An P F ).

Definition 5. The space Ω together with a σ-algebra F of its subsets is a measur-
able space, and is denoted by pΩ,F q.

Definition 6. A finitely additive measure μ defined on an algebra A of subsets of
Ω is countably additive (or σ-additive), or simply a measure, if, for any pairwise
disjoint subsets A1,A2, . . . of Ω with

ř
An P A

μ

˜ 8ÿ
n“1

An

¸
“

8ÿ
n“1

μpAnq.

A measure μ is said to be σ-finite if Ω can be represented in the form

Ω “
8ÿ

n“1

Ωn, Ωn P A ,

with μpΩnq ă 8, n “ 1, 2, . . . .
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If a measure (let us stress that we mean a countably additive measure) P on the
σ-algebra A satisfies PpΩq “ 1, it is called a probability measure or a probability
(defined on the sets that belong to the σ-algebra A ).

Probability measures have the following properties.
If ∅ is the empty set then

Pp∅q “ 0.

If A,B P A then

PpA Y Bq “ PpAq ` PpBq ´ PpA X Bq.
If A,B P A and B Ď A then

PpBq ≤ PpAq.
If An P A , n “ 1, 2, . . . , and

Ť
An P A , then

PpA1 Y A2 Y ¨ ¨ ¨ q ≤ PpA1q ` PpA2q ` ¨ ¨ ¨ .
The first three properties are evident. To establish the last one it is enough to

observe that
Ť8

n“1 An “ ř8
n“1 Bn, where B1 “ A1, Bn “ A1X¨ ¨ ¨XAn´1XAn, n ≥

2, Bi X Bj “ ∅, i ‰ j, and therefore

P

˜ 8ď
n“1

An

¸
“ P

˜ 8ÿ
n“1

Bn

¸
“

8ÿ
n“1

PpBnq ≤
8ÿ

n“1

PpAnq.

The next theorem, which has many applications, provides conditions under which
a finitely additive set function is actually countably additive.

Theorem. Let P be a finitely additive set function defined over the algebra A , with
PpΩq “ 1. The following four conditions are equivalent:

(1) P is σ-additive (P is a probability);
(2) P is continuous from below, i.e., for any sets A1,A2, . . . P A such that An Ď

An`1 and
Ť8

n“1 An P A ,

lim
n

PpAnq “ P

˜ 8ď
n“1

An

¸
;

(3) P is continuous from above, i.e., for any sets A1,A2, . . . such that An Ě An`1

and
Ş8

n“1 An P A ,

lim
n

PpAnq “ P

˜ 8č
n“1

An

¸
;

(4) P is continuous at ∅, i.e., for any sets A1,A2, . . . P A such that An`1 Ď An andŞ8
n“1 An “ ∅,

lim
n

PpAnq “ 0.
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PROOF. (1) ñ (2). Since

8ď
n“1

An “ A1 ` pA2zA1q ` pA3zA2q ` ¨ ¨ ¨ ,

we have

P

˜ 8ď
n“1

An

¸
“ PpA1q ` PpA2zA1q ` PpA3zA2q ` ¨ ¨ ¨

“ PpA1q ` PpA2q ´ PpA1q ` PpA3q ´ PpA2q ` ¨ ¨ ¨
“ lim

n
PpAnq.

(2) ñ (3). Let n ≥ 1; then

PpAnq “ PpA1zpA1zAnqq “ PpA1q ´ PpA1zAnq.
The sequence tA1zAnun≥1 of sets is nondecreasing (see the table below) and

8ď
n“1

pA1zAnq “ A1z
8č

n“1

An.

Then, by (2)

lim
n

PpA1zAnq “ P

˜ 8ď
n“1

pA1zAnq
¸

and therefore

lim
n

PpAnq “ PpA1q ´ lim
n

PpA1zAnq

“ PpA1q ´ P

˜ 8ď
n“1

pA1zAnq
¸

“ PpA1q ´ P

˜
A1z

8č
n“1

An

¸

“ PpA1q ´ PpA1q ` P

˜ 8č
n“1

An

¸
“ P

˜ 8č
n“1

An

¸
.

(3) ñ (4). Obvious.
(4) ñ (1). Let A1,A2, . . . P A be pairwise disjoint and let

ř8
n“1 An P A . Then

P

˜ 8ÿ
i“1

Ai

¸
“ P

˜
nÿ

i“1

Ai

¸
` P

˜ 8ÿ
i“n`1

Ai

¸
,

and since
ř8

i“n`1 Ai Ó ∅, n Ñ 8, we have
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8ÿ
i“1

PpAiq “ lim
n

nÿ
i“1

PpAiq “ lim
n

P

˜
nÿ

i“1

Ai

¸

“ lim
n

«
P

˜ 8ÿ
i“1

Ai

¸
´ P

˜ 8ÿ
i“n`1

Ai

¸ff

“ P

˜ 8ÿ
i“1

Ai

¸
´ lim

n
P

˜ 8ÿ
i“n`1

Ai

¸
“ P

˜ 8ÿ
i“1

Ai

¸
. [\

3. We can now formulate the generally accepted Kolmogorov’s axiom system, which
forms the basis for probability models of experiments with outcomes in the set Ω.

Fundamental Definition. An ordered triple pΩ,F ,Pq where

(a) Ω is a set of points ω,
(b) F is a σ-algebra of subsets of Ω,
(c) P is a probability on F ,

is called a probabilistic model (of an experiment) or a probability space. Here Ω
is the sample space or space of elementary events, the sets A in F are events, and
PpAq is the probability of the event A.

It is clear from the definition that the axiomatic formulation of probability theory
is based on set theory and measure theory. Accordingly, it is useful to have a table
(see Table 2.1) displaying the ways in which various concepts are interpreted in the
two theories. In the next two sections we shall give examples of the measurable
spaces that are most important for probability theory and of how probabilities are
assigned on them.

4. PROBLEMS

1. Let Ω “ tr : r P r0, 1su be the set of rational points of r0, 1s, A the algebra
of sets each of which is a finite sum of disjoint sets A of one of the forms
tr : a ă r ă bu, tr : a ≤ r ă bu, tr : a ă r ≤ bu, tr : a ≤ r ≤ bu, and
PpAq “ b ´ a. Show that PpAq, A P A , is finitely additive set function but not
countably additive.

2. Let Ω be a countable set and F the collection of all its subsets. Put μpAq “ 0
if A is finite and μpAq “ 8 if A is infinite. Show that the set function μ is
finitely additive but not countably additive.

3. Let μ be a finite measure on a σ-algebra F , An P F , n “ 1, 2, . . ., and A “
limn An (i.e., A “ lim infn An “ lim supn Anq. Show that μpAq “ limn μpAnq.

4. Prove that PpA � Bq “ PpAq ` PpBq ´2PpA X Bq. (Compare with Problem 4
in Sect. 1, Chap. 1.)

5. Show that the “distances” ρ1pA,Bq and ρ2pA,Bq defined by

ρ1pA,Bq “ PpA � Bq,

ρ2pA,Bq “
#

PpA�Bq
PpAYBq if PpA Y Bq ‰ 0,

0 if PpA Y Bq “ 0

satisfy the triangle inequality.
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Table 2.1
Notation Set-theoretic interpretation Interpretation in probability theory
ω Element or point Outcome, sample point, elementary

event
Ω Set of points Sample space; certain event
F σ-algebra of subsets σ-algebra of events
A P F Set of points Event (if ω P A, we say that event

A occurs)
A “ ΩzA Complement of A, i.e., the set of

points ω that are not in A
Event that A does not occur

A Y B Union of A and B, i.e., the set of
points ω belonging either to A or to
B (or to both)

Event that either A or B (or both)
occurs

A X B (or AB) Intersection of A and B, i.e., the set
of points ω belonging to both A and
B

Event that both A and B occur

∅ Empty set Impossible event
A X B “ ∅ A and B are disjoint Events A and B are mutually exclu-

sive, i.e., cannot occur simultane-
ously

A ` B Sum of sets, i.e., union of disjoint
sets

Event that one of two mutually ex-
clusive events occurs

AzB Difference of A and B, i.e., the set
of points that belong to A but not to
B

Event that A occurs and B does not

A�B Symmetric difference of sets, i.e.,
pAzBq Y pBzAq

Event that A or B occurs, but not
both

8Ť
n“1

An Union of the sets A1,A2, . . . Event that at least one of A1,A2, . . .
occurs

8ř
n“1

An Sum, i.e., union of pairwise disjoint
sets A1,A2, . . .

Event that one of the mutually ex-
clusive events A1,A2, . . . occurs

8Ş
n“1

An Intersection of A1,A2, . . . Event that all the events A1,A2, . . .

occur
An Ò A (or A “
lim

n
Ò An)

The increasing sequence of sets An

converges to A, i.e., A1 Ď A2 Ď ¨ ¨ ¨
and A “

8Ť
n“1

An

The increasing sequence of events
converges to event A

An Ó A (or A “
lim

n
Ó An)

The decreasing sequence of sets An

converges to A, i.e., A1 Ě A2 Ě ¨ ¨ ¨
and A “

8Ş
n“1

An

The decreasing sequence of events
converges to event A

lim supAn

(or*An i.o.)
The set

8Ş
n“1

8Ť
k“n

Ak Event that infinitely many of events
A1,A2, . . . occur

lim inf An The set
8Ť

n“1

8Ş
k“n

Ak Event that all the events A1,A2, . . .

occur with the possible exception
of a finite number of them

* i.o. = infinitely often
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6. Let μ be a finitely additive measure on an algebra A , and let the sets
A1,A2, . . . P A be pairwise disjoint and satisfy A “ ř8

i“1 Ai P A . Then
μpAq ≥ ř8

i“1 μpAiq.
7. Prove that

lim supAn “ lim inf An, lim inf An “ lim supAn,
lim inf An Ď lim supAn, lim suppAn Y Bnq “ lim supAn Y lim supBn,

lim sup An X lim inf Bn Ď lim suppAn X Bnq Ď lim sup An X lim sup Bn.

If An Ò A or An Ó A, then

lim inf An “ lim supAn.

8. Let txnu be a sequence of numbers and An “ p´8, xnq. Show that x “
lim sup xn and A “ lim supAn are related in the following way: p´8, xq Ď
A Ď p´8, xs. In other words, A is equal to either p´8, xq or to p´8, xs.

9. Give an example to show that if a measure takes the value `8, countable
additivity in general does not imply continuity at ∅.

10. Verify the Boole inequality: PpA X Bq ≥ 1 ´ PpAq ´ PpBq.
11. Let A1, . . . ,An be events in F . This system of events is said to be exchange-

able (or interchangeable) if for any 1 ≤ l ≤ n the probabilities PpAi1 . . .Ail q
are the same (“ pl) for any choice of indices 1 ≤ i1 ă ¨ ¨ ¨ ă il ≤ n. Prove
that for such events the following formula holds:

P

˜
nď

i“1

Ai

¸
“ np1 ´ C2

n p2 ` C3
n p3 ´ ¨ ¨ ¨ ` p´1qn´1pn.

12. Let pAkqk≥1 be an infinite sequence of exchangeable events, i.e., for any n ≥ 1
the probabilities PpAi1 . . .Ain q are the same (“ pn) for any set of indices 1 ≤
i1 ă ¨ ¨ ¨ ă in. Prove that

P
`
lim inf

n
An

˘ “ P

˜ 8č
k“1

Ak

¸
“ lim

jÑ8 pj,

P
`
lim sup

n
An

˘ “ P

˜ 8ď
k“1

Ak

¸
“ 1 ´ lim

jÑ8p´1qjΔjpp0q,

where p0 “ 1, Δ1ppnq “ pn`1 ´ pn, Δjppnq “ Δ1pΔj´1ppnqq, j ≥ 2.
13. Let pAnqn≥1 be a sequence of sets and let IpAnq be the indicator of An, n ≥ 1.

Show that

I
`
lim inf

n
An

˘ “ lim inf
n

IpAnq, I
`
lim sup

n
An

˘ “ lim sup
n

IpAnq,

I

˜ 8ď
n“1

An

¸
≤

8ÿ
n“1

IpAnq.
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14. Show that

I

˜ 8ď
n“1

An

¸
“ max

n≥1
IpAnq, I

˜ 8č
n“1

An

¸
“ min

n≥1
IpAnq.

15. Prove that

Pplim supAnq ≥ lim supPpAnq, Pplim inf Anq ≤ lim inf PpAnq.
16. Let A˚ “ lim supAn and A˚ “ lim inf An. Show that PpAnzA˚q Ñ 0 and

PpA˚zAnq Ñ 0.
17. Let pAnq be a sequence of sets such that An Ñ A (in the sense that A “ A˚ “

A˚). Show that PpA�Anq Ñ 0.
18. Let An converge to A in the sense that PpA�A˚q “ PpA�A˚q “ 0. Show that

then PpA�Anq Ñ 0.
19. Prove that the symmetric difference A�B of sets A and B satisfies the follow-

ing equality:
IpA�Bq “ IpAq ` IpBq pmod 2q.

Deduce from this equality that PpA�Bq “ PpAq ` PpBq ´ 2PpA X Bq. (Com-
pare with Problem 4.) Verify also the following properties of the symmetric
difference:

pA�Bq�C “ A�pB�Cq, pA�Bq�pB�Cq “ pA�Cq,
A�B “ C ô A “ B�C.

2 Algebras and σ-Algebras: Measurable Spaces

1. Algebras and σ-algebras are the components out of which probabilistic models
are constructed. We shall present some examples and a number of results for these
systems.

Let Ω be a sample space. Evidently each of the collections of sets

F˚ “ t∅, Ωu, F˚ “ tA : A Ď Ωu
is both an algebra and a σ-algebra. In fact, F˚ is trivial, the “poorest” σ-algebra,
whereas F˚ is the “richest” σ-algebra, consisting of all subsets of Ω.

When Ω is a finite space, the σ-algebra F˚ is fully surveyable, and commonly
serves as the system of events in the elementary theory. However, when the space is
uncountable the class F˚ is much too large, since it is impossible to define “proba-
bility” on such a system of sets in any consistent way.

If A Ď Ω, the system
FA “ tA,A,∅,Ωu

is another example of an algebra (and a σ-algebra), the algebra (or σ-algebra) gen-
erated by A.
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This system of sets is a special case of the systems induced by decompositions.
In fact, let

D “ tD1,D2, . . .u
be a countable decomposition of Ω into nonempty sets:

Ω “ D1 ` D2 ` ¨ ¨ ¨ ; Di X Dj “ ∅, i ‰ j.

Then the system A “ αpDq, formed by the sets that are finite or countable unions
of elements of the decomposition (including the empty set) is an algebra (and a
σ-algebra).

The following lemma is particularly important since it establishes that in princi-
ple there is a smallest algebra, or σ-algebra, containing a given collection of sets.

Lemma 1. Let E be a collection of subsets of Ω. Then there are the smallest algebra
αpE q and the smallest σ-algebra σpE q containing all the sets that are in E .

PROOF. The class F˚ of all subsets of Ω is a σ-algebra. Therefore there are at least
one algebra and one σ-algebra containing E . We now define αpE q (or σpE qq to
consist of all sets that belong to every algebra (or σ-algebra) containing E . It is easy
to verify that this system is an algebra (or σ-algebra) and indeed the smallest.

[\
Remark 1. The algebra αpEq (or σpEq, respectively) is often referred to as the
smallest algebra (or σ-algebra) generated by E .

As was pointed out, the concept of a σ-algebra plays very important role in prob-
ability theory, being a part of the “fundamental definition” of the probability space
(Subsection 3 of Sect. 1). In this connection it is desirable to provide a constructive
way of obtaining the σ-algebra σpA q generated, say, by an algebra A . (Lemma 1
establishes the existence of such σ-algebra, but gives no effective way of its con-
struction.)

One conceivable and seemingly natural way of constructing σpA q from A is
as follows. For a class E of subsets of Ω, denote by Ê the class of subsets of Ω
consisting of the sets contained in E , their complements, and finite or countable
unions of the sets in E . Define A0 “ A , A1 “ Â0, A2 “ Â1, etc. Clearly, for each
n the system An is contained in σpA q, and one might expect that An “ σpA q for
some n or, at least,

Ť
An “ σpA q.

However this is, in general, not the case. Indeed, let us take Ω “ p0, 1s and
consider as the algebra A the system of subsets of Ω generated by the empty set ∅
and finite sums of intervals of the form pa, bs with rational end-points a and b. It is
not hard to see that in this case the class of sets

Ť8
n“1 An is strictly less than σpA q.

In what follows we will be mainly interested not in the problem of constructing
the smallest σ-algebra σpA q out of, say, algebra A , but in the question how to
establish that some given class of sets is a σ-algebra.

In order to answer this question we need the important notion of a “monotonic
class.”
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Definition 1. A collection M of subsets of Ω is a monotonic class if An P M , n “
1, 2, . . . , together with An Ò A or An Ó A, implies that A P M .

Let E be a system of sets. Denote by μpE q the smallest monotonic class contain-
ing E . (The proof of the existence of this class is like the proof of Lemma 1.)

Lemma 2. A necessary and sufficient condition for an algebra A to be a σ-algebra
is that it is a monotonic class.

PROOF. A σ-algebra is evidently a monotonic class. Now let A be a monotonic
class and An P A , n “ 1, 2, . . .. It is clear that Bn “ Ťn

i“1 Ai P A and Bn Ď Bn`1.
Consequently, by the definition of a monotonic class, Bn Ò Ť8

i“1 Ai P A . Similarly
we could show that

Ş8
i“1 Ai P A .

[\
By using this lemma, we will prove the following result clarifying the relation

between the notions of a σ-algebra and a monotonic class.

Theorem 1. Let A be an algebra. Then

μpA q “ σpA q. (1)

PROOF. By Lemma 2, μpA q Ď σpA q. Hence it is enough to show that μpA q is a
σ-algebra. But M “ μpA q is a monotonic class, and therefore, by Lemma 2 again,
it is enough to show that μpA q is an algebra.

Let A P M ; we show that A P M . For this purpose, we shall apply a principle
that will often be used in the future, the principle of appropriate sets, which we now
illustrate.

Let
M̃ “ tB : B P M ,B P M u

be the sets that have the property that concerns us. It is evident that A Ď M̃ Ď M .
Let us show that M̃ is a monotonic class.

Let Bn P M̃ ; then Bn P M ,Bn P M , and therefore

lim Ò Bn P M , lim Ò Bn P M , lim Ó Bn P M , lim Ó Bn P M .

Consequently

lim Ò Bn “ lim Ó Bn P M , lim Ó Bn “ lim Ò Bn P M ,

lim Ò Bn “ lim Ó Bn P M , lim Ó Bn “ lim Ò Bn P M ,

and therefore M̃ is a monotonic class. But M̃ Ď M and M is the smallest mono-
tonic class. Therefore M̃ “ M , and if A P M “ μpA q, then we also have A P M ,
i.e., M is closed under the operation of taking complements.

Let us now show that M is closed under intersections. Let A P M and

MA “ tB : B P M , A X B P M u.
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From the equations

lim Ó pA X Bnq “ A X lim Ó Bn,

lim Ò pA X Bnq “ A X lim Ò Bn

it follows that MA is a monotonic class.
Moreover, it is easily verified that

pA P MBq ô pB P MAq. (2)

Now let A P A ; then since A is an algebra, for every B P A the set A X B P A
and therefore

A Ď MA Ď M .

But MA is a monotonic class and M is the smallest monotonic class. Therefore
MA “ M for all A P A . But then it follows from (2) that

pA P MBq ô pB P MA “ M q
whenever A P A and B P M . Consequently if A P A then

A P MB

for every B P M . Since A is any set in A , it follows that

A Ď MB Ď M .

Therefore for every B P M
MB “ M ,

i.e., if B P M and C P M then C X B P M .
Thus M is closed under complementation and intersection (and therefore under

unions). Consequently M “ μpA q is an algebra, and the theorem is established.
[\
If we examine the above proof we see that when dealing with systems of sets

formed by the principle of appropriate sets, the important feature of these systems
was that they were closed under certain set-theoretic operations.

From this point of view, it turns out that in the “monotonic classes” problems
it is expedient to single out the classes of sets called “π-systems” and “λ-systems,”
which were actually used in the proof of Theorem 1. These concepts allow us to
formulate a number of additional statements (Theorem 2) related to the same topic,
which are often more usable than the direct verification that the system of sets at
hand is a “monotonic class.”

Definition 2 (“π-λ-systems”). Let Ω be a space. A system P of subsets of Ω is
called a π-system if it is closed under finite intersections, i.e., for any A1, . . . ,An P
P we have

Ş
1≤k≤n Ak P P , n ≥ 1.
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A system L of subsets of Ω is called a λ-system, if
pλaq Ω P L ,
pλbq pA,B P L and A Ď Bq ùñ pBzA P L q,
pλcq pAn P L , n ≥ 1, and An Ò Aq ùñ pA P L q.
A system D of subsets of Ω that is both a π-system and a λ-system is called a

π-λ-system or Dynkin’s d-system.

Remark 2. It is worth to notice that the group of conditions pλaq, pλbq, pλcq defining
a λ-system is equivalent (Problem 3) to the group of conditions pλaq, pλ1

bq, pλ1
cq,

where
pλ1

bq if A P L , then A P L ,
pλ1

cq if An P L , n ≥ 1, An X Am “ H for m ‰ n, then
Ť

An P L .
Note also that any algebra is obviously a π-system.

If E is a system of sets, then πpE q, λpE q and dpE q denote, respectively, the
smallest π-, λ- and d-systems containing E .

The role of π-λ-systems is clarified in Theorem 2 below. In order to better explain
the meaning of this theorem, note that any σ-algebra is a λ-system, but the converse
is, in general, not true. For example, if Ω “ t1, 2, 3, 4u, then the system

L “ tH,Ω, p1, 2q, p1, 3q, p1, 4q, p2, 3q, p2, 4q, p3, 4qu
is a λ-system, but not a σ-algebra.

It turns out, however, that if we require additionally that a λ-system is also a
π-system, then this π-λ-system is a σ-algebra.

Theorem 2 (On π-λ-Systems).

(a) Any π-λ-system E is a σ-algebra.
(b) Let E be a π-system of sets. Then λpE q “ dpE q “ σpE q.
(c) Let E be a π-system of sets, L a λ-system and E Ď L . Then σpE q Ď L .

PROOF. (a) The system E contains Ω (because of pλaq) and is closed under taking
complements and finite intersections (because of pλ1

bq and the assumption that E is a
π-system). Therefore the system of sets E is an algebra (according to Definition 1 of
Sect. 1). Now to prove that E is also a σ-algebra we have to show (by Definition 4 of
Sect. 1) that if the sets B1,B2, . . . belong to E , then their union

Ť
n Bn also belongs

to E .
Let A1 “ B1 and An “ Bn X A1 X ¨ ¨ ¨ X An´1. Then (λ1

c) implies
Ť

An P E . ButŤ
Bn “ Ť

An, consequently
Ť

Bn P E as well.
Thus any π-λ-system is a σ-algebra.
(b) Consider a λ-system λpE q and a σ-algebra σpE q. As was pointed out, any

σ-algebra is a λ-system. Then since σpE q Ě E , we have σpE q “ λpσpE qq Ě λpE q.
Hence λpE q Ď σpE q.

Now if we show that the system λpE q is a π-system as well, then by (a) we obtain
that λpE q is a σ-algebra containing E . But since σpE q is the minimal σ-algebra
containing E , and we have proved that λpE q Ď σpE q, we obtain λpE q “ σpE q.
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Thus we proceed to prove that λpE q is a π-system. As in the proof of Theorem 1,
we will use the principle of appropriate sets. Let

E1 “ tB P λpE q : B X A P λpE q for any A P E u.
If B P E , then B X A P E (since E is a π-system). Hence E Ď E1. But E1 is a
λ-system (by the very definition of E1). Therefore λpE q Ď λpE1q “ E1. On the
other hand, by definition of E1 we have E1 Ď λpE q. Hence E1 “ λpE q.

Now let

E2 “ tB P λpE q : B X A P λpE q for any A P λpE qu.
The system E2, like E1, is a λ-system. Take a set B P E . Then by definition of E1
we find for any A P E1 “ λpE q that B X A P λpE q. Consequently we see from
the definition of E2 that E Ď E2 and λpE q Ď λpE2q “ E2. But λpE q Ě E2. Hence
λpE q “ E2 and therefore A X B P λpE q for any A and B in λpE q, i.e., λpE q is a
π-system. Thus λpE q is a π-λ-system (hence λpE q “ dpE q), and, as we pointed out
above, this implies that λpE q “ σpE q.

This establishes (b).
(c) The facts that E Ď L and L is a λ-system imply that λpE q Ď λpL q “ L .

It follows from (b) that λpE q “ σpE q. Hence σpE q Ď L .
[\

Remark 3. Theorem 2 could also be deduced directly from Theorem 1
(Problem 10).

Now we state two lemmas whose proofs illustrate very well the use of the prin-
ciple of appropriate sets and of Theorem 2 on π-λ-systems.

Lemma 3. Let P and Q be two probability measures on a measurable space pΩ,F q.
Let E be a π-system of sets in F and the measures P and Q coincide on the sets
which belong to E . Then these measures coincide on the σ-algebra σpE q. In par-
ticular, if A is an algebra and the measures P and Q coincide on its sets, then they
coincide on the sets of σpA q.

PROOF. We will use the principle of appropriate sets taking for these sets L “
tA P σpE q : PpAq “ QpAqu. Clearly, Ω P L . If A P L , then obviously A P L ,
since PpAq “ 1 ´ PpAq “ 1 ´ QpAq “ QpAq. If A1,A2, . . . is a system of disjoint
sets in L , then, since P and Q are countably additive,

P
ˆď

n

An

˙
“

ÿ
n

PpAnq “
ÿ

n

QpAnq “ Q
ˆď

n

An

˙
.

Therefore the properties pλaq, pλ1
bq, pλ1

cq are fulfilled, hence L is a λ-system.
By conditions of the lemma E Ď L and E is a π-system. Then Theorem 2 (c)

implies that σpE q Ď L . Now P and Q coincide on σpE q by the definition of L .
[\
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Lemma 4. Let A1,A2, . . . ,An be algebras of events independent with respect to
the measure P. Then the σ-algebras σpA1q, σpA2q, . . . , σpAnq are also independent
with respect to this measure.

PROOF. Note first of all that independence of sets and systems of sets (algebras,
σ-algebras, etc.) in general probabilistic models is defined in exactly the same way
as in elementary probability theory (see Definitions 2–5 in Sect. 3, Chap. 1).

Let A2, . . . ,An be sets in A2, . . . ,An respectively and let

L1 “
"

A P σpA1q : PpA X A2 X ¨ ¨ ¨ X Anq “ PpAq
nź

k“2

PpAkq
*
. (3)

We will show that L1 is a λ-system.
Obviously, Ω P L1, i.e., the property pλaq is fulfilled. Let A and B belong to L1

and A Ď B. Then since

PpA X A1 X ¨ ¨ ¨ X Anq “ PpAq
nź

k“2

PpAkq

and
PpB X A1 X ¨ ¨ ¨ X Anq “ PpBq

nź
k“2

PpAkq,

subtracting the former equality from the latter we find that

PppBzAq X A1 X ¨ ¨ ¨ X Anq “ PpBzAq
nź

k“2

PpAkq.

Therefore the property pλbq is fulfilled.
Finally, if the sets Bk belong to σpA1q, k ≥ 1, and Bk Ò B, then

Bk X A2 X ¨ ¨ ¨ X An Ò B X A2 X ¨ ¨ ¨ X An.

Therefore by continuity from below of the probability P (see Theorem in Sect. 1)
we obtain from PpBk X A2 X ¨ ¨ ¨ X Anq “ PpBkq śn

i“2 PpAiq taking the limit as
k Ñ 8 that

PpB X A2 X ¨ ¨ ¨ X Anq “ PpBq
nź

i“2

PpAiq,

which establishes the property pλcq.
Hence the system L1 is a λ-system and L1 Ě A1. Applying Theorem 2 (c) we

obtain that L1 Ě σpA1q.
Thus we have shown that the systems σpA1q,A2, . . . ,An are independent. By

applying similar arguments to the systems A2, . . . ,An, σpA1q we arrive at indepen-
dence of the systems σpA2q,A3, . . . ,An, σpA1q, or equivalently, of A3, . . . ,An,
σpA1q, σpA2q.
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Proceeding in this way we obtain that the σ-algebras σpA1q, σpA2q, . . . , σpAnq
are independent.

[\
Remark 4. Let us examine once more the requirements that we have to impose on
a system of sets in order that it be a σ-algebra.

To this end we will say that a system of sets E is a π˚-system if it is closed under
countable intersections:

A1,A2, ¨ ¨ ¨ P E ùñ
8č

n“1

An P E .

Then it follows from the definition of a σ-algebra that if an algebra E is at the
same time a π˚-system then it is a σ-algebra as well.

The approach based on the notion of a “π-λ-system” is somewhat different. Our
starting point here is the notion of a λ-system rather than an algebra. And Theo-
rem 2 (a) implies that if this λ-system is at the same time a π-system, then it is a
σ-algebra.

Let us clarify the difference between these approaches.
If we are to verify that a system of sets is a σ-algebra and establish first that it is

an algebra, we start thereby our verification by taking into consideration only finite
sums (or intersections) of sets. And we begin to treat operations on countably many
sets (which is the key point here) when we proceed to verify that this system is also
a π˚-system.

On the other hand, when we employ the “λ-π” approach we start to verify that
the system of sets at hand is a σ-algebra with establishing that this is a λ-system
whose properties pλcq or pλ1

cq involve “countable” operations. In return, when at the
second stage we verify that it is a π-system, we deal only with finite intersections or
sums of sets.

We conclude the exposition of the “monotonic classes” results by stating one of
their “functional” versions. (For an example of its application see the proof of the
lemma to Theorem 1 in Sect. 2, Chap. 8, Vol. 2.)

Theorem 3. Let E be a π-system of sets in F and H a class of real-valued
F -measurable functions satisfying the following conditions:

ph1q if A P E , then IA P H ;
ph2q if f P H , h P H , then f ` h P H and cf P H for any real number c;
ph3q if hn P H , n ≥ 1, 0 ≤ hn Ò h, then h P H .
Then H contains all bounded functions measurable with respect to σpE q.

PROOF. Let L “ tA P F : IA P H u. Then (h1q implies that E Ď L . But by ph2q
and ph3q the system L is a λ-system (Problem 11). Therefore by Theorem 2 (c) we
see that σpE q Ď L . Hence if A P σpE q then IA P H . Consequently ph2q implies
that all the simple functions (i.e., the functions which are finite linear combinations
of indicators IAi , where Ai P σpE q) also belong to H . Finally, we obtain by ph3q
that any bounded σpE q-measurable function also belongs to H .

[\
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Remark 5. Let X1, . . . ,Xn be random variables on pΩ,F q, F X “ σpX1, . . . ,Xnq
and f “ f pωq an F X-measurable function. Then there is a Borel function F “
Fpx1, . . . , xnq such that f pωq “ FpX1pωq, . . . ,Xnpωqq.

To prove this statement it suffices to use Theorem 3 taking for the set of appro-
priate functions H the set of nonnegative Borel functions F “ Fpx1, . . . , xnq and
for E the class of sets

E “ tω : X1pωq ≤ x1, . . . ,Xnpωq ≤ xn; xi P R, i “ 1, . . . , nu.
Applying Theorem 3 we obtain that any nonnegative F X-measurable function f “
f pωq can be represented as f pωq “ FpX1pωq, . . . ,Xnpωqq. The general case of not
necessarily nonnegative functions f reduces to the one just considered by using the
representation f “ f ` ´ f ´.

We next consider some measurable spaces pΩ,F q which are extremely impor-
tant for probability theory.
2. The measurable space pR,BpRqq. Let R “ p´8,8q be the real line and

pa, bs “ tx P R : a ă x ≤ bu
for all a and b, ´8 ≤ a ă b ă 8. The interval pa,8s is taken to be pa,8q.
(This convention is required in order to the complement of an interval p´8, bs be
an interval of the same form, i.e., open on the left and closed on the right.)

Let A be the system of subsets of R which are finite sums of disjoint intervals of
the form pa, bs:

A P A if A “
nÿ

i“1

pai, bis, n ă 8.

It is easily verified that this system of sets, in which we also include the empty
set ∅, is an algebra. However, it is not a σ-algebra, since if An “ p0, 1 ´ 1{ns P A ,
we have

Ť
n An “ p0, 1q R A .

Let BpRq be the smallest σ-algebra σpA q containing A . This σ-algebra, which
plays an important role in analysis, is called the Borel σ-algebra of subsets of the
real line, and its sets are called Borel sets.

If I is the system of intervals of the form I “ pa, bs, and σpI q is the smallest
σ-algebra containing I , it is easily verified that σpI q is the Borel σ-algebra. In
other words, we can obtain the Borel σ-algebra from I without going through the
algebra A , since σpI q “ σpαpI qq.

We observe that

pa, bq “
8ď

n“1

ˆ
a, b ´ 1

n

j
, a ă b,

ra, bs “
8č

n“1

ˆ
a ´ 1

n
, b

j
, a ă b,

tau “
8č

n“1

ˆ
a ´ 1

n
, a

j
.
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Thus the Borel σ-algebra contains not only intervals pa, bs but also the singletons
tau and all sets of the six forms

pa, bq, ra, bs, ra, bq, p´8, bq, p´8, bs, pa, 8q. (4)

Let us also notice that the construction of BpRq could have been based on any of the
six kinds of intervals instead of on pa, bs, since all the minimal σ-algebras generated
by systems of intervals of any of the forms (4) are the same as BpRq.

Sometimes it is useful to deal with the σ-algebra BpRq of subsets of the extended
real line R “ r´8, 8s. This is the smallest σ-algebra generated by intervals of the
form

pa, bs “ tx P R : a ă x ≤ bu, ´8 ≤ a ă b ≤ 8,

where p´8, bs is to stand for the set tx P R : ´ 8 ≤ x ≤ bu.

Remark 6. The measurable space pR,BpRqq is often denoted by pR,Bq or pR1,B1q.

Remark 7. Let us introduce the metric

ρ1px, yq “ |x ´ y|
1 ` |x ´ y|

on the real line R (this is equivalent to the usual metric |x ´ y|) and let B0pRq be
the smallest σ-algebra generated by finite sums of disjoint open sets Sρpx0q “ tx P
R : ρ1px, x0q ă ρu, ρ ą 0, x0 P R. Then B0pRq “ BpRq (see Problem 7).

3. The measurable space pRn,BpRnqq. Let Rn “ R ˆ ¨ ¨ ¨ ˆ R be the direct, or
Cartesian, product of n copies of the real line, i.e., the set of ordered n-tuples x “
px1, . . . , xnq, where ´8 ă xk ă 8, k “ 1, . . . , n. The set

I “ I1 ˆ ¨ ¨ ¨ ˆ In,

where Ik “ pak, bks, i.e., the set tx P Rn : xk P Ik, k “ 1, . . . , nu, is called a
rectangle, and Ik is a side of the rectangle. Let I be the collection of all sets which
are finite sums of disjoint rectangles I. The smallest σ-algebra σpI q generated by
the system I is the Borel σ-algebra of subsets of Rn and is denoted by BpRnq. Let
us show that we can arrive at this Borel σ-algebra by starting in a different way.

Instead of the rectangles I “ I1 ˆ ¨ ¨ ¨ ˆ In let us consider the rectangles B “
B1 ˆ ¨ ¨ ¨ ˆ Bn with Borel sides pBk is the Borel subset of the real line that appears in
the kth place in the direct product R ˆ ¨ ¨ ¨ ˆ R). The smallest σ-algebra containing
all rectangles with Borel sides is denoted by

BpRq b ¨ ¨ ¨ b BpRq
and called the direct product of the σ-algebras BpRq. Let us show that in fact

BpRnq “ BpRq b ¨ ¨ ¨ b BpRq.
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In other words, the smallest σ-algebras generated by the rectangles I “ I1 ˆ ¨ ¨ ¨ ˆ In

and by the (broader) class of rectangles B “ B1 ˆ ¨ ¨ ¨ ˆ Bn with Borel sides are
actually the same.

The proof depends on the following proposition.

Lemma 5. Let E be a class of subsets of Ω, let B Ď Ω, and define

E X B “ tA X B : A P E u. (5)

Then
σpE X Bq “ σpE q X B. (6)

PROOF. Since E Ď σpE q, we have

E X B Ď σpE q X B. (7)

But σpE q X B is a σ-algebra; hence it follows from (7) that

σpE X Bq Ď σpE q X B.

To prove the conclusion in the opposite direction, we again use the principle of
appropriate sets.

Define
CB “ tA P σpE q : A X B P σpE X Bqu.

Since σpE q and σpE X Bq are σ-algebras, CB is also a σ-algebra, and evidently

E Ď CB Ď σpE q,
whence σpE q Ď σpCBq “ CB Ď σpE q and therefore σpE q “ CB. Therefore

A X B P σpE X Bq
for every A Ď σpE q, and consequently σpE q X B Ď σpE X Bq.

This completes the proof of the lemma.
[\
The proof that BpRnq and B b ¨ ¨ ¨ bB are the same. This is obvious for n “ 1.

We now show that it is true for n “ 2.
Since BpR2q Ď B b B, it is enough to show that the Borel rectangle B1 ˆ B2

belongs to BpR2q.
Let R2 “ R1 ˆ R2, where R1 and R2 are the “first” and “second” real lines,

B̃1 “ B1 ˆ R2, B̃2 “ R1 ˆ B2, where B1 ˆ R2 (or R1 ˆ B2) is the collection of
sets of the form B1 ˆ R2 (or R1 ˆ B2), with B1 P B1 (or B2 P B2). Also let I1 and
I2 be the sets of intervals in R1 and R2, and Ĩ1 “ I1 ˆ R2, Ĩ2 “ R1 ˆI2. Then,
by (6), with B̃1 “ B1 ˆ R2, B̃2 “ R1 ˆ B2,
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B1 ˆ B2 “ B̃1 X B̃2 P B̃1 X B̃2 “ σpĨ1q X B̃2

“ σpĨ1 X B̃2q Ď σpĨ1 X Ĩ2q
“ σpI1 ˆ I2q,

as was to be proved.
The case of any n, n ą 2 can be discussed in the same way. [\

Remark 8. Let B0pRnq be the smallest σ-algebra generated by the open “balls”

Sρpx0q “ tx P Rn : ρnpx, x0q ă ρu, x0 P Rn, ρ ą 0,

in the metric

ρnpx, x0q “
nÿ

k“1

2´kρ1pxk, x0k q,

where x “ px1, . . . , xnq, x0 “ px01, . . . , x0nq.
Then B0pRnq “ BpRnq (Problem 7).

4. The measurable space pR8,BpR8qq plays a significant role in probability the-
ory, since it is used as the basis for constructing probabilistic models of experiments
with infinitely many steps.

The space R8 is the space of sequences of real numbers,

x “ px1, x2, . . .q, ´8 ă xk ă 8, k “ 1, 2, . . .

Let Ik and Bk denote, respectively, the intervals pak, bks and the Borel subsets of the
kth real line (with coordinate xk). We consider the cylinder sets

I pI1 ˆ ¨ ¨ ¨ ˆ Inq “ tx : x “ px1, x2, . . .q, x1 P I1, . . . , xn P Inu, (8)

I pB1 ˆ ¨ ¨ ¨ ˆ Bnq “ tx : x “ px1, x2, . . .q, x1 P B1, . . . , xn P Bnu, (9)

I pBnq “ tx : px1, . . . , xnq P Bnu, (10)

where Bn is a Borel set in BpRnq. Each cylinder I pB1 ˆ ¨ ¨ ¨ ˆ Bnq, or I pBnq, can
also be thought of as a cylinder with base in Rn`1, Rn`2, . . ., since

I pB1 ˆ ¨ ¨ ¨ ˆ Bnq “ I pB1 ˆ ¨ ¨ ¨ ˆ Bn ˆ Rq,
I pBnq “ I pBn`1q,

where Bn`1 “ Bn ˆ R.
The sets that are finite sums of disjoint cylinders I pI1ˆ¨ ¨ ¨ˆInq form an algebra.

And the finite sums of disjoint cylinders I pB1ˆ¨ ¨ ¨ˆBnq also form an algebra. The
system of cylinders I pBnq itself is an algebra. Let BpR8q, B1pR8q and B2pR8q
be the smallest σ-algebras containing, respectively, these three algebras. (The σ-
algebra B1pR8q is often denoted by BpRq bBpRq b ¨ ¨ ¨ .) It is clear that BpR8q Ď
B1pR8q Ď B2pR8q. As a matter of fact, all three σ-algebras are the same.
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To prove this, we put

Cn “ tA Ď Rn : tx : px1, . . . , xnq P Au P BpR8qu
for n “ 1, 2, . . .. Let Bn P BpRnq. Then

Bn P Cn.

But Cn is a σ-algebra, and therefore

BpRnq Ď σpCnq “ Cn;

consequently
B2pR8q Ď BpR8q.

Thus BpR8q “ B1pR8q “ B2pR8q.
From now on we shall describe sets in BpR8q as Borel sets (in R8).

Remark 9. Let B0pR8q be the smallest σ-algebra generated by the system of sets
formed by finite sums of disjoint open “balls”

Sρpx0q “ tx P R8 : ρ8px, x0q ă ρu, x0 P R8, ρ ą 0,

in the metric

ρ8px, x0q “
8ÿ

k“1

2´kρ1pxk, x0k q,

where x “ px1, x2, . . .q and x0 “ px01, x02, . . .q. Then BpR8q “ B0pR8q
(Problem 7).

Here are some examples of Borel sets in R8:

(a) tx P R8 : sup xn ą au, tx P R8 : inf xn ă au;
(b) tx P R8 : lim sup xn ≤ au, tx P R8 : lim inf xn ą au, where, as usual,

lim sup xn “ inf
n
sup
m≥n

xm, lim inf xn “ sup
n

inf
m≥n

xm;

(c) tx P R8 : xn Ñu, the set of x P R8 for which lim xn exists and is finite;
(d) tx P R8 : lim xn ą au;
(e) tx P R8 :

ř8
n“1 |xn| ą au;

(f) { x P R8 :
řn

k“1 xk “ 0 for at least one n ≥ 1}.

To be convinced, for example, that sets in (a) belong to the system BpR8q, it is
enough to observe that

tx : sup xn ą au “
ď

n

tx : xn ą au P BpR8q,

tx : inf xn ă au “
ď

n

tx : xn ă au P BpR8q.
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5. The measurable space pRT ,BpRTqq, where T is an arbitrary set. The space RT

is the collection of real functions x “ pxtq defined for t P T .˚ In general we shall be
interested in the case when T is an uncountable subset of the real line. For simplicity
and definiteness we shall suppose for the present that T “ r0,8q.

We shall consider three types of cylinder sets:

It1,...,tn pI1 ˆ ¨ ¨ ¨ ˆ Inq “ tx : xt1 P I1, . . . , xtn P Inu, (11)
It1,...,tn pB1 ˆ ¨ ¨ ¨ ˆ Bnq “ tx : xt1 P B1, . . . , xtn P Bnu, (12)

It1,..., tn pBnq “ tx : pxt1 , . . . , xtn q P Bnu, (13)

where Ik is a set of the form pak, bks, Bk is a Borel set on the line, and Bn is a Borel
set in Rn.

The set It1,...,tn pI1 ˆ ¨ ¨ ¨ ˆ Inq is just the set of functions that, at times t1, . . . , tn,
“get through the windows” I1, . . . , In and at other times have arbitrary values
(Fig. 24).

Fig. 24

Let BpRTq, B1pRTq and B2pRTq be the smallest σ-algebras corresponding re-
spectively to the cylinder sets (11), (12) and (13). It is clear that

BpRTq Ď B1pRTq Ď B2pRTq. (14)

As a matter of fact, all three of these σ-algebras are the same. Moreover, we can
give a complete description of the structure of their sets.

Theorem 4. Let T be any uncountable set. Then BpRTq “ B1pRTq “ B2pRTq, and
every set A P BpRTq has the following structure: there are a countable set of points
t1, t2, . . . of T and a Borel set B in BpR8q such that

A “ tx : pxt1 , xt2 , . . .q P Bu. (15)

˚ We shall also use the notation x “ pxtqtPRT and x “ pxtq, t P RT , for elements of RT .
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PROOF. Let E denote the collection of sets of the form (15) (for various aggregates
pt1, t2, . . .q and Borel sets B in BpR8qq. If A1,A2, . . . P E and the corresponding

aggregates are Tp1q “
´

tp1q
1 , tp1q

2 , . . .
¯
, Tp2q “

´
tp2q
1 , tp2q

2 , . . .
¯
, . . ., then the set

Tp8q “
ď

k
Tpkq can be taken as a basis, so that every Ai has a representation

Ai “ tx : pxτ1 , xτ2 , . . .q P Biu,
where Bi’s are sets in one and the same σ-algebra BpR8q, and τi P Tp8q.

Hence it follows that the system E is a σ-algebra. Clearly this σ-algebra con-
tains all cylinder sets of the form (13) and, since B2pRTq is the smallest σ-algebra
containing these sets, and since we have (14), we obtain

BpRTq Ď B1pRTq Ď B2pRTq Ď E . (16)

Let us consider a set A from E , represented in the form (15). For a given aggre-
gate pt1, t2, . . .q, the same reasoning as for the space pR8,BpR8qq shows that A is
an element of the σ-algebra generated by the cylinder sets (11). But this σ-algebra
evidently belongs to the σ-algebra BpRTq; together with (16), this established both
conclusions of the theorem.

[\
Thus every Borel set A in the σ-algebra BpRTq is determined by restrictions

imposed on the functions x “ pxtq, t P T , on an at most countable set of points
t1, t2, . . .. Hence it follows, in particular, that the sets

A1 “ tx : sup xt ă C for all t P r0, 1su,
A2 “ tx : xt “ 0 for at least one t P r0, 1su,
A3 “ tx : xt is continuous at a given point t0 P r0, 1su,

which depend on the behavior of the function on an uncountable set of points, cannot
be Borel sets. And indeed none of these three sets belongs to BpRr0,1sq.

Let us establish this for A1. If A1 P BpRr0,1sq, then by our theorem there are
points pt01, t02, . . .q and a set B0 P BpR8q such that

"
x : sup

t
xt ă C, t P r0, 1s

*
“ tx : pxt01

, xt02
, . . .q P B0u.

It is clear that the function yt ” C ´ 1 belongs to A1, and consequently
pyt01

, yt02
, . . .q P B0. Now form the function

zt “
"

C ´ 1, t P pt01, t02, . . .q,
C ` 1, t R pt01, t02, . . .q.

It is clear that
pyt01

, yt02
, . . .q “ pzt01

, zt02
, . . .q,
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and consequently the function z “ pztq belongs to the set tx : pxt01
, xt02

, ¨ ¨ ¨ u P B0u.
But at the same time it is clear that it does not belong to the set tx : sup xt ă Cu.
This contradiction shows that A1 R BpRr0,1sq.

Since the sets A1,A2 and A3 are nonmeasurable with respect to the σ-algebra
BpRr0,1sq in the space of all functions x “ pxtq, t P r0, 1s, it is natural to consider a
smaller class of functions for which these sets are measurable. It is intuitively clear
that this will be the case if we take the initial space to be, for example, the space of
continuous functions.
6. The measurable space pC,BpCqq. Let T “ r0, 1s and let C be the space of
continuous functions x “ pxtq, 0 ≤ t ≤ 1. This is a metric space with the metric
ρpx, yq “ suptPT |xt ´ yt|. We introduce two σ-algebras in C: BpCq is the σ-algebra
generated by the cylinder sets, and B0pCq is generated by the open sets (open with
respect to the metric ρpx, yq). Let us show that in fact these σ-algebras are the same:
BpCq “ B0pCq.

Let B “ tx : xt0 ă bu be a cylinder set. It is easy to see that this set is open. Hence
it follows that tx : xt1 ă b1, . . . , xtn ă bnu P B0pCq, and therefore BpCq Ď B0pCq.

Conversely, consider a set Bρ “ ty : y P Sρpx0qu where x0 is an element of C and
Sρpx0q “ tx P C : suptPT |xt ´ x0t | ă ρu is an open ball with center at x0. Since the
functions in C are continuous,

Bρ “ ty P C : y P Sρpx0qu “
!

y P C : max
t

|yt ´ x0t | ă ρ
)

“
č
tk

ty P C : |ytk ´ x0tk | ă ρu P BpCq, (17)

where tk are the rational points of r0, 1s. Therefore B0pCq Ď BpCq.
The space pC,B0pCq, ρqq is a Polish space, i.e., complete and separable (see

[9, 43]).

7. The measurable space pD,BpDqq, where D is the space of functions x “
pxtq, t P r0, 1s, that are continuous on the right pxt “ xt` for all t ă 1q and have
limits from the left (at every t ą 0).

Just as for C, we can introduce a metric dpx, yq on D such that the σ-algebra
B0pDq generated by the open sets will coincide with the σ-algebra BpDq generated
by the cylinder sets. The space pD,BpDq, dq is separable (see [9, 43]). The metric
d “ dpx, yq, which was introduced by Skorohod, is defined as follows:

dpx, yq “ inftε ą 0: D λ P Λ: sup
t

|xt ´ yλptq| ` sup
t

|t ´ λptq| ≤ εu, (18)

where Λ is the set of strictly increasing functions λ “ λptq that are continuous on
r0, 1s and have λp0q “ 0, λp1q “ 1.

8. The measurable space pś
tPT Ωt,

ś
b

tPTFtq. Along with the space pRT ,BpRTqq,
which is the direct product of T copies of the real line with the system of Borel
sets, probability theory also uses the measurable space pś

tPT Ωt,
ś
b

tPTFtq, which
is defined in the following way.
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Let T be an arbitrary set of indices and let pΩt,Ftq be measurable spaces, t P T .
Let Ω “ ś

tPT Ωt be the set of functions ω “ pωtq, t P T , such that ωt P Ωt for each
t P T .

The collection of finite unions of disjoint cylinder sets

It1,...,tn pB1 ˆ ¨ ¨ ¨ ˆ Bnq “ tω : ωt1 P B1, . . . , ωtn P Bnu,
where Bti P Fti , is easily shown to be an algebra. The smallest σ-algebra con-
taining all these cylinder sets is denoted by

ś
b

tPTFt, and the measurable space
pś

Ωi,
ś
b Ftq is called the direct product of the measurable spaces pΩt,Ftq, t P T .

9. PROBLEMS

1. Let B1 and B2 be σ-algebras of subsets of Ω. Are the following systems of
sets σ-algebras?

B1 X B2 ” tA : A P B1 and A P B2u,
B1 Y B2 ” tA : A P B1 or A P B2u.

2. Let D “ tD1,D2, . . .u be a countable decomposition of Ω and B “ σpDq.
What is the cardinality of B?

3. Show that
BpRnq b BpRq “ BpRn`1q.

4. Prove that the sets (b)–(f) (see Subsection 4) belong to BpR8q.
5. Prove that the sets A2 and A3 (see Subsection 5) do not belong to BpRr0,1sq.
6. Prove that the function (18) actually defines a metric.
7. Prove that B0pRnq “ BpRnq, n ≥ 1, and B0pR8q “ BpR8q.
8. Let C “ Cr0,8q be the space of continuous functions x “ pxtq defined for

t ≥ 0 endowed with the metric

ρpx, yq “
8ÿ

n“1

2´n min

„
sup
0≤t≤n

|xt ´ yt|, 1
j
, x, y P C.

Show that (like C “ Cr0, 1s) this is a Polish space, i.e., a complete separa-
ble metric space, and that the σ-algebra B0pCq generated by the open sets
coincides with the σ-algebra BpCq generated by the cylinder sets.

9. Show that the groups of conditions pλaq, pλbq, pλcq and pλaq, pλ1
bq, pλ1

cq (see
Definition 2 and Remark 2) are equivalent.

10. Deduce Theorem 2 from Theorem 1.
11. Prove that the system L in Theorem 3 is a λ-system.
12. A σ-algebra is said to be countably generated or separable if it is generated

by a countable class of sets.
Show that the σ-algebra B of Borel subsets of Ω “ p0, 1s is countably
generated.
Show by an example that it is possible to have two σ-algebras F1 and F2 such
that F1 Ď F2 and F2 is countably generated, but F1 is not.
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13. Show that a σ-algebra G is countably generated if and only if G “ σpXq
for some random variable X (for the definition of σpXq see Subsection 4 of
Sect. 4).

14. Give an example of a separable σ-algebra having a non-separable sub-σ-
algebra.

15. Show that X1,X2, . . . is an independent system of random variables (Sects. 4,
5) if σpXnq and σpX1, . . . ,Xn´1q are independent for each n ≥ 1.

16. Show by an example that the union of two σ-algebras is not a σ-algebra.
17. Let A1 and A2 be two independent systems of sets each of which is a π-

system. Show that then σpA1q and σpA2q are also independent. Give an ex-
ample of two independent systems A1 and A2, which are not π-systems, such
that σpA1q and σpA2q are dependent.

18. Let L be a λ-system. Then pA,B P L ,A X B “ ∅q ùñ pA Y B P L q.
19. Let F1 and F2 be σ-algebras of subsets of Ω. Set

dpF1,F2q “ 4 sup
A1PF1
A2PF2

| PpA1A2q ´ PpA1q PpA2q|.

Show that this quantity describing the degree of dependence between F1 and
F2 has the following properties:

(a) 0 ≤ dpF1,F2q ≤ 1;
(b) dpF1,F2q “ 0 if and only if F1 and F2 are independent.
(c) dpF1,F2q “ 1 if and only if F1 X F2 contains a set of probability

1/2.
20. Using the method of the proof of Lemma 1 prove the existence and uniqueness

of the classes λpE q and πpE q containing a system of sets E .
21. Let A be an algebra of sets with the property that any sequence pAnqn≥1 of

disjoint sets An P A satisfies
Ť8

n“1 An P A . Prove that A is then a σ-algebra.
22. Let pFnqn≥1 be an increasing sequence of σ-algebras, Fn Ď Fn`1, n ≥ 1.

Show that
Ť8

n“1 Fn is, in general, only an algebra.
23. Let F be an algebra (or a σ-algebra) and C a set which is not in F . Consider

the smallest algebra (respectively, σ-algebra) generated by the sets in FYtCu.
Show that all the elements of this algebra (respectively, σ-algebra) have the
form pA X Cq Y pB X Cq, where A, B P F .

24. Let R “ RYt´8uYt8u be the extended real line. The Borel σ-algebra BpRq
can be defined (compare with the definition in Subsection 2) as the σ-algebra
generated by sets r´8, xs, x P R, where r´8, xs “ t´8u Y p´8, xs. Show
that this σ-algebra is the same as any of the σ-algebras generated by the sets

(a) r´8, xq, x P R, or
(b) px,8s, x P R, or
(c) all finite intervals with addition of t´8u and t8u.
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3 Methods of Introducing Probability Measures
on Measurable Spaces

1. The measurable space pR,BpRqq. Let P “ PpAq be a probability measure de-
fined on the Borel subsets A of the real line. Take A “ p´8, xs and put

Fpxq “ Pp´8, xs, x P R. (1)

This function has the following properties:

(i) Fpxq is nondecreasing;
(ii) Fp´8q “ 0, Fp`8q “ 1, where

Fp´8q “ lim
xÓ´8 Fpxq, Fp`8q “ lim

xÒ8 Fpxq;

(iii) Fpxq is continuous on the right and has a limit on the left at each x P R.

The first property is evident, and the other two follow from the continuity prop-
erties of probability measures (Sect. 1).

Definition 1. Every function F “ Fpxq satisfying conditions (i)–(iii) is called a
distribution function (on the real line R).

Thus to every probability measure P on pR,BpRqq there corresponds (by (1)) a
distribution function. It turns out that the converse is also true.

Theorem 1. Let F “ Fpxq be a distribution function on the real line R. There exists
a unique probability measure P on pR,BpRqq such that

Ppa, bs “ Fpbq ´ Fpaq (2)

for all a, b, ´8 ≤ a ă b ă 8.

PROOF. Let A be the algebra of the subsets A of R that are finite sums of disjoint
intervals of the form pa, bs:

A “
nÿ

k“1

pak, bks.

On these sets we define a set function P0 by putting

P0pAq “
nÿ

k“1

rFpbkq ´ Fpakqs, A P A . (3)

This formula defines, evidently uniquely, a finitely additive set function on A .
Therefore if we show that this function is also countably additive on this algebra,
the existence and uniqueness of the required measure P on BpRq will follow imme-
diately from a general result of measure theory (which we quote without proof to be
found in [39, 64]).
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Carathéodory’s Theorem. Let Ω be a space, A an algebra of its subsets, and
B “ σpA q the smallest σ-algebra containing A . Let μ0 be a σ-finite (Sect. 1)
and σ-additive (Sect. 1) measure on pΩ,A q. Then there is a unique measure μ on
pΩ, σpA qq which is an extension of μ0, i.e., satisfies

μpAq “ μ0pAq, A P A .

We are now to show that P0 is countably additive (hence is a probability measure)
on A . By the theorem from Sect. 1 it is enough to show that P0 is continuous at ∅,
i.e., to verify that

P0pAnq Ó 0, An Ó ∅, An P A .

Let A1,A2, . . . be a sequence of sets from A with the property An Ó ∅. Let us
suppose first that the sets An belong to a closed interval r´N, Ns, N ă 8. Since
each An is the sum of finitely many intervals of the form pa, bs and since

P0pa1, bs “ Fpbq ´ Fpa1q Ñ Fpbq ´ Fpaq “ P0pa, bs
as a1 Ó a, because Fpxq is continuous on the right, we can find, for every An, a set
Bn P A such that its closure rBns Ď An and

P0pAnq ´ P0pBnq ≤ ε ¨ 2´n,

where ε is a preassigned positive number.
By hypothesis,

Ş
An “ ∅ and therefore

Ş rBns “ ∅. But the sets rBns are closed,
and therefore there is a finite n0 “ n0pεq such that

n0č
n“1

rBns “ ∅. (4)

(In fact, r´N, Ns is compact, and the collection of sets tr´N, NszrBnsun≥1 is an
open covering of this compact set. By the Heine–Borel lemma (see, e.g., [52]) there
is a finite subcovering:

n0ď
n“1

pr´N, NszrBnsq “ r´N, Ns

and therefore
Şn0

n“1rBns “ ∅q.
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Using (4) and the inclusions An0 Ď An0´1 Ď ¨ ¨ ¨ Ď A1, we obtain

P0pAn0q “ P0

˜
An0z

n0č
k“1

Bk

¸
` P0

˜
n0č

k“1

Bk

¸

“ P0

˜
An0z

n0č
k“1

Bk

¸
≤ P0

˜
n0ď

k“1

pAkzBkq
¸

≤
n0ÿ

k“1

P0pAkzBkq ≤
n0ÿ

k“1

ε ¨ 2´k ≤ ε.

Therefore P0pAnq Ó 0, n Ñ 8.
We now abandon the assumption that all An Ď r´N, Ns for some N. Take an

ε ą 0 and choose N so that P0r´N, Ns ą 1 ´ ε{2. Then, since

An “ An X r´N,Ns ` An X r´N,Ns,
we have

P0pAnq “ P0pAn X r´N,Nsq ` P0pAnr´N,Nsq
≤ P0pAn X r´N, Nsq ` ε{2

and, applying the preceding reasoning (replacing An by An X r´N,Ns), we find that
P0pAn X r´N,Nsq ≤ ε{2 for sufficiently large n. Hence once again P0pAnq Ó 0,
n Ñ 8. This completes the proof of the theorem.

[\
Thus there is a one-to-one correspondence between probability measures P on

pR,BpRqq and distribution functions F on the real line R. The measure P constructed
from the function F is usually called the Lebesgue–Stieltjes probability measure
corresponding to the distribution function F.

The case when

Fpxq “
$&
%

0, x ă 0,
x, 0 ≤ x ≤ 1,
1, x ą 1,

is particularly important. In this case the corresponding probability measure (de-
noted by λ) is Lebesgue measure on r0, 1s. Clearly λpa, bs “ b ´ a. In other words,
the Lebesgue measure of pa, bs (as well as of any of the intervals pa, bq, ra, bs or
ra, bqq is simply its length b ´ a.

Let
Bpr0, 1sq “ tA X r0, 1s : A P BpRqu

be the collection of Borel subsets of r0, 1s. It is often necessary to consider, besides
these sets, the Lebesgue measurable subsets of r0, 1s. We say that a set Λ Ď r0, 1s
belongs to Bpr0, 1sq if there are Borel sets A and B such that A Ď Λ Ď B and
λpBzAq “ 0. It is easily verified that Bpr0, 1sq is a σ-algebra. It is known as the
system of Lebesgue measurable subsets of r0, 1s. Clearly Bpr0, 1sq Ď Bpr0, 1sq.
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The measure λ, defined so far only for sets in Bpr0, 1sq, extends in a natural way
to the system Bpr0, 1sq of Lebesgue measurable sets. Specifically, if Λ P Bpr0, 1sq
and A Ď Λ Ď B, where A and B P Bpr0, 1sq and λpBzAq “ 0, we define λpΛq “
λpAq. The set function λ “ λpΛq, Λ P Bpr0, 1sq, is easily seen to be a probability
measure on pr0, 1s,Bpr0, 1sqq. It is usually called Lebesgue measure (on the system
of Lebesgue-measurable sets).

Remark 1. This process of completing (or extending) a measure can also be ap-
plied, and is useful, in other situations. For example, let pΩ,F ,Pq be a probability
space. Let F̄P be the collection of all the subsets A of Ω for which there are sets B1

and B2 of F such that B1 Ď A Ď B2 and PpB2zB1q “ 0. The probability measure
can be defined for sets A P F̄P in a natural way (by PpAq “ PpB1qq. The resulting
probability space pΩ, F̄P,Pq is the completion of pΩ,F ,Pq with respect to P.

A probability measure such that F̄P “ F is called complete, and the corre-
sponding space pΩ,F ,Pq is a complete probability space.

Remark 2. Here we briefly outline the idea of the proof of Carathéodory’s theorem
assuming that μ0pΩq “ 1.

Let A be a set in Ω and A1,A2, . . . sets in A which cover A in the sense that
A Ď Ť8

n“1 An. Define the outer measure μ˚pAq of the set A as

μ˚pAq “ inf
8ÿ

n“1

μ0pAnq,

where the infimum is taken over all coverings pA1,A2, . . .q of A. We define also the
interior measure μ˚pAq by

μ˚pAq “ 1 ´ μ˚pĀq.
Denote by Â the collection of all sets A Ď Ω such that μ˚pAq “ μ˚pAq. It

is not hard to show that the system Â is a σ-algebra (Problem 12), and therefore
A Ď σpA q Ď Â . We assign to the sets A in Â the “measure” μpAq equal to μ˚pAq
(“ μ˚pAq). This set function μpAq, A P A , is a measure indeed (Problem 13),
i.e., a countably-additive set function (being a probability measure, since μpΩq “
μ0pΩq “ 1).

The correspondence between probability measures P and distribution functions
F established by the equation Ppa, bs “ Fpbq ´ Fpaq makes it possible to construct
various probability measures by specifying the corresponding distribution functions.

Discrete measures are measures P for which the corresponding distribution func-
tions F “ Fpxq change their values at the points x1, x2, . . . (ΔFpxiq ą 0, where
ΔFpxq “ Fpxq ´ Fpx´q). In this case the measure is concentrated at the points
x1, x2, . . . (Fig. 25):

Pptxkuq “ ΔFpxkq ą 0,
ÿ

k

Pptxkuq “ 1.
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Fig. 25

The set of numbers pp1, p2, . . .q, where pk “ Pptxkuq, is called a discrete prob-
ability distribution and the corresponding distribution function F “ Fpxq is called
discrete.

We present a table of the commonest types of discrete probability distribution,
with their names.

Table 2.2
Distribution Probabilities pk Parameters
Discrete uniform 1{N, k “ 1, 2, . . . ,N N “ 1, 2, . . .
Bernoulli p1 “ p, p0 “ q 0 ≤ p ≤ 1, q “ 1 ´ p
Binomial Ck

npkqn´k, k “ 0, 1, . . . , n 0 ≤ p ≤ 1, q “ 1 ´ p,
n “ 1, 2, . . .

Poisson e´λλk{k!, k “ 0, 1, . . . λ ą 0
Geometric qk´1p, k “ 1, 2, . . . 0 ≤ p ≤ 1, q “ 1 ´ p
Negative binomial Cr´1

k´1prqk´r, k “ r, r ` 1, . . . 0 ≤ p ≤ 1, q “ 1 ´ p,
(Pascal’s distribution) r “ 1, 2, . . .

Remark. The discrete measure presented in Fig. 25 is such that its distribution
function is piecewise constant. However one should bear in mind that discrete mea-
sures, in general, may have a very complicated structure. For example, such a mea-
sure may be concentrated on a countable set of points, which is everywhere dense
in R (e.g., on the set of rational numbers).

Absolutely continuous measures. These are measures for which the corresponding
distribution functions are such that

Fpxq “
ż x

´8
f ptqdt, (5)

where f “ f ptq are nonnegative functions integrated to one and the integral is at first
taken in the Riemann sense, but later (see Sect. 6) in that of Lebesgue.

(Note that if we have two functions f ptq and f̃ ptq differing only on a set of zero
Lebesgue measure then the corresponding distribution functions Fpxq “ şx

´8 f ptq dt

and F̃pxq “ şx
´8 f̃ ptq dt will be the same; it is useful to keep in mind this remark

when solving Problem 8 of the next Sect. 4.)
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The function f “ f pxq, x P R, is the density of the distribution function F “ Fpxq
(or the density of the probability distribution, or simply the density) and F “ Fpxq
is called absolutely continuous.

It is clear that every nonnegative f “ f pxq that is Riemann integrable and such
that

ş8
´8 f pxqdx “ 1 defines a distribution function of some probability measure on

pR,BpRqq by (5). Table 2.3 presents some important examples of various kinds of
densities f “ f pxq with their names and parameters (a density f pxq is taken to be
zero for values of x not listed in the table).

Table 2.3
Distribution Density Parameters
Uniform on ra, bs 1{pb ´ aq, a ≤ x ≤ b a, b P R; a ă b
Normal or Gaussian p2πσ2q´1{2e´px´mq2{p2σ2q, x P R m P R, σ ą 0

Gamma xα´1e´x{β
Γpαqβα , x ≥ 0 α ą 0, β ą 0

Beta xr´1p1´xqs´1

Bpr,sq , 0 ≤ x ≤ 1 r ą 0, s ą 0

Exponential (gamma
with α “ 1, β “ 1{λ) λe´λx, x ≥ 0 λ ą 0

Bilateral exponential 1
2
λe´λ|x´α|, x P R λ ą 0, α P R

Chi-square, χ2 with n degrees of
freedom (gamma with 2´n{2xn{2´1e´x{2{Γpn{2q, x ≥ 0 n “ 1, 2, . . .
α “ n{2, β “ 2)

Student, t with n degrees of freedom
Γp 1

2
pn`1qq

pnπq1{2Γpn{2q
´
1 ` x2

n

¯´pn`1q{2
, x P R n “ 1, 2, . . .

F pm{nqm{2
Bpm{2,n{2q

xm{2´1

p1`mx{nqtm`nq{2 m, n “ 1, 2, . . .

Cauchy θ
πpx2`θ2q , x P R θ ą 0

Singular measures. These are measures whose distribution functions are continu-
ous but have all their points of increase on sets of zero Lebesgue measure. We do
not discuss this case in detail; we merely give an example of such a function.

We consider the interval r0, 1s and construct Fpxq by the following procedure
originated by Cantor.

We divide r0, 1s into thirds and put (Fig. 26)

F1pxq “
$&
%

1
2 , x P p 1

3 ,
2
3 q,

0, x “ 0,
1, x “ 1,

defining it in the intermediate intervals by linear interpolation.
Then we divide each of the intervals r0, 1

3 s and r 23 , 1s into three parts and define
the function (Fig. 27)

F2pxq “

$’’’’&
’’’’%

1
2 , x P p 1

3 ,
2
3 q,

1
4 , x P p 1

9 ,
2
9 q,

3
4 , x P p 7

9 ,
8
9 q,

0, x “ 0,
1, x “ 1

with its values at other points determined by linear interpolation.
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Fig. 26

Fig. 27

Continuing this process, we construct a sequence of functions Fnpxq, n “
1, 2, . . ., which converges to a nondecreasing continuous function Fpxq (the Can-
tor function), whose points of increase (x is a point of increase of Fpxq if Fpx `
εq ´ Fpx ´ εq ą 0 for every ε ą 0) form a set of Lebesgue measure zero. In
fact, it is clear from the construction of Fpxq that the total length of the intervals
p1
3 ,

2
3 q, p1

9 ,
2
9 q, p7

9 ,
8
9 q, . . . on which the function is constant is

1

3
` 2

9
` 4

27
` ¨ ¨ ¨ “ 1

3

8ÿ
n“0

ˆ
2

3

˙n

“ 1. (6)
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Let N be the set of points of increase of the Cantor function Fpxq. It follows
from (6) that λpN q “ 0. At the same time, if μ is the measure corresponding to
the Cantor function Fpxq, we have μpN q “ 1. (We then say that the measure is
singular with respect to Lebesgue measure λ.)

Without any further discussion of possible types of distribution functions, we
merely observe that in fact the three types that have been mentioned cover all pos-
sibilities. More precisely, every distribution function can be represented in the form
α1F1 ` α2F2 ` α3F3, where F1 is discrete, F2 is absolutely continuous, and F3 is
singular, and αi are nonnegative numbers, α1 ` α2 ` α3 “ 1 (Problem 18).

2. Theorem 1 establishes a one-to-one correspondence between probability mea-
sures on pR,BpRqq and distribution functions on R. An analysis of the proof of the
theorem shows that in fact a stronger theorem is true, one that in particular lets us
introduce Lebesgue measure on the real line.

Let μ be a σ-finite measure on pΩ,A q, where A is an algebra of subsets of
Ω. It turns out that the conclusion of Carathéodory’s theorem on the extension of
a measure from an algebra A to a minimal σ-algebra σpA q remains valid with a
σ-finite measure; this makes it possible to generalize Theorem 1.

A Lebesgue–Stieltjes measure on pR,BpRqq is a (countably additive) measure
μ such that the measure μpIq of every bounded interval I is finite. A generalized
distribution function on the real line R is a nondecreasing function G “ Gpxq, with
values in p´8, 8q, that is continuous on the right.

Theorem 1 can be generalized to the statement that the formula

μpa, bs “ Gpbq ´ Gpaq, a ă b,

again establishes a one-to-one correspondence between Lebesgue–Stieltjes mea-
sures μ and generalized distribution functions G.

In fact, if Gp`8q ´ Gp´8q ă 8, the proof of Theorem 1 can be taken over
without any change, since this case reduces to the case when Gp`8q´Gp´8q “ 1
and Gp´8q “ 0.

Now let Gp`8q ´ Gp´8q “ 8. Put

Gnpxq “
$&
%

Gpxq, |x| ≤ n,
Gpnq x ą n,
Gp´nq, x ă ´n.

On the algebra A let us define a finitely additive measure μ0 such that μ0pa, bs “
Gpbq ´ Gpaq, and let μn be the countably additive measures previously constructed
(by Theorem 1) from Gnpxq.

Evidently μn Ò μ0 on A . Now let A1,A2, . . . be disjoint sets in A and A ”ř
An P A . Then (Problem 6 of Sect. 1)

μ0pAq ≥
8ÿ

n“1

μ0pAnq.
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If
ř8

n“1 μ0pAnq “ 8 then μ0pAq “ ř8
n“1 μ0pAnq. Let us suppose thatř

μ0pAnq ă 8. Then

μ0pAq “ lim
n

μnpAq “ lim
n

8ÿ
k“1

μnpAkq.

By hypothesis,
ř

μ0pAnq ă 8. Therefore

0 ≤ μ0pAq ´
8ÿ

k“1

μ0pAkq “ lim
n

« 8ÿ
k“1

pμnpAkq ´ μ0pAkqq
ff
≤ 0,

since μn ≤ μ0.
Thus a σ-finite finitely additive measure μ0 is countably additive on A , and

therefore (by Carathéodory’s theorem) it can be extended to a countably additive
measure μ on σpA q.

The case Gpxq “ x is particularly important. The measure λ corresponding to
this generalized distribution function is Lebesgue measure on pR,BpRqq. As for the
interval [0, 1] of the real line, we can define the system BpRq by writing Λ P BpRq
if there are Borel sets A and B such that A Ď Λ Ď B, λpBzAq “ 0. Then Lebesgue
measure λ on BpRq is defined by λpΛq “ λpAq if A Ď Λ Ď B, Λ P BpRq and
λpBzAq “ 0.

3. The measurable space pRn,BpRnqq. Let us suppose, as for the real line, that P
is a probability measure on pRn,BpRnqq.

Let us write

Fnpx1, . . . , xnq “ Ppp´8, x1s ˆ ¨ ¨ ¨ ˆ p´8, xnsq,
or, in a more compact form,

Fnpxq “ Pp´8, xs,
where x “ px1, . . . , xnq, p´8, xs “ p´8, x1s ˆ ¨ ¨ ¨ ˆ p´8, xns.

Let us introduce the difference operator Δai,bi : Rn Ñ R defined by the formula

Δai,bi Fnpx1, . . . , xnq “ Fnpx1, . . . , xi´1, bi, xi`1 . . . , xnq
´Fnpx1, . . . , xi´1, ai, xi`1 . . . , xnq,

where ai ≤ bi. A simple calculation shows that

Δa1b1 ¨ ¨ ¨Δanbn Fnpx1, . . . , xnq “ Ppa, bs, (7)

where pa, bs “ pa1, b1s ˆ ¨ ¨ ¨ ˆ pan, bns. Hence it is clear, in particular, that (in
contrast to the one-dimensional case) Ppa, bs is in general not equal to Fnpbq´Fnpaq.

Since Ppa, bs ≥ 0, it follows from (7) that

Δa1b1 ¨ ¨ ¨Δanbn Fnpx1, . . . , xnq ≥ 0 (8)
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for arbitrary a “ pa1, . . . , anq, b “ pb1, . . . , bnq, ai ≤ bi.
It also follows from the continuity of P that Fnpx1, . . . , xnq is continuous on the

right with respect to the variables collectively, i.e., if xpkq Ó x, xpkq “ pxpkq
1 , . . . , xpkq

n q,
then

Fnpxpkqq Ó Fnpxq, k Ñ 8. (9)

It is also clear that
Fnp`8, . . . , `8q “ 1 (10)

and
lim
xÓy

Fnpx1, . . . , xnq “ 0, (11)

if at least one coordinate of y is ´8.

Definition 2. An n-dimensional distribution function (on Rn) is a function Fn “
Fnpx1, . . . , xnq with properties (8)–(11).

The following result can be established by the same reasoning as in Theorem 1.

Theorem 2. Let Fn “ Fnpx1, . . . , xnq be a distribution function on Rn. Then there is
a unique probability measure P on pRn,BpRnqq such that

Ppa, bs “ Δa1b1 ¨ ¨ ¨Δanbn Fnpx1, . . . , xnq. (12)

Here are some examples of n-dimensional distribution functions.
Let F1, . . . , Fn be one-dimensional distribution functions (on R) and

Fnpx1, . . . , xnq “ F1px1q ¨ ¨ ¨ Fnpxnq.
It is clear that this function is continuous on the right and satisfies (10) and
(11). It is also easy to verify that

Δa1b1 ¨ ¨ ¨Δanbn Fnpx1, . . . , xnq “
ź

rFkpbkq ´ Fkpakqs ≥ 0.

Consequently Fnpx1, . . . , xnq is a distribution function.
The case when

Fkpxkq “
$&
%

0, xk ă 0,
xk, 0 ≤ xk ≤ 1,
1, xk ą 1,

is particularly important. In this case

Fnpx1, . . . , xnq “ x1 ¨ ¨ ¨ xn.

The probability measure corresponding to this n-dimensional distribution function
is n-dimensional Lebesgue measure on r0, 1sn.

Many n-dimensional distribution functions appear in the form

Fnpx1, . . . , xnq “
ż x1

´8
¨ ¨ ¨

ż xn

´8
fnpt1, . . . , tnq dt1 ¨ ¨ ¨ dtn,
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where fnpt1, . . . , tnq is a nonnegative function such that

ż 8

´8
¨ ¨ ¨

ż 8

´8
fnpt1, . . . , tnq dt1 ¨ ¨ ¨ dtn “ 1,

and the integrals are Riemann (more generally, Lebesgue) integrals. The function
f “ fnpt1, . . . , tnq is called the density of the n-dimensional distribution function,
the density of the n-dimensional probability distribution, or simply an n-dimensional
density.

When n “ 1, the function

f pxq “ 1

σ
?
2π

epx´mq2{p2σ2q, x P R,

with σ ą 0 is the density of the (nondegenerate) Gaussian or normal distribution.
There are natural analogs of this density when n ą 1.

Let R “ }rij} be a positive semi-definite symmetric n ˆ n matrix:

nÿ
i,j“1

rijλiλj ≥ 0, λi P R, i “ 1, . . . , n, rij “ rji.

When R is a positive definite matrix, |R| “ detR ą 0 and consequently there is an
inverse matrix A “ }aij}. Then the function

fnpx1, . . . , xnq “ |A|1{2

p2πqn{2 expt´ 1
2

ÿ
aijpxi ´ miqpxj ´ mjqu, (13)

where mi P R, i “ 1, . . . , n, has the property that its (Riemann) integral over the
whole space equals 1 (this will be proved in Sect. 13) and therefore, since it is also
positive, it is a density.

This function is the density of the n-dimensional (nondegenerate) Gaussian or
normal distribution (with mean vector m “ pm1, . . . ,mnq and covariance matrix
R “ A´1).

When n “ 2 the density f2px1, x2q can be put in the form

f2px1, x2q “ 1

2πσ1σ2

a
1 ´ ρ2

ˆ exp

"
´ 1

2p1 ´ ρ2q
„ px1 ´ m1q2

σ2
1

´2ρ
px1 ´ m1qpx2 ´ m2q

σ1σ2
` px2 ´ m2q2

σ2
2

j*
, (14)

where σi ą 0, |ρ| ă 1. (The meanings of the parameters mi, σi and ρ will be
explained in Sect. 8.)
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x2x1

Fig. 28 Density of the two-dimensional Gaussian distribution

Figure 28 indicates the form of the two-dimensional Gaussian density.

Remark 3. As in the case n “ 1, Theorem 2 can be generalized to (similarly
defined) Lebesgue–Stieltjes measures on pRn,BpRnqq and generalized distribu-
tion functions on Rn. When the generalized distribution function Gnpx1, . . . , xnq is
x1 ¨ ¨ ¨ xn, the corresponding measure is Lebesgue measure on the Borel sets of Rn. It
clearly satisfies

λpa, bq “
nź

i“1

pbi ´ aiq,

i.e., the Lebesgue measure of the “rectangle”

pa, bs “ pa1, b1s ˆ ¨ ¨ ¨ ˆ pan, bns
is its “volume.”

4. The measurable space pR8,BpR8qq. For the spaces Rn, n ≥ 1, the probability
measures were constructed in the following way: first for elementary sets (rectan-
gles pa, bsq, then, in a natural way, for sets A “ řpai, bis, and finally, by using
Carathéodory’s theorem, for sets in BpRnq.

A similar procedure of constructing probability measures also works for the
space pR8,BpR8qq.

Let
InpBq “ tx P R8 : px1, . . . , xnq P Bu, B P BpRnq,

denote a cylinder set in R8 with base B P BpRnq. As we will see now, it is natural
to take the cylinder sets for the elementary sets in R8 whose probabilities enable us
to determine the probability measure on the sets of BpR8q.

Let P be a probability measure on pR8, BpR8qq. For n “ 1, 2, . . ., we take

PnpBq “ PpInpBqq, B P BpRnq. (15)
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The sequence of probability measures P1,P2, . . . defined respectively on
pR,BpRqq, pR2,BpR2qq, . . ., has the following evident consistency property: for
n “ 1, 2, . . . and B P BpRnq,

Pn`1pB ˆ Rq “ PnpBq. (16)

It is noteworthy that the converse also holds.

Theorem 3 (Kolmogorov’s Theorem on the Extension of Measures on
pR8, BpR8qq). Let P1,P2, . . . be probability measures on pR,BpRqq, pR2,BpR2qq,
. . . respectively, possessing the consistency property (16). Then there is a unique
probability measure P on pR8,BpR8qq such that

PpInpBqq “ PnpBq, B P BpRnq, (17)

for n “ 1, 2, . . . .

PROOF. Let Bn P BpRnq and let InpBnq be the cylinder with base Bn. We assign
the measure PpInpBnqq to this cylinder by taking PpInpBnqq “ PnpBnq.

Let us show that, in virtue of the consistency condition, this definition is con-
sistent, i.e., the value of PpInpBnqq is independent of the representation of the set
InpBnq. In fact, let the same cylinder be represented in two ways:

InpBnq “ In`kpBn`kq.
It follows that, if px1, . . . , xn`kq P Rn`k, we have

px1, . . . , xnq P Bn ô px1, . . . , xn`kq P Bn`k, (18)

and therefore, by (16)

PnpBnq “ Pn`1ppx1, . . . , xn`1q : px1, . . . , xnq P Bnq
“ . . . “ Pn`kppx1, . . . , xn`kq : px1, . . . , xnq P Bnq
“ Pn`kpBn`kq.

Let A pR8q denote the collection of all cylinder sets B̂n “ InpBnq,Bn P
BpRnq, n “ 1, 2, . . .. It is easily seen that A pR8q is an algebra.

Now let B̂1, . . . , B̂k be disjoint sets in A pR8q. We may suppose without loss of
generality that B̂i “ InpBn

i q, i “ 1, . . . , k, for some n, where Bn
1, . . . ,Bn

k are disjoint
sets in BpRnq. Then

P

˜
kÿ

i“1

B̂i

¸
“ P

˜
kÿ

i“1

InpBn
i q

¸
“ Pn

˜
kÿ

i“1

Bn
i

¸
“

nÿ
i“1

PnpBn
i q “

nÿ
i“1

PpB̂iq,

i.e., the set function P is finitely additive on the algebra A pR8q.
Let us show that P is “continuous at zero” (and therefore σ-additive on A pR8q,

see Theorem in Sect. 1), i.e., if a sequence of sets B̂n Ó ∅, n Ñ 8, then PpB̂nq Ñ 0,
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n Ñ 8. Suppose the contrary, i.e., let limPpB̂nq “ δ ą 0 (the limit exists due to
monotonicity). We may suppose without loss of generality that tB̂nu has the form

B̂n “ tx : px1, . . . , xnq P Bnu, Bn P BpRnq.
We use the following property of probability measures Pn on pRn,BpRnqq (see

Problem 9): if Bn P BpRnq, for a given δ ą 0 we can find a compact set An P BpRnq
such that An Ď Bn and

PnpBnzAnq ≤ δ{2n`1.

Therefore if
Ân “ tx : px1, . . . , xnq P Anu,

we have
PpB̂nzÂnq “ PnpBnzAnq ≤ δ{2n`1.

Form the set Ĉn “ Şn
k“1 Âk and let Cn be such that

Ĉn “ tx : px1, . . . , xnq P Cnu.
Then, since the sets B̂n decrease, we obtain

PpB̂nzĈnq ≤
nÿ

k“1

PpB̂nzÂkq ≤
nÿ

k“1

PpB̂kzÂkq ≤ δ{2.

But by assumption limn PpB̂nq “ δ ą 0, and therefore limn PpĈnq ≥ δ{2 ą 0. Let
us show that this contradicts the condition Ĉn Ó ∅.

Let us choose a point x̂pnq “ pxpnq
1 , xpnq

2 , . . .q in Ĉn. Then pxpnq
1 , . . . , xpnq

n q P Cn for
n ≥ 1.

Let pn1q be a subsequence of pnq such that xpn1q
1 Ñ x01, where x01 is a point in

C1. (Such a sequence exists since xpn1q
1 P C1 and C1 is compact.) Then select a

subsequence pn2q of pn1q such that pxpn2q
1 , xpn2q

2 q Ñ px01, x02q P C2. Similarly let

pxpnkq
1 , . . . , xpnkq

k q Ñ px01, . . . , x0k q P Ck. Finally form the diagonal sequence pmkq,

where mk is the kth term of pnkq. Then xpmkq
i Ñ x0i as mk Ñ 8 for i “ 1, 2, . . . , and

px01, x02, . . .q P Ĉn for n “ 1, 2, . . . , which evidently contradicts the assumption that
Ĉn Ó ∅, n Ñ 8. Thus the set function P is σ-additive on the algebra A pR8q and
hence, by Carathéodory’s theorem, it can be extended to a (probability) measure on
(R8,BpR8q). This completes the proof of the theorem.

[\
Remark 4. In the present case, the space R8 is a countable product of real lines,
R8 “ R ˆ R ˆ ¨ ¨ ¨ . It is natural to ask whether Theorem 3 remains true if
pR8,BpR8qq is replaced by a direct product of measurable spaces pΩi,Fiq, i “
1, 2, . . . .

We may notice that in the preceding proof the only topological property of the
real line that was used was that every set in BpRnq contains a compact subset whose
probability measure is arbitrarily close to the probability measure of the whole set.
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It is known, however, that this is a property not only of spaces pRn,BpRnqq, but also
of arbitrary complete separable metric spaces with σ-algebras generated by the open
sets.

Consequently Theorem 3 remains valid if we suppose that P1,P2, . . . is a se-
quence of consistent probability measures on

pΩ1,F1q, pΩ1 ˆ Ω2,F1 b F2q, . . . ,
where pΩi,Fiq are complete separable metric spaces with σ-algebras Fi generated
by open sets, and pR8,BpR8qq is replaced by

pΩ1 ˆ Ω2 ˆ ¨ ¨ ¨ , F1 b F2 b ¨ ¨ ¨ q.
In Sect. 9 (Theorem 2) it will be shown that the result of Theorem 3 remains

valid for arbitrary measurable spaces pΩi,Fiq if the measures Pn are constructed
in a particular way. However, Theorem 3 may fail in the general case (without any
hypotheses on the topological nature of the measurable spaces or on the structure of
the family of measures tPnuq. This is shown by the following example.

Let us consider the space Ω “ p0, 1s, which is evidently not complete, and con-
struct a sequence F1 Ď F2 Ď ¨ ¨ ¨ of σ-algebras in the following way. For n “ 1,
2, . . ., let

ϕnpωq “
"
1, 0 ă ω ă 1{n,
0, 1{n ≤ ω ≤ 1,

Cn “ tA P Ω: A “ tω : ϕnpωq P Bu for some B P BpRqu
and let Fn “ σtC1, . . . ,Cnu be the smallest σ-algebra containing the sets C1, . . . ,Cn.
Clearly F1 Ď F2 Ď ¨ ¨ ¨ . Let F “ σpYFnq be the smallest σ-algebra containing
all the Fn. Consider the measurable space pΩ,Fnq and define a probability measure
Pn on it as follows:

Pntω : pϕ1pωq, . . . , ϕnpωqq P Bnu “
"
1 if p1, . . . , 1q P Bn,
0 otherwise,

where Bn “ BpRnq. It is easy to see that the family tPnu is consistent: if A P Fn

then Pn`1pAq “ PnpAq. However, we claim that there is no probability measure P
on pΩ,F q such that its restriction P |Fn (i.e., the measure P considered only on
sets in Fn) coincides with Pn for n “ 1, 2, . . . . In fact, let us suppose that such a
probability measure P exists. Then

Ptω : ϕ1pωq “ ¨ ¨ ¨ “ ϕnpωq “ 1u “ Pntω : ϕ1pωq “ ¨ ¨ ¨ “ ϕnpωq “ 1u “ 1
(19)

for n “ 1, 2, . . .. But

tω : ϕ1pωq “ ¨ ¨ ¨ “ ϕnpωq “ 1u “ p0, 1{nq Ó ∅,

which contradicts (19) and the hypothesis of countable additivity (and therefore
continuity at the “zero” ∅) of the set function P.
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We now give an example of a probability measure on pR8,BpR8qq. Let F1pxq,
F2pxq, . . . be a sequence of one-dimensional distribution functions. Define the func-
tions Gpxq “ F1pxq, G2px1, x2q “ F1px1qF2px2q, . . ., and denote the corresponding
probability measures on pR,BpRqq, pR2,BpR2qq, . . . by P1,P2, . . . . Then it fol-
lows from Theorem 3 that there is a measure P on pR8,BpR8qq such that

Ptx P R8 : px1, . . . , xnq P Bu “ PnpBq, B P BpRnq,
and, in particular,

Ptx P R8 : x1 ≤ a1, . . . , xn ≤ anu “ F1pa1q ¨ ¨ ¨ Fnpanq.
Let us take Fipxq to be a Bernoulli distribution,

Fipxq “
$&
%

0, x ă 0,
q, 0 ≤ x ă 1,
1, x ≥ 1.

Then we can say that there is a probability measure P on the space Ω of sequences
of numbers x “ px1, x2, . . .q, xi “ 0 or 1, together with the σ-algebra of its Borel
subsets, such that

Ptx : x1 “ a1, . . . , xn “ anu “ pΣai qn´Σai .

5. The measurable spaces pRT ,BpRTqq. Let T be an arbitrary set of indices t P T
and Rt a real line corresponding to the index t. We consider a finite unordered set
τ “ rt1, . . . , tns of distinct indices ti, ti P T, n ≥ 1, and let Pτ be a probability
measure on pRτ,BpRτqq, where Rτ “ Rt1 ˆ ¨ ¨ ¨ ˆ Rtn .

We say that the family tPτu of probability measures, where τ runs through all fi-
nite unordered sets, is consistent if, for any sets τ “ rt1, . . . , tns and σ “ rs1, . . . , sks
such that σ Ď τ we have

Pσtpxs1 , . . . , xsk q : pxs1 , . . . , xsk q P Bu “ Pτtpxt1 , . . . , xtn q : pxs1 , . . . , xsk q P Bu
(20)

for every B P BpRσq.

Theorem 4 (Kolmogorov’s Theorem on the Extension of Measures in
pRT ,BpRTqq). Let tPτu be a consistent family of probability measures on pRτ,BpRτqq.
Then there is a unique probability measure P on pRT ,BpRTqq such that

PpIτpBqq “ PτpBq (21)

for all unordered sets τ “ rt1, . . . , tns of different indices ti P T, B P BpRτq and
IτpBq “ tx P RT : pxt1 , . . . , xtn q P Bu.
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PROOF. Let the set B̂ P BpRTq. By Theorem 3 of Sect. 2 there is an at most count-
able set S “ ts1, s2, . . .u Ď T such that B̂ “ tx : pxs1 , xs2 , . . .q P Bu, where
B P BpRSq, RS “ Rs1 ˆ Rs2 ˆ ¨ ¨ ¨ . In other words, B̂ “ ISpBq is a cylinder
set with base B P BpRSq.

We can define a set function P on such cylinder sets by putting

PpISpBqq “ PSpBq, (22)

where PS is the probability measure whose existence is guaranteed by Theorem 3.
We claim that P is in fact the measure whose existence is asserted in the theorem.
To establish this we first verify that the definition (22) is consistent, i.e., that it leads
to a unique value of PpB̂q for all possible representations of B̂; and second, that this
set function is countably additive.

Let B̂ “ IS1pB1q and B̂ “ IS2pB2q. It is clear that then B̂ “ IS1YS2pB3q with
some B3 P BpRS1YS2q; therefore it is enough to show that if S Ď S1 and B P BpRSq,
then PS1 pB1q “ PSpBq, where

B1 “ tpxs1
1
, xs1

2
, . . .q : pxs1 , xs2 , . . .q P Bu

with S1 “ ts1
1, s1

2, . . .u, S “ ts1, s2, . . .u. But by the assumed consistency condi-
tion (20) this equation follows immediately from Theorem 3. This establishes that
the value of PpB̂q is independent of the representation of B̂.

To verify the countable additivity of P, let us suppose that tB̂nu is a sequence
of pairwise disjoint sets in BpRTq. Then there is an at most countable set S Ď T
such that B̂n “ ISpBnq for all n ≥ 1, where Bn P BpRSq. Since PS is a probability
measure, we have

P
´ ÿ

B̂n

¯
“ P

´ ÿ
ISpBnq

¯
“ PS

´ ÿ
Bn

¯
“

ÿ
PSpBnq

“
ÿ

PpISpBnqq “
ÿ

PpB̂nq.
Finally, property (21) follows immediately from the way in which P was con-
structed. This completes the proof.

[\
Remark 5. We emphasize that T is any set of indices. Hence, by the remark after
Theorem 3, the present theorem remains valid if we replace the real lines Rt by
arbitrary complete separable metric spaces Ωt (with σ-algebras generated by open
sets).

Remark 6. The original probability measures tPτu were assumed defined for un-
ordered sets τ “ rt1, . . . , tns of different indices. In this connection it is worth to
emphasize that these measures tPτu as functions of τ “ rt1, . . . , tns are actually
functions of sets consisting of n (distinct) points tt1u, . . . , ttnu. (For example, the
unordered collections ra, bs and rb, as should be regarded as the same, since they
determine the same set consisting of the points tau and tbu.) It is also possible to
start from a family of probability measures tPτu where τ runs through all ordered
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sets τ “ pt1, . . . , tnq of different indices. (Then the collections pa, bq and pb, aq con-
sisting of the same points have to be treated as different, since they differ by the
order of their elements.) In this case, in order to have Theorem 4 hold we have to
adjoin to (20) a further consistency condition:

Ppt1,...,tnqpAt1 ˆ ¨ ¨ ¨ ˆ Atn q “ Ppti1 ,...,tin qpAti1
ˆ ¨ ¨ ¨ ˆ Atin q, (23)

where pi1, . . . , inq is an arbitrary permutation of p1, . . . , nq and Ati P BpRti q. The
necessity of this condition for the existence of the probability measure P follows
from (21) (with Prt1,...,tnspBq replaced by Ppt1,...,tnqpBqq.

From now on we shall assume that the sets τ under consideration are unordered.
If T is a subset of the real line (or some completely ordered set), we may assume
without loss of generality that the set τ “ rt1, . . . , tns satisfies t1 ă t2 ă ¨ ¨ ¨ ă tn.
Consequently it is enough to define “finite-dimensional” probabilities only for sets
τ “ rt1, . . . , tns for which t1 ă t2 ă ¨ ¨ ¨ ă tn.

Now consider the case T “ r0,8q. Then RT is the space of all real functions x “
pxtqt≥0. A fundamental example of a probability measure on pRr0,8q,BpRr0,8qqq is
Wiener measure, constructed as follows.

Consider the family tϕtpy | xqut≥0 of Gaussian densities (as functions of y for
fixed x):

ϕtpy | xq “ 1?
2πt

e´py´xq2{2t, y P R,

and for each τ “ rt1, . . . , tns, t1 ă t2 ă ¨ ¨ ¨ ă tn, and each set

B “ I1 ˆ ¨ ¨ ¨ ˆ In, Ik “ pak, bkq,
construct the measure PτpBq according to the formula

PτpI1 ˆ ¨ ¨ ¨ ˆ Inq
“ ş

I1
¨ ¨ ¨ ş

In
ϕt1pa1 | 0qϕt2´t1pa2 | a1q ¨ ¨ ¨ϕtn´tn´1

pan | an´1q da1 ¨ ¨ ¨ dan

(24)

(integration in the Riemann sense). Now we define the set function P for each cylin-
der set It1,...,tn pI1 ˆ ¨ ¨ ¨ ˆ Inq “ tx P RT : xt1 P I1, . . . , xtn P Inu by taking

PpIt1,...,tn pI1 ˆ ¨ ¨ ¨ ˆ Inqq “ Prt1,...,tnspI1 ˆ ¨ ¨ ¨ ˆ Inq.
The intuitive meaning of this method of assigning a measure to the cylinder set
It1,...,tn pI1 ˆ ¨ ¨ ¨ ˆ Inq is as follows.

The set It1,...,tn pI1 ˆ ¨ ¨ ¨ ˆ Inq is the set of functions that at times t1, . . . , tn
pass through the “windows” I1, . . . , In (see Fig. 24 in Sect. 2). We shall interpret
ϕtk´tk´1

pak | ak´1q dak as the probability that a particle starting at ak´1 arrives in
time tk ´ tk´1 at the dak-neighborhood of ak. Then the product of densities that
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appears in (24) describes a certain independence of the increments of the displace-
ments of the moving “particle” in the time intervals

r0, t1s, rt1, t2s, . . . , rtn´1, tns.
The family of measures tPτu constructed in this way is easily seen to be con-

sistent, and therefore can be extended to a measure on pRr0,8q,BpRr0,8qqq. The
measure so obtained plays an important role in probability theory. It was introduced
by N. Wiener and is known as Wiener measure.

6. PROBLEMS

1. Let Fpxq “ Pp´8, xs. Verify the following formulas:

Ppa, bs “ Fpbq ´ Fpaq, Ppa, bq “ Fpb´q ´ Fpaq,
Pra, bs “ Fpbq ´ Fpa´q, Pra, bq “ Fpb´q ´ Fpa´q,

Ptxu “ Fpxq ´ Fpx´q,
where Fpx´q “ limyÒx Fpyq.

2. Verify (7).
3. Prove Theorem 2.
4. Show that a distribution function F “ Fpxq on R has at most a countable set

of points of discontinuity. Does a corresponding result hold for distribution
functions on Rn?

5. Show that each of the functions

Gpx, yq “
"
1, x ` y ≥ 0,
0, x ` y ă 0,

Gpx, yq “ rx ` ys, the integral part of x ` y,

is continuous on the right and nondecreasing in each argument, but is not a
(generalized) distribution function on R2.

6. Let μ be the Lebesgue–Stieltjes measure generated by a continuous general-
ized distribution function. Show that if the set A is at most countable, then
μpAq “ 0.

7. Let c be the cardinal number of the continuum. Show that the cardinal number
of the σ-algebra of Borel sets in Rn is c, whereas that of the σ-algebra of
Lebesgue measurable sets is 2c.

8. Let pΩ,F ,Pq be a probability space and A an algebra of subsets of Ω such
that σpA q “ F . Using the principle of appropriate sets, prove that for every
ε ą 0 and B P F there is a set A P A such that

PpA � Bq ≤ ε.

9. Let P be a probability measure on pRn,BpRnqq. Show that, for every ε ą 0
and B P BpRnq, there are a compact Borel set A1 and an open Borel set A2

such that A1 Ď B Ď A2 and PpA2zA1q ≤ ε. (This was used in the proof of
Theorem 3.)
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10. Verify the consistency of the family of measures tPτu constructed by means
of the formula PτpBq “ PpIτpBqq, where P is a given probability measure.
(Compare with (21).)

11. Verify that the “distributions” given in Tables 2.2 and 2.3 are probability dis-
tributions indeed.

12. Show that the system Â in Remark 2 is a σ-algebra.
13. Show that the set function μpAq, A P Â , introduced in Remark 2, is a measure.
14. Give an example showing that a finitely-additive (but not countably-additive)

measure μ0 on an algebra A need not admit an extension to a countably addi-
tive measure on σpA q.

15. Show that any finitely-additive probability measure defined on an algebra A
of subsets of Ω can be extended to finitely-additive probability on all subsets
of Ω.

16. Let P be a probability measure on a σ-algebra F of subsets of Ω. Suppose a
set C is such that C Ď Ω, but C R F . Show that P can be extended (preserving
the countable additivity property) to σpF Y tCuq.

17. Show that the support of a continuous distribution function F is a perfect set
(i.e., suppF is a closed set such that for any x P suppF and ε ą 0 there is
y P suppF such that 0 ă |x ´ y| ă ε). Show that the support of (an arbitrary)
distribution function is a closed set.

18. Prove the following fundamental result on the structure of distribution func-
tions (see the end of Subsection 1): each distribution function is a convex com-
bination

F “ α1Fd ` α2Fabc ` α3Fsc

of a discrete (Fd), absolutely continuous (Fabc) and singular continuous (Fsc)
distribution functions, αi ≥ 0, α1 ` α2 ` α3 “ 1.

19. Let F “ Fpxq be the Cantor distribution function. Show that any point x in the
Cantor set N of its points of increase (which is the same as the support of F)
can be represented as x “ ř8

k“1
αkpxq
3k , where αkpxq “ 0 or 2, and that for such

points Fpxq “ ř8
k“1

αkpxq
2k`1 .

20. Let C be a closed subset of R. Construct a distribution function F with
suppF “ C.

21. Show that the distribution function of the binomial distribution (Subsection 1
of Sect. 2)

Bnpm; pq “ Pntν ≤ mu “
mÿ

k“0

Ck
npkqn´k

can be expressed in terms of the (incomplete) beta-function:

Bnpm; pq “ 1

Bpm ` 1, n ´ mq
ż 1

p
xmp1 ´ xqn´m´1 dx.
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22. Show that the Poisson distribution function Fpn;λq “ řn
k“0

e´λλk

k! is ex-
pressed in terms of the (incomplete) gamma-function:

Fpn;λq “ 1

n!

ż 8

λ

xne´x dx.

23. Along with the mean value and standard deviation, which serve as location
and scale parameters of a distribution, the following two parameters describing
the shape of a density function f “ f pxq are customarily used: the skewness
(related to asymmetry of the distribution)

α3 “ μ3

σ3
,

and the kurtosis (“peakedness”)

α4 “ μ4

σ4
,

where μk “ ş px ´ μqkf pxq dx, μ “ ş
xf pxq dx, σ2 “ μ2.

Find the values of α3 and α4 for the distributions listed in Table 2.3 (Subsec-
tion 1).

24. Show that for a random variable X having the gamma-distribution (see Ta-
ble 2.3) with β “ 1

E Xk “ Γpk ` αq
Γpαq .

In particular, E X “ α, E X2 “ αpα ` 1q and hence VarX “ α.
Find the analogs of these formulas when β ‰ 1.

25. Show that for a random variable X with beta-distribution (see Table 2.3)

E Xk “ Bpr ` k, sq
Bpr, sq .

26. The binomial distribution Pntν “ ru “ Cr
nprqn´r, 0 ≤ r ≤ n, consists of

probabilities that the number ν of “successes” in n trials is r, where p is the
probability of “success” in a single trial and the number n of trials is fixed in
advance. Now we ask how many trials are needed for r “successes” to occur.
Namely, let τ denote the number of trials when r “successes” occur for the
first time (unlike the binomial case, r is a given number here and the number
of trials is random). We are interested in the probabilities Prtτ “ ku, k “
r, r ` 1, . . . , which form what is known as the negative binomial distribution.
Show that for r “ 1, 2, . . .

Prpτ “ kq “ Cr´1
k´1prqk´r, k “ r, r ` 1, . . . ,

and Er τ “ rq{p.
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4 Random Variables: I

1. Let pΩ,F q be a measurable space and let pR,BpRqq be the real line with the
system BpRq of Borel sets.

Definition 1. A real function ξ “ ξpωq defined on pΩ,F q is an F -measurable
function, or a random variable, if

tω : ξpωq P Bu P F (1)

for every B P BpRq; or, equivalently, if the inverse image

ξ´1pBq ” tω : ξpωq P Bu
is a measurable set in Ω.

When pΩ,F q “ pRn,BpRnqq, the BpRnq-measurable functions are called Borel
functions.

The simplest example of a random variable is the indicator IApωq of an arbitrary
(measurable) set A P F .

A random variable ξ that has a representation

ξpωq “
8ÿ

i“1

xiIAi pωq, (2)

where
ř

Ai “ Ω, Ai P F , is called discrete. If the sum in (2) is finite, the random
variable is called simple.

With the same interpretation as in Sect. 4 of Chap. 1, we may say that a ran-
dom variable is a numerical property of an experiment, with a value depending on
“chance.” Here the requirement (1) of measurability is fundamental, for the follow-
ing reason. If a probability measure P is defined on pΩ,F q, it then makes sense
to speak of the probability of the event tξpωq P Bu that the value of the random
variable belongs to a Borel set B.

We introduce the following definitions.

Definition 2. A probability measure Pξ on pR,BpRqq with

PξpBq “ Ptω : ξpωq P Bu, B P BpRq,
is called the probability distribution of ξ on pR,BpRqq.

Definition 3. The function

Fξpxq “ Ppω : ξpωq ≤ xu, x P R,

is called the distribution function of ξ.
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For a discrete random variable the measure Pξ is concentrated on an at most
countable set and can be represented in the form

PξpBq “
ÿ

tk : xkPBu
ppxkq, (3)

where ppxkq “ Ptξ “ xku “ ΔFξpxkq.
The converse is evidently true: If Pξ is represented in the form (3) then ξ is a

discrete random variable.
A random variable ξ is called continuous if its distribution function Fξpxq is

continuous for x P R.
A random variable ξ is called absolutely continuous if there is a nonnegative

function f “ fξpxq, called its density, such that

Fξpxq “
ż x

´8
fξpyq dy, x P R (4)

(the integral can be taken in the Riemann sense, or more generally in that of
Lebesgue; see Sect. 6 below).

2. To establish that a function ξ “ ξpωq is a random variable, we have to verify
property (1) for all sets B P F . The following lemma shows that the class of such
“test” sets can be considerably narrowed.

Lemma 1. Let E be a system of sets such that σpE q “ BpRq. A necessary and
sufficient condition that a function ξ “ ξpωq is F -measurable is that

tω : ξpωq P Eu P F (5)

for all E P E .

PROOF. The necessity is evident. To prove the sufficiency we again use the principle
of appropriate sets (Sect. 2).

Let D be the system of those Borel sets D in BpRq for which ξ´1pDq P F .
The operation “form the inverse image” is easily shown to preserve the set-theoretic
operations of union, intersection, and complement:

ξ´1

ˆ ď
α

Bα

˙
“

ď
α

ξ´1pBαq,

ξ´1

ˆ č
α

Bα

˙
“

č
α

ξ´1pBαq, (6)

ξ´1pBαq “ ξ´1pBαq.
It follows that D is a σ-algebra. Therefore

E Ď D Ď BpRq



208 2 Mathematical Foundations of Probability Theory

and
σpE q Ď σpDq “ D Ď BpRq.

But σpE q “ BpRq and consequently D “ BpRq.
[\

Corollary. A necessary and sufficient condition for ξ “ ξpωq to be a random vari-
able is that tω : ξpωq ă xu P F

for every x P R, or that
tω : ξpωq ≤ xu P F

for every x P R.

PROOF. The proof is immediate, since each of the systems

E1 “ tx : x ă c, c P Ru,
E2 “ tx : x ≤ c, c P Ru

generates the σ-algebra BpRq, i.e., σpE1q “ σpE2q “ BpRq (see Sect. 2).
[\
The following lemma makes it possible to construct random variables as func-

tions of other random variables.

Lemma 2. Let ϕ “ ϕpxq be a Borel function and ξ “ ξpωq a random variable.
Then the composition η “ ϕ˝ξ, i.e., the function ηpωq “ ϕpξpωqq, is also a random
variable.

PROOF. This statement follows from the equations

tω : ηpωq P Bu “ tω : ϕpξpωqq P Bu “ tω : ξpωq P ϕ´1pBqu P F (7)

for B P BpRq, since ϕ´1pBq P BpRq.
[\
Therefore if ξ is a random variable, so are, for examples, ξn, ξ` “ maxpξ, 0q,

ξ´ “ ´minpξ, 0q, and |ξ|, since the functions xn, x`, x´ and |x| are Borel functions
(Problem 3).

3. Starting from a given collection of random variables tξnu, we can construct new
functions, for example,

ř8
k“1 |ξk|, lim sup ξn, lim inf ξn, etc. Notice that in general

such functions take values on the extended real line R “ r´8, 8s. Hence it is
advisable to extend the class of F -measurable functions somewhat by allowing
them to take the values ˘8.

Definition 4. A function ξ “ ξpωq defined on pΩ,F q with values in R “ r´8, 8s
will be called an extended random variable if condition (1) is satisfied for every
Borel set B P BpR̄q, where BpR̄q “ σpBpRq,˘8q.

The following theorem, despite its simplicity, is the key to the construction of the
Lebesgue integral (Sect. 6).
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Theorem 1. (a) For every random variable ξ “ ξpωq (extended ones included)
there is a sequence of simple random variables ξ1, ξ2, . . . such that |ξn| ≤ |ξ|
and ξnpωq Ñ ξpωq, n Ñ 8, for all ω P Ω.

(b) If also ξpωq ≥ 0, there is a sequence of simple random variables ξ1, ξ2, . . . such
that ξnpωq Ò ξpωq, n Ñ 8, for all ω P Ω.

PROOF. We begin by proving the second statement. For n “ 1, 2, . . . , put

ξnpωq “
n2nÿ
k“1

k ´ 1

2n
Ik,npωq ` nItξpωq≥nupωq,

where Ik,n is the indicator of the set tpk ´ 1q{2n ≤ ξpωq ă k{2nu. It is easy to verify
that the sequence ξnpωq so constructed is such that ξnpωq Ò ξpωq for all ω P Ω. The
first statement follows from this if we merely observe that ξ can be represented in
the form ξ “ ξ` ´ ξ´. This completes the proof of the theorem.

[\
We next show that the class of extended random variables is closed under point-

wise convergence. For this purpose, we note first that if ξ1, ξ2, . . . is a sequence of
extended random variables, then sup ξn, inf ξn, lim sup ξn and lim inf ξn are also
random variables (possibly extended). This follows immediately from

tω : sup ξn ą xu “
ď

n

tω : ξn ą xu P F ,

tω : inf ξn ă xu “
ď

n

tω : ξn ă xu P F ,

and
lim sup ξn “ inf

n
sup
m≥n

ξm, lim inf ξn “ sup
n

inf
m≥n

ξm.

Theorem 2. Let ξ1, ξ2, . . . be a sequence of extended simple random variables and
ξpωq “ lim ξnpωq, ω P Ω. Then ξpωq is also an extended random variable.

PROOF. It follows immediately from the remark above and the fact that

tω : ξpωq ă xu “ tω : lim ξnpωq ă xu
“ tω : lim sup ξnpωq “ lim inf ξnpωqu X tlim sup ξnpωq ă xu
“ Ω X tlim sup ξnpωq ă xu “ tlim sup ξnpωq ă xu P F .

[\
4. We mention a few more properties of the simplest functions of random variables
considered on the measurable space pΩ,F q and possibly taking values on the ex-
tended real line R “ r´8, 8s.˚

˚ We shall assume the usual conventions about arithmetic operations in R: if a P R then a ˘ 8 “
˘8, a{ ˘ 8 “ 0; a ¨ 8 “ 8 if a ą 0, and a ¨ 8 “ ´8 if a ă 0; 0 ¨ p˘8q “ 0, 8 ` 8 “
8, ´8 ´ 8 “ ´8.
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If ξ and η are random variables, ξ ` η, ξ ´ η, ξη, and ξ{η are also random
variables (assuming that they are defined, i.e., that no indeterminate forms like 8 ´
8, 8{8, a{0 occur).

In fact, let tξnu and tηnu be sequences of simple random variables converging to
ξ and η (see Theorem 1). Then

ξn ˘ ηn Ñ ξ ˘ η,

ξnηn Ñ ξη,
ξn

ηn ` 1
n Itηn“0upωq Ñ ξ

η
.

The functions on the left-hand sides of these relations are simple random variables.
Therefore, by Theorem 2, the limit functions ξ ˘ η, ξη and ξ{η are also random
variables.

5. Let ξ be a random variable. Consider sets from F of the form tω : ξpωq P Bu, B P
BpRq. It is easily verified that they form a σ-algebra, called the σ-algebra generated
by ξ, and denoted by Fξ or σpξq.

If ϕ is a Borel function, it follows from Lemma 2 that the function η “ ϕ ˝ ξ is
also a random variable, and in fact Fξ-measurable, i.e., such that

tω : ηpωq P Bu P Fξ, B P BpRq
(see (7)). It turns out that the converse is also true.

Theorem 3. Let η “ ηpωq be an Fξ-measurable random variable. Then there is a
Borel function ϕ such that η “ ϕ ˝ ξ, i.e. ηpωq “ ϕpξpωqq for every ω P Ω.

PROOF. Let Φ be the class of Fξ-measurable functions η “ ηpωq and Φ̃ξ the class
of Fξ-measurable functions representable in the form ϕ ˝ ξ, where ϕ is a Borel
function. It is clear that Φ̃ξ Ď Φξ. The conclusion of the theorem is that in fact
Φ̃ξ “ Φξ.

Let A P Fξ and ηpωq “ IApωq. Let us show that η P Φ̃ξ. In fact, if A P Fξ there
is a B P BpRq such that A “ tω : ξpωq P Bu. Let

χBpxq “
"
1, x P B,
0, x R B.

Then IApωq “ χBpξpωqq P Φ̃ξ. Hence it follows that every simple Fξ-measurable
function

řn
i“1 ciIAi pωq, Ai P Fξ, also belongs to Φ̃ξ.

Now let η be an arbitrary Fξ-measurable function. By Theorem 1 there is a se-
quence of simple Fξ-measurable functions tηnu such that ηnpωq Ñ ηpωq, n Ñ 8,
ω P Ω. As we just showed, there are Borel functions ϕn “ ϕnpxq such that
ηnpωq “ ϕnpξpωqq. Moreover ϕnpξpωqq Ñ ηpωq, n Ñ 8, ω P Ω.

Let B denote the set tx P R : limn ϕnpxq existsu. This is a Borel set. Therefore

ϕpxq “
#
lim

n
ϕnpxq, x P B,

0, x R B

is also a Borel function (see Problem 6).
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But then it is evident that ηpωq “ limn ϕnpξpωqq “ ϕpξpωqq for all ω P Ω.
Consequently Φ̃ξ “ Φξ.

[\
6. Consider a measurable space pΩ,F q and a finite or countably infinite decompo-
sition D “ tD1,D2, . . .u of the space Ω: namely, Di P F and

ř
i Di “ Ω. We form

the algebra A containing the empty set ∅ and the sets of the form
ř

α Dα, where
the sum is taken in the finite or countably infinite sense. It is evident that the system
A is a monotonic class, and therefore, according to Lemma 2 of Sect. 2, the algebra
A is at the same time a σ-algebra, denoted σpDq and called the σ-algebra generated
by the decomposition D . Clearly σpDq Ď F .

Lemma 3. Let ξ “ ξpωq be a σpDq-measurable random variable. Then ξ is repre-
sentable in the form

ξpωq “
8ÿ

k“1

xkIDk pωq, (8)

where xk P R, i.e., ξpωq is constant on the elements Dk of the decomposition, k ≥ 1.

PROOF. Let us choose a set Dk and show that the σpDq-measurable function ξ has
a constant value on that set. For this purpose, denote

xk “ sup rc : Dk X tω : ξpωq ă cu “ ∅s.
Since tω : ξpωq ă xku “ Ť tω : ξpωq ă ru, where the union is over all rational
r ă xk, we have

Dk X tω : ξpωq ă xku “ ∅.

Now let c ą xk. Then Dk X tω : ξpωq ă cu ‰ ∅, and since the set tω : ξpωq ă
cu has the form

ř
α Dα, where the sum is over a finite or countable collection of

indices, we have
Dk X tω : ξpωq ă cu “ Dk.

Hence, it follows that, for all c ą xk,

Dk X tω : ξpωq ≥ cu “ ∅,

and since tω : ξpωq ą xku “ Ť tω : ξpωq ≥ ru, where the union is over all rational
r ą xk, we have

Dk X tω : ξpωq ą xku “ ∅.

Consequently, Dk X tω : ξpωq ‰ xku “ ∅, and therefore

Dk Ď tω : ξpωq “ xku
as required. [\
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7. PROBLEMS

1. Show that the random variable ξ is continuous if and only if Ppξ “ xq “ 0 for
all x P R.

2. If |ξ| is F -measurable, is it true that ξ is also F -measurable?
3. Prove that xn, x` “ maxpx, 0q, x´ “ ´minpx, 0q, |x| “ x` ` x´ are Borel

functions.
4. If ξ and η are F -measurable, then tω : ξpωq “ ηpωqu P F .
5. Let ξ and η be random variables on pΩ,F q, and A P F . Then the function

ζpωq “ ξpωq ¨ IA ` ηpωq ¨ IA

is also a random variable.
6. Let ξ1, . . . , ξn be random variables and ϕpx1, . . . , xnq a Borel function. Show

that ϕpξ1pωq, . . . , ξnpωqq is also a random variable.
7. Let ξ and η be random variables, both taking the values 1, 2, . . . , N. Sup-

pose that Fξ “ Fη . Show that there is a permutation pi1, i2, . . . , iNq of
p1, 2, . . . ,Nq such that tω : ξ “ ju “ tω : η “ iju for j “ 1, 2, . . . ,N.

8. Give an example of a random variable ξ having a density function f pxq such
that limxÑ8 f pxq does not exist and therefore f pxq does not tend to zero as
n Ñ ˘8.
Hint. One solution is suggested by the comment following (5) in Sect. 4. Find
another solution, where the required density is continuous.

9. Let ξ and η be bounded random variables (|ξ| ≤ c1, |η| ≤ c2). Prove that if for
all m, n ≥ 1

E ξmηn “ E ξm ¨ E ηn,

then ξ and η are independent.
10. Let ξ and η be random variables with identical distribution functions Fξ and

Fη . Prove that if x P R and tω : ξpωq “ xu ‰ ∅, then there exists y P R such
that tω : ξpωq “ xu “ tω : ηpωq “ yu.

11. Let E be an at most countable subset of R and ξ a mapping Ω Ñ E. Prove
that ξ is a random variable on pΩ,F q if and only if tω : ξpωq “ xu P F for
all x P E.

5 Random Elements

1. In addition to random variables, probability theory and its applications involve
random objects of more general kinds, for example random points, vectors, func-
tions, processes, fields, sets, measures, etc. In this connection it is desirable to have
the concept of a random object of any kind.

Definition 1. Let pΩ,F q and pE,E q be measurable spaces. We say that a function
X “ Xpωq, defined on Ω and taking values in E, is F {E -measurable, or is a random
element (with values in E), if
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tω : Xpωq P Bu P F (1)

for every B P E . Random elements (with values in E) are sometimes called E-valued
random variables.

Let us consider some special cases.
If pE,E q “ pR,BpRqq, the definition of a random element is the same as the

definition of a random variable (Sect. 4).
Let pE,E q “ pRn,BpRnqq. Then a random element Xpωq is a “random point”

in Rn. If πk is the projection of Rn on the kth coordinate axis, Xpωq can be repre-
sented in the form

Xpωq “ pξ1pωq, . . . , ξnpωqq, (2)

where ξk “ πk ˝ X.
It follows from (1) that ξk is an ordinary random variable. In fact, for B P BpRq

we have

tω : ξkpωq P Bu “ tω : ξ1pωq P R, . . . , ξk´1 P R, ξk P B, ξk`1 P R, . . . , ξnpωq P Ru
“ tω : Xpωq P pR ˆ ¨ ¨ ¨ ˆ R ˆ B ˆ R ˆ ¨ ¨ ¨ ˆ Rqu P F ,

since R ˆ ¨ ¨ ¨ ˆ R ˆ B ˆ R ˆ ¨ ¨ ¨ ˆ R P BpRnq.

Definition 2. An ordered set pη1pωq, . . . , ηnpωqq of random variables is called an
n-dimensional random vector.

According to this definition, every random element Xpωq with values in Rn is
an n-dimensional random vector. The converse is also true: every random vector
Xpωq “ pξ1pωq, . . . , ξnpωqq is a random element in Rn. In fact, if Bk P BpRq, k “
1, . . . , n, then

tω : Xpωq P pB1 ˆ ¨ ¨ ¨ ˆ Bnqu “
nč

k“1

tω : ξkpωq P Bku P F .

But BpRnq is the smallest σ-algebra containing the sets B1 ˆ¨ ¨ ¨ˆBn. Consequently
we find immediately, by an evident generalization of Lemma 1 of Sect. 4, that when-
ever B P BpRnq, the set tω : Xpωq P Bu belongs to F .

Let pE,E q “ pZ,BpZqq, where Z is the set of complex numbers x ` iy, x, y P R,
and BpZq is the smallest σ-algebra containing the sets tz : z “ x ` iy, a1 ă x ≤
b1, a2 ă y ≤ b2u. It follows from the discussion above that a complex-valued
random variable Zpωq can be represented as Zpωq “ Xpωq ` iYpωq, where Xpωq
and Ypωq are random variables. Hence we may also call Zpωq a complex random
variable.

Let pE,E q “ pRT ,BpRTqq, where T is a subset of the real line. In this case
every random element X “ Xpωq can evidently be represented as X “ pξtqtPT with
ξt “ πt ˝ X, and is called a random function with time domain T .
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Definition 3. Let T be a subset of the real line. A set of random variables X “ pξtqtPT

is called a random process˚ with time domain T .
If T “ t1, 2, . . .u, we call X “ pξ1, ξ2, . . .q a random process with discrete time,

or a random sequence.
If T “ r0, 1s, p´8,8q, r0,8q, . . ., we call X “ pξtqtPT a random process with

continuous time.

It is easy to show, by using the structure of the σ-algebra BpRTq (Sect. 2) that
every random process X “ pξtqtPT (in the sense of Definition 3) is also a random
function (a random element with values in RT ).

Definition 4. Let X “ pξtqtPT be a random process. For each given ω P Ω the func-
tion pξtpωqqtPT is said to be a realization or a trajectory of the process corresponding
to the outcome ω.

The following definition is a natural generalization of Definition 2 of Sect. 4.

Definition 5. Let X “ pξtqtPT be a random process. The probability measure PX on
pRT ,BpRTqq defined by

PXpBq “ Ptω : Xpωq P Bu, B P BpRTq,
is called the probability distribution of X. The probabilities

Pt1,...,tn pBq ” Ptω : pξt1 , . . . , ξtn q P Bu, B P BpRnq
with t1 ă t2 ă ¨ ¨ ¨ ă tn, ti P T , are called finite-dimensional probabilities (or
probability distributions). The functions

Ft1,...,tn px1, . . . , xnq ” Ptω : ξt1 ≤ x1, . . . , ξtn ≤ xnu
with t1 ă t2 ă ¨ ¨ ¨ ă tn, ti P T , are called finite-dimensional distribution functions
of the process X “ pξtqtPT .

Let pE,E q “ pC,B0pCqq, where C is the space of continuous functions x “
pxtqtPT on T “ r0, 1s and B0pCq is the σ-algebra generated by the open sets
(Sect. 2). We show that every random element X on pC,B0pCqq is also a random
process with continuous trajectories in the sense of Definition 3.

In fact, according to Sect. 2 the set A “ tx P C : xt ă au is open in B0pCq.
Therefore

tω : ξtpωq ă au “ tω : Xpωq P Au P F .

On the other hand, let X “ pξtpωqqtPT be a random process (in the sense of Defi-
nition 3) whose trajectories are continuous functions for every ω P Ω. According to
(17) of Sect. 2

tx P C : x P Sρpx0qu “
č
tk

tx P C : |xtk ´ x0tk | ă ρu,

˚ Or stochastic process (Translator).
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where tk are the rational points of r0, 1s, x0 is an element of C and

Sρpx0q “ tx P C : sup
tPT

|xt ´ x0t | ă ρu.

Therefore

tω : Xpωq P SρpX0pωqqu “
č
tk

tω : |ξtk pωq ´ ξ0tk pωq| ă ρu P F ,

and therefore we also have tω : Xpωq P Bu P F for every B P B0pCq.
Similar reasoning will show that every random element of the space pD,B0pDqq

can be considered as a random process with trajectories in the space of functions
with no discontinuities of the second kind; and conversely.

2. Let pΩ,F ,Pq be a probability space and pEα,Eαq measurable spaces, where α
belongs to an (arbitrary) set A.

Definition 6. We say that the F {Eα-measurable functions pXαpωqq, α P A, are
independent (or mutually independent) if, for every finite set of indices α1, . . . , αn

the random elements Xα1
, . . . ,Xαn are independent, i.e.

PpXα1
P Bα1

, . . . , Xαn P Bαn q “ PpXα1
P Bα1

q ¨ ¨ ¨ PpXαn P Bαn q, (3)

where Bα P Eα.

Let A “ t1, 2, . . . , nu, let ξα be random variables, α P A, and

Fξpx1, . . . , xnq “ Ppξ1 ≤ x1, . . . , ξn ≤ xnq
be the n-dimensional distribution function of the random vector ξ “ pξ1, . . . , ξnq.
Let Fξi pxq be the distribution functions of the random variables ξi, i “ 1, . . . , n.

Theorem. A necessary and sufficient condition for the random variables ξ1, . . . , ξn

to be independent is that

Fξpx1, . . . , xnq “ Fξ1px1q ¨ ¨ ¨ Fξn pxnq (4)

for all px1, . . . , xnq P Rn.

PROOF. The necessity is evident. To prove the sufficiency we put a “ pa1, . . . , anq,
b “ pb1, . . . , bnq,

Pξpa, bs “ Ptω : a1 ă ξ1 ≤ b1, . . . , an ă ξn ≤ bnu,
Pξi pai, bis “ Ptai ă ξi ≤ biu.

Then

Pξpa, bs “
nź

i“1

rFξi pbiq ´ Fξi paiqs “
nź

i“1

Pξi pai, bis



216 2 Mathematical Foundations of Probability Theory

by (7) of Sect. 3 and (4), and therefore

Ptξ1 P I1, . . . , ξn P Inu “
nź

i“1

Ptξi P Iiu, (5)

where Ii “ pai, bis.
We fix I2, . . . , In and show that

Ptξ1 P B1, ξ2 P I2, . . . , ξn P Inu “ Ptξ1 P B1u
nź

i“2

Ptξi P Iiu (6)

for all B1 P BpRq. Let M be the collection of sets in BpRq for which (6) holds
(the “principle of appropriate sets,” Sect. 2). Then M evidently contains the algebra
A of sets consisting of sums of disjoint intervals of the form I1 “ pa1, b1s. Hence
A Ď M Ď BpRq. From the countable additivity (and therefore continuity) of
probability measures it also follows that M is a monotonic class. Therefore (see
Subsection 1 of Sect. 2)

μpA q Ď M Ď BpRq.
But μpA q “ σpA q “ BpRq by Theorem 1 of Sect. 2. Therefore M “ BpRq.

Thus (6) is established. Now fix B1, I3, . . . , In; by the same method we can es-
tablish (6) with I2 replaced by the Borel set B2. Continuing in this way, we can
evidently arrive at the required equation,

Ppξ1 P B1, . . . , ξn P Bnq “ Ppξ1 P B1q ¨ ¨ ¨ Ppξn P Bnq,
where Bi P BpRq. This completes the proof of the theorem.

[\
3. PROBLEMS

1. Let ξ1, . . . , ξn be discrete random variables. Show that they are independent
if and only if

Ppξ1 “ x1, . . . , ξn “ xnq “
nź

i“1

Ppξi “ xiq

for all real x1, . . . , xn.
2. Carry out the proof that every random function Xpωq “ pξtpωqqtPT is a random

process (in the sense of Definition 3) and conversely.
3. Let X1, . . . ,Xn be random elements with values in pE1, E1q, . . . , pEn, Enq,

respectively. In addition let pE1
1, E

1
1q, . . . , pE1

n, E
1

n q be measurable spaces and
let g1, . . . , gn be E1{E 1

1, . . . ,En{E 1
n -measurable functions, respectively. Show

that if X1, . . . ,Xn are independent, the random elements g1 ˝ X1, . . . , gn ˝ Xn

are also independent.
4. Let X1,X2, . . . be an infinite sequence of exchangeable random variables (i.e.,

such that the joint distribution of any collection of k random variables with
distinct subscripts, say, Xi1 , . . . ,Xik , depends only on k and does not depend on
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the specific choice of pairwise distinct i1, . . . , ik; compare with the definition in
Problem 11 of Sect. 1). Prove that if E X2

n ă 8, n ≥ 1, then CovpX1,X2q ≥ 0.
5. Let ξ, η, ζ be independent random variables. Prove that ξ ` η and ζ2 are

independent.
6. Let ξ1, . . . , ξm, η1, . . . , ηn be random variables. Consider the random vectors

X “ pξ1, . . . , ξmq and Y “ pη1, . . . , ηnq. Suppose the following conditions are
fulfilled:

(i) The random variables ξ1, . . . , ξm are independent;
(ii) The random variables η1, . . . , ηn are independent;

(iii) The random vectors X and Y treated respectively as Rm- and Rn-valued
random elements are independent.

Prove that the random variables ξ1, . . . , ξm, η1, . . . , ηn are mutually inde-
pendent.

7. Suppose X “ pξ1, . . . , ξmq and Y “ pη1, . . . , ηnq are random vectors such that
the random variables ξ1, . . . , ξm, η1, . . . , ηn are mutually independent.

(i) Prove that the random vectors X and Y treated as random elements are
independent (compare with Problem 6).

(ii) Let f : Rm Ñ R, g : Rn Ñ R be Borel functions. Prove that the random
variables f pξ1, . . . , ξmq and gpη1, . . . , ηnq are independent.

6 Lebesgue Integral: Expectation

1. When pΩ,F ,Pq is a finite probability space and ξ “ ξpωq is a simple random
variable,

ξpωq “
nÿ

k“1

xkIAk pωq, (1)

the expectation E ξ was defined in Sect. 4 of Chap. 1. The same definition of the
expectation E ξ of a simple random variable ξ can be used for any probability space
pΩ,F ,Pq. That is, we define

E ξ “
nÿ

k“1

xk PpAkq. (2)

This definition is consistent (in the sense that E ξ is independent of the particular
representation of ξ in the form (1)), as can be shown just as for finite probability
spaces. The simplest properties of the expectation can be established similarly (see
Subsection 5 of Sect. 4, Chap. 1).

In the present section we shall define and study the properties of the expecta-
tion E ξ of an arbitrary random variable. In the language of analysis, E ξ is merely
the Lebesgue integral of the F -measurable function ξ “ ξpωq with respect to the
measure P. In addition to E ξ we shall use the notation

ş
Ω
ξpωq Ppdωq or

ş
Ω
ξ d P.
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2. Let ξ “ ξpωq be a nonnegative random variable. We construct a sequence of
simple nonnegative random variables tξnun≥1 such that ξnpωq Ò ξpωq, n Ñ 8, for
each ω P Ω (see Theorem 1 in Sect. 4).

Since E ξn ≤ E ξn`1 (cf. Property (3) in Subsection 5 of Sect. 4, Chap. 1), the
limit limn E ξn exists, possibly with the value `8.

Definition 1. The Lebesgue integral of the nonnegative random variable ξ “ ξpωq,
or its expectation, is

E ξ ” lim
n

E ξn. (3)

To see that this definition is consistent, we need to show that the limit is indepen-
dent of the choice of the approximating sequence tξnu. In other words, we need to
show that if ξn Ò ξ and ηm Ò ξ, where tηmu is a sequence of simple functions, then

lim
n

E ξn “ lim
m

E ηm. (4)

Lemma 1. Let η and ξn be simple nonnegative random variables, n ≥ 1, and

ξn Ò ξ ≥ η.

Then
lim

n
E ξn ≥ E η. (5)

PROOF. Let ε ą 0 and
An “ tω : ξn ≥ η ´ εu.

It is clear that An Ò Ω and

ξn “ ξnIAn ` ξnIAn
≥ ξnIAn ≥ pη ´ εqIAn .

Hence by the properties of the expectations of simple random variables we find that

E ξn ≥ Epη ´ εqIAn “ E ηIAn ´ εPpAnq
“ E η ´ E ηIAn

´ εPpAnq ≥ E η ´ C PpAnq ´ ε,

where C “ maxω ηpωq. Since ε is arbitrary, the required inequality (5) follows.
[\
It follows from this lemma that limn E ξn ≥ limm E ηm and by symmetry

limm E ηm ≥ limn E ξn, which proves (4).

The following remark is often useful.

Remark 1. The expectation E ξ of the nonnegative random variable ξ satisfies

E ξ “ sup
tsPS : s≤ξu

E s, (6)

where S “ tsu is the set of simple random variables (Problem 1).
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Thus the expectation is well defined for nonnegative random variables. We now
consider the general case.

Let ξ be a random variable and ξ` “ maxpξ, 0q, ξ´ “ ´minpξ, 0q.

Definition 2. We say that the expectation E ξ of the random variable ξ exists, or is
defined, if at least one of E ξ` and E ξ´ is finite:

minpE ξ`, E ξ´q ă 8.

In this case we define

E ξ ” E ξ` ´ E ξ´.

The expectation E ξ is also called the Lebesgue integral of the function ξ with re-
spect to the probability measure P.

Definition 3. We say that the expectation of ξ is finite if E ξ` ă 8 and E ξ´ ă 8.

Since |ξ| “ ξ` ` ξ´, the finiteness of E ξ is equivalent to E |ξ| ă 8. (In this
sense one says that the Lebesgue integral is absolutely convergent.)

Remark 2. In addition to the expectation E ξ, significant numerical characteristics
of a random variable ξ are the number E ξr (if defined) and E |ξ|r, r ą 0, which are
known as the moment of order r (or rth moment) and the absolute moment of order
r (or absolute rth moment) of ξ.

Remark 3. In the definition of the Lebesgue integral
ş
Ω
ξpωq Ppdωq given above,

we supposed that P was a probability measure (PpΩq “ 1) and that the F -
measurable functions (random variables) ξ had values in R “ p´8, 8q. Suppose
now that μ is any measure defined on a measurable space pΩ,F q and possibly tak-
ing the value `8, and that ξ “ ξpωq is an F -measurable function with values
in R “ r´8, 8s (an extended random variable). In this case the Lebesgue inte-
gral

ş
Ω
ξpωqμpdωq is defined in the same way: first, for nonnegative simple ξ (by

(2) with P replaced by μ), then for arbitrary nonnegative ξ, and in general by the
formula ż

Ω

ξpωqμpdωq “
ż
Ω

ξ`μpdωq ´
ż
Ω

ξ´μpdωq,
provided that no indeterminacy of the form 8 ´ 8 arises.

A case that is particularly important for mathematical analysis is that in which
pΩ,Fq “ pR,BpRqq and μ is Lebesgue measure. In this case the integral

ş
R ξpxqμpdxq

is written
ş

R ξpxq dx, or
ş8

´8 ξpxq dx, or pLq ş8
´8 ξpxq dx to emphasize its differ-

ence from the Riemann integral pRq ş8
´8 ξpxqdx. If the measure μ (Lebesgue–

Stieltjes) corresponds to a generalized distribution function G “ Gpxq, the integralş
R ξpxqμpdxq is also called a Lebesgue–Stieltjes integral and is denoted by

(L–S)
ş

R ξpxq Gpdxq, a notation that distinguishes it from the corresponding
Riemann–Stieltjes integral
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(R–S)
ż

R
ξpxq Gpdxq

(see Subsection 11 below).
It will be clear from what follows (Property D) that if E ξ is defined then so is the

expectation EpξIAq for every A P F . The notation Epξ;Aq or
ş

A ξ dP is often used
for EpξIAq or its equivalent,

ş
Ω
ξIA d P. The integral

ş
A ξ d P is called the Lebesgue

integral of ξ with respect to P over the set A.
Similarly, we write

ş
A ξ dμ instead of

ş
Ω
ξ ¨ IA dμ for an arbitrary measure μ. In

particular, if μ is an n-dimensional Lebesgue–Stieltjes measure, and A “ pa1b1s ˆ
¨ ¨ ¨ ˆ pan, bns, the notation

ż b1

a1

¨ ¨ ¨
ż bn

an

ξpx1, . . . , xnqμpdx1, . . . , dxnq instead of

ż
A
ξ dμ,

is often used. If μ is Lebesgue measure, we write simply dx1 ¨ ¨ ¨ dxn instead of
μpdx1, . . . , dxnq.

3. Properties of the expectation E ξ of a random variable ξ.

A. Let c be a constant and let E ξ exist. Then Epcξq exists and

Epcξq “ c E ξ.

B. Let ξ ≤ η; then
E ξ ≤ E η

with the understanding that

if ´ 8 ă E ξ then ´ 8 ă E η and E ξ ≤ E η

or
if E η ă 8 then E ξ ă 8 and E ξ ≤ E η.

C. If E ξ exists then
| E ξ| ≤ E |ξ|.

D. If E ξ exists then EpξIAq exists for each A P F ; if E ξ is finite, EpξIAq is finite.
E. If ξ and η are nonnegative random variables, or such that E |ξ| ă 8 and

E |η| ă 8, then
Epξ ` ηq “ E ξ ` E η.

(See Problem 2 for a generalization.)

Let us establish A–E.
A. This is obvious for simple random variables. Let ξ ≥ 0, ξn Ò ξ, where ξn are

simple random variables and c ≥ 0. Then cξn Ò cξ and therefore

Epcξq “ limEpcξnq “ c limE ξn “ c E ξ.
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In the general case we need to use the representation ξ “ ξ` ´ ξ´ and notice
that pcξq` “ cξ`, pcξq´ “ cξ´ when c ≥ 0, whereas when c ă 0, pcξq` “
´cξ´, pcξq´ “ ´cξ`.

B. If 0 ≤ ξ ≤ η, then E ξ and E η are defined and the inequality E ξ ≤ E η
follows directly from (6). Now let E ξ ą ´8; then E ξ´ ă 8. If ξ ≤ η, we have
ξ` ≤ η` and ξ´ ≥ η´. Therefore E η´ ≤ E ξ´ ă 8; consequently E η is defined
and E ξ “ E ξ` ´ E ξ´ ≤ E η` ´ E η´ “ E η. The case when E η ă 8 can be
discussed similarly.

C. Since ´|ξ| ≤ ξ ≤ |ξ|, Properties A and B imply

´ E |ξ| ≤ E ξ ≤ E |ξ|,
i.e., | E ξ| ≤ E |ξ|.

D. This follows from B and

pξIAq` “ ξ`IA ≤ ξ`, pξIAq´ “ ξ´IA ≤ ξ´.

E. Let ξ ≥ 0, η ≥ 0, and let tξnu and tηnu be sequences of simple functions
such that ξn Ò ξ and ηn Ò η. Then Epξn ` ηnq “ E ξn ` E ηn and

Epξn ` ηnq Ò Epξ ` ηq, E ξn Ò E ξ, E ηn Ò E η

and therefore Epξ ` ηq “ E ξ ` E η. The case when E |ξ| ă 8 and E |η| ă 8
reduces to this if we use the facts that

ξ “ ξ` ´ ξ´, η “ η` ´ η´, ξ` ≤ |ξ|, ξ´ ≤ |ξ|,
and

η` ≤ |η|, η´ ≤ |η|.
The following group of statements about expectations involve the notion of “P-

almost surely.” We say that a property holds “P-almost surely” if there is a set N P
F with PpNq “ 0 such that the property holds for every point ω of ΩzN. Instead of
“P-almost surely” we often say “P-almost everywhere” or simply “almost surely”
(a.s.) or “almost everywhere” (a.e.).

F. If ξ “ 0 (a.s.) then E ξ “ 0.

In fact, if ξ is a simple random variable, ξ “ ř
xkIAk pωq and xk ‰ 0, we have

PpAkq “ 0 by hypothesis and therefore E ξ “ 0. If ξ ≥ 0 and 0 ≤ s ≤ ξ, where
s is a simple random variable, then s “ 0 (a.s.) and consequently E s “ 0 and
E ξ “ suptsPS : s≤ξu E s “ 0. The general case follows from this by means of the
representation ξ “ ξ` ´ξ´ and the facts that ξ` ≤ |ξ|, ξ´ ≤ |ξ|, and |ξ| “ 0 (a.s.).

G. If ξ “ η (a.s.) and E |ξ| ă 8, then E |η| ă 8 and E ξ “ E η (see also
Problem 3).

In fact, let N “ tω : ξ ‰ ηu. Then PpNq “ 0 and ξ “ ξIN ` ξIN , η “ ηIN ` ξIN .
By properties E and F, we have E ξ “ E ξIN ` E ξIN “ E ξIN “ E ηIN . But
E ηIN “ 0, and therefore E ξ “ E ηIN ` E ηIN “ E η, by Property E.
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H. Let ξ ≥ 0 and E ξ “ 0. Then ξ “ 0 (a.s).

For the proof, let A “ tω : ξpωq ą 0u, An “ tω : ξpωq ≥ 1{nu. It is clear that
An Ò A and 0 ≤ ξIAn ≤ ξIA. Hence, by Property B,

0 ≤ E ξIAn ≤ E ξ “ 0.

Consequently

0 “ E ξIAn ≥
1

n
PpAnq

and therefore PpAnq “ 0 for all n ≥ 1. But PpAq “ limPpAnq and therefore
PpAq “ 0.

I. Let ξ and η be such that E |ξ| ă 8, E |η| ă 8 and EpξIAq ≤ EpηIAq for all
A P F . Then ξ ≤ η (a.s.).

In fact, let B “ tω : ξpωq ą ηpωqu. Then EpηIBq ≤ EpξIBq ≤ EpηIBq and
therefore EpξIBq “ EpηIBq. By Property E, we have Eppξ ´ ηqIBq “ 0 and by
Property H we have pξ ´ ηqIB “ 0 (a.s.), whence PpBq “ 0.

J. Let ξ be an extended random variable and E |ξ| ă 8. Then |ξ| ă 8 pa. s.q
In fact, let A “ tω : |ξpωq| “ 8u and PpAq ą 0. Then E |ξ| ≥ Ep|ξ|IAq “

8 ¨ PpAq “ 8, which contradicts the hypothesis E |ξ| ă 8. (See also Problem 4.)
4. Here we consider the fundamental theorems on taking limits under the expectation
sign (or the Lebesgue integral sign).

Theorem 1 (On Monotone Convergence). Let η, ξ, ξ1, ξ2, . . . be random
variables.

(a) If ξn ≥ η for all n ≥ 1, E η ą ´8, and ξn Ò ξ, then

E ξn Ò E ξ.

(b) If ξn ≤ η for all n ≥ 1, E η ă 8, and ξn Ó ξ, then

E ξn Ó E ξ.

PROOF. (a) First suppose that η ≥ 0. For each k ≥ 1 let tξpnq
k un≥1 be a sequence of

simple functions such that ξpnq
k Ò ξk, n Ñ 8. Put ζpnq “ max1≤k≤n ξ

pnq
k . Then

ζpn´1q ≤ ζpnq “ max
1≤k≤n

ξ
pnq
k ≤ max

1≤k≤n
ξk “ ξn.

Let ζ “ limn ζ
pnq. Since

ξ
pnq
k ≤ ζpnq ≤ ξn
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for 1 ≤ k ≤ n, we find by taking limits as n Ñ 8 that

ξk ≤ ζ ≤ ξ

for every k ≥ 1 and therefore ξ “ ζ.
The random variables ζpnq are simple and ζpnq Ò ζ. Therefore

E ξ “ E ζ “ limE ζpnq ≤ limE ξn.

On the other hand, it is obvious, since ξn ≤ ξn`1 ≤ ξ, that

limE ξn ≤ E ξ.

Consequently limE ξn “ E ξ.
Now let η be any random variable with E η ą ´8.
If E η “ 8 then E ξn “ E ξ “ 8 by Property B, and our proposition is proved.

Let E η ă 8. Together with the assumption that E η ą ´8 this implies E |η| ă 8.
It is clear that 0 ≤ ξn ´ η Ò ξ ´ η for all ω P Ω. Therefore by what has been
established, Epξn ´ ηq Ò Epξ ´ ηq and therefore (by Property E and Problem 2)

E ξn ´ E η Ò E ξ ´ E η.

But E |η| ă 8, and therefore E ξn Ò E ξ, n Ñ 8.
The proof of (b) follows from (a) if we replace the original variables by their

negatives.
[\

Corollary. Let tηnun≥1 be a sequence of nonnegative random variables. Then

E
8ÿ

n“1

ηn “
8ÿ

n“1

E ηn.

The proof follows from Property E (see also Problem 2), the monotone conver-
gence theorem, and the remark that

kÿ
n“1

ηn Ò
8ÿ

n“1

ηn, k Ñ 8.

[\
Theorem 2 (Fatou’s Lemma). Let η, ξ1, ξ2, . . . be random variables.

(a) If ξn ≥ η for all n ≥ 1 and E η ą ´8, then

E lim inf ξn ≤ lim inf E ξn.

(b) If ξn ≤ η for all n ≥ 1 and E η ă 8, then

lim supE ξn ≤ E lim sup ξn.
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(c) If |ξn| ≤ η for all n ≥ 1 and E η ă 8, then

E lim inf ξn ≤ lim inf E ξn ≤ lim supE ξn ≤ E lim sup ξn. (7)

PROOF. (a) Let ζn “ infm≥n ξm; then

lim inf ξn “ lim
n

inf
m≥n

ξm “ lim
n

ζn.

It is clear that ζn Ò lim inf ξn and ζn ≥ η for all n ≥ 1. Then by Theorem 1

E lim inf ξn “ E lim
n

ζn “ lim
n

E ζn “ lim inf
n

E ζn ≤ lim inf E ξn,

which establishes (a). The second conclusion follows from the first. The third is a
corollary of the first two.

[\
Theorem 3 (Lebesgue’s Theorem on Dominated Convergence). Let η, ξ, ξ1, ξ2, . . .
be random variables such that |ξn| ≤ η, E η ă 8 and ξn Ñ ξ pa.s.q. Then E |ξ| ă
8,

E ξn Ñ E ξ (8)

and
E |ξn ´ ξ| Ñ 0 (9)

as n Ñ 8.

PROOF. By hypothesis, lim inf ξn “ lim sup ξn “ ξ (a.s.). Therefore by Property G
and Fatou’s lemma (item (c))

E ξ “ E lim inf ξn ≤ lim inf E ξn “ lim supE ξn “ E lim sup ξn “ E ξ,

which establishes (8). It is also clear that |ξ| ≤ η. Hence E |ξ| ă 8.
Conclusion (9) can be proved in the same way if we observe that

|ξn ´ ξ| ≤ 2η.
[\

Corollary. Let η, ξ, ξ1, ξ2, . . . be random variables such that |ξn| ≤ η, ξn Ñ
ξ pa.s.q and E ηp ă 8 for some p ą 0. Then E |ξ|p ă 8 and E |ξ ´ ξn|p Ñ 0,
n Ñ 8.

For the proof, it is sufficient to observe that

|ξ| ≤ η, |ξ ´ ξn|p ≤ p|ξ| ` |ξn|qp ≤ p2ηqp.

The condition “|ξn| ≤ η, E η ă 8” that appears in Fatou’s lemma and the
dominated convergence theorem and ensures the validity of formulas (7)–(9) can be
somewhat weakened. In order to be able to state the corresponding result (Theo-
rem 4), we introduce the following definition.
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Definition 4. A family tξnun≥1 of random variables is said to be uniformly inte-
grable (with respect to the measure P) if

sup
n

ż
t|ξn|ącu

|ξn| Ppdωq Ñ 0, c Ñ 8, (10)

or, in a different notation,

sup
n

Er|ξn|It|ξn|ącus Ñ 0, c Ñ 8. (11)

It is clear that if ξn, n ≥ 1, satisfy |ξn| ≤ η, E η ă 8, then the family tξnun≥1 is
uniformly integrable.

Theorem 4. Let tξnun≥1 be a uniformly integrable family of random variables. Then

(a) E lim inf ξn ≤ lim inf E ξn ≤ lim supE ξn ≤ E lim sup ξn.
(b) If in addition ξn Ñ ξ (a.s.q then ξ is integrable and

E ξn Ñ E ξ, n Ñ 8,

E |ξn ´ ξ| Ñ 0, n Ñ 8.

PROOF. (a) For every c ą 0

E ξn “ ErξnItξnă´cus ` ErξnItξn≥´cus. (12)

By uniform integrability, for every ε ą 0 we can take c so large that

sup
n

| ErξnItξnă´cus| ă ε. (13)

By Fatou’s lemma,

lim inf ErξnItξn≥´cus ≥ Erlim inf ξnItξn≥´cus.
But ξnItξn≥´cu ≥ ξn and therefore

lim inf ErξnItξn≥´cus ≥ Erlim inf ξns. (14)

From (12)–(14) we obtain

lim inf E ξn ≥ Erlim inf ξns ´ ε.

Since ε ą 0 is arbitrary, it follows that lim inf E ξn ≥ E lim inf ξn. The inequality
with upper limits, lim supE ξn ≤ E lim sup ξn, is proved similarly.

Conclusion (b) can be deduced from (a) as in Theorem 3.
[\
The deeper significance of the concept of uniform integrability is revealed by

the following theorem, which gives a necessary and sufficient condition for taking
limits under the expectation sign.
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Theorem 5. Let 0 ≤ ξn Ñ ξ pP- a.s.) and E ξn ă 8, n ≥ 1. Then E ξn Ñ E ξ ă 8
if and only if the family tξnun≥1 is uniformly integrable.

PROOF. The sufficiency follows from conclusion (b) of Theorem 4. For the proof
of the necessity we consider the (at most countable) set

A “ ta : Ppξ “ aq ą 0u.
Then we have ξnItξnăau Ñ ξItξăau for each a R A, and the family

tξnItξnăauun≥1

is uniformly integrable. Hence, by the sufficiency part of the theorem, we have
E ξnItξnăau Ñ E ξItξăau, a R A, and therefore

E ξnItξn≥au Ñ E ξItξ≥au, a R A, n Ñ 8. (15)

Take an ε ą 0 and choose a0 R A so large that E ξItξ≥a0u ă ε{2; then choose N0

so large that
E ξnItξn≥a0u ≤ E ξItξ≥a0u ` ε{2

for all n ≥ N0, and consequently E ξnItξn≥a0u ≤ ε. Then choose a1 ≥ a0 so large
that E ξnItξn≥a1u ≤ ε for all n ≤ N0. Then we have

sup
n

E ξnItξn≥a1u ≤ ε,

which establishes the uniform integrability of the family tξnun≥1 of random
variables.

[\
5. Let us notice some tests for uniform integrability.

We first observe that if tξnu is a family of uniformly integrable random variables,
then

sup
n

E |ξn| ă 8. (16)

In fact, for a given ε ą 0 and sufficiently large c ą 0

sup
n

E |ξn| “ sup
n

rEp|ξn|It|ξn|≥cuq ` Ep|ξn|It|ξn|ăcuqs
≤ sup

n
Ep|ξn|It|ξn|≥cuq ` sup

n
Ep|ξn|Ip|ξn|ăcqq ≤ ε ` c,

which establishes (16).
It turns out that (16) together with a condition of uniform continuity is necessary

and sufficient for uniform integrability.

Lemma 2. A necessary and sufficient condition for a family tξnun≥1 of random
variables to be uniformly integrable is that E |ξn|, n ≥ 1, are uniformly bounded
pi.e., (16) holdsq and that Et|ξn|IAu, n ≥ 1, are uniformly continuous pi.e.
supn Et|ξn|IAu Ñ 0 when PpAq Ñ 0q.
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PROOF. Necessity. Condition (16) was verified above. Moreover,

Et|ξn|IAu “ Et|ξn|IAXt|ξn|≥cuu ` Et|ξn|IAXt|ξn|ăcuu
≤ Et|ξn|It|ξn|≥cuu ` cPpAq. (17)

Take c so large that supn Et|ξn|It|ξn|≥cuu ≤ ε{2. Then if PpAq ≤ ε{2c, we have

sup
n

Et|ξn|IAu ≤ ε

by (17). This establishes the uniform continuity.
Sufficiency. Let ε ą 0 and let δ ą 0 be chosen so that PpAq ă δ implies that

Ep|ξn|IAq ≤ ε, uniformly in n. Since

E |ξn| ≥ E |ξn|It|ξn|≥cu ≥ c Pt|ξn| ≥ cu
for every c ą 0 (cf. Chebyshev’s inequality), we have

sup
n

Pt|ξn| ≥ cu ≤ 1

c
supE |ξn| Ñ 0, c Ñ 8,

and therefore, when c is sufficiently large, any set t|ξn| ≥ cu, n ≥ 1, can be taken
as A. Therefore supEp|ξn|It|ξn|≥cuq ≤ ε, which establishes the uniform integrability.
This completes the proof of the lemma.

[\
The following proposition provides a simple sufficient condition for uniform in-

tegrability.

Lemma 3. Let ξ1, ξ2, . . . be a sequence of integrable random variables and G “
Gptq a nonnegative increasing function, defined for t ≥ 0, such that

lim
tÑ8

Gptq
t

“ 8, (18)

sup
n

ErGp|ξn|qs ă 8. (19)

Then the family tξnun≥1 is uniformly integrable.

PROOF. Let ε ą 0, M “ supn ErGp|ξn|qs, a “ M{ε. Take c so large that Gptq{t ≥ a
for t ≥ c. Then

Er|ξn|It|ξn|≥cus ≤ 1

a
ErGp|ξn|q ¨ It|ξn|≥cus ≤ M

a
“ ε

uniformly for n ≥ 1.
[\

6. If ξ and η are independent simple random variables, we can show, as in Sub-
section 5 of Sect. 4, Chap. 1, that E ξη “ E ξ ¨ E η. Let us now establish a similar
proposition in the general case (see also Problem 6).
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Theorem 6. Let ξ and η be independent random variables, E |ξ| ă 8, E |η| ă 8.
Then E |ξη| ă 8 and

E ξη “ E ξ ¨ E η. (20)

PROOF. First let ξ ≥ 0, η ≥ 0. Put

ξn “
8ÿ

k“0

k
n

Itk{n≤ξpωqăpk`1q{nu,

ηn “
8ÿ

k“0

k
n

Itk{n≤ηpωqăpk`1q{nu.

Then ξn ≤ ξ, |ξn ´ ξ| ≤ 1{n and ηn ≤ η, |ηn ´ η| ≤ 1{n. Since E ξ ă 8 and
E η ă 8, it follows from Lebesgue’s dominated convergence theorem that

limE ξn “ E ξ, limE ηn “ E η.

Moreover, since ξ and η are independent,

E ξnηn “
ÿ

k,l≥0

kl
n2

E Itk{n≤ξăpk`1q{nuItl{n≤ηăpl`1q{nu

“
ÿ

k,l≥0

kl
n2

E Itk{n≤ξăpk`1q{nu ¨ E Itl{n≤ηăpl`1q{nu “ E ξn ¨ E ηn.

Now notice that

| E ξη ´ E ξnηn| ≤ E |ξη ´ ξnηn| ≤ Erξ ¨ |η ´ ηn|s
` Erηn ¨ |ξ ´ ξn|s ≤ 1

n
E ξ ` 1

n
E

ˆ
η ` 1

n

˙
Ñ 0, n Ñ 8.

Therefore E ξη “ limn E ξnηn “ limE ξn ¨ limE ηn “ E ξ ¨ E η, and E ξη ă 8.
The general case reduces to this one if we use the representations ξ “ ξ` ´

ξ´, η “ η` ´η´, ξη “ ξ`η` ´ ξ´η` ´ ξ`η´ ` ξ´η´. This completes the proof.
[\

7. The inequalities for expectations that we develop in this subsection are regularly
used both in probability theory and in analysis.

Chebyshev’s (Bienaymé–Chebyshev’s) Inequality. Let ξ be a nonnegative ran-
dom variable. Then for every ε ą 0

Ppξ ≥ εq ≤ E ξ

ε
. (21)

The proof follows immediately from

E ξ ≥ Erξ ¨ Itξ≥εus ≥ εE Itξ≥εu “ εPpξ ≥ εq.
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From (21) we can obtain the following versions of Chebyshev’s inequality: If ξ is
any random variable then

Pp|ξ| ≥ εq ≤ E ξ2

ε2
(22)

and

Pp|ξ ´ E ξ| ≥ εq ≤ Var ξ

ε2
, (23)

where Var ξ “ Epξ ´ E ξq2 is the variance of ξ.

The Cauchy–Bunyakovskii Inequality. Let ξ and η satisfy E ξ2 ă 8, E η2 ă 8.
Then E |ξη| ă 8 and

pE |ξη|q2 ≤ E ξ2 ¨ E η2. (24)

PROOF. Suppose that E ξ2 ą 0, E η2 ą 0. Then, with ξ̃ “ ξ{a
E ξ2, η̃ “

η{a
E η2, we find, since 2|ξ̃η̃| ≤ ξ̃2 ` η̃2, that

2E |ξ̃η̃| ≤ E ξ̃2 ` E η̃2 “ 2,

i.e. E |ξ̃η̃| ≤ 1, which establishes (24).
On the other hand if, say, E ξ2 “ 0, thenξ “ 0 (a.s.) by Property I, and then

E ξη “ 0 by Property F, i.e. (24) is still satisfied.
[\

Jensen’s Inequality. Let the Borel function g “ gpxq defined on R be convex down-
ward and ξ a random variable such that E |ξ| ă 8. Then

gpE ξq ≤ E gpξq. (25)

PROOF. If g “ gpxq is convex downward, for each x0 P R there is a number λpx0q
such that

gpxq ≥ gpx0q ` px ´ x0q ¨ λpx0q (26)

for all x P R. Putting x “ ξ and x0 “ E ξ, we find from (26) that

gpξq ≥ gpE ξq ` pξ ´ E ξq ¨ λpE ξq,
and consequently E gpξq ≥ gpE ξq.

[\
Remark 4. Jensen’s inequality (25) holds also for vector random variables ξ “
pξ1, . . . , ξdq with E |ξi| ă 8, i “ 1, . . . , d, and functions g “ gpxq, x P Rd,
convex downward (i.e., functions g : Rd Ñ R such that gppx ` p1 ´ pqyq ≤
pgpxq ` p1 ´ pqgpyq, x, y P Rd, p P r0, 1s).

A whole series of useful inequalities can be derived from Jensen’s inequality. We
obtain the following one as an example.
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Lyapunov’s Inequality. If 0 ă s ă t,

pE |ξ|sq1{s ≤ pE |ξ|tq1{t. (27)

To prove this, let r “ t{s. Then, putting η “ |ξ|s and applying Jensen’s inequality
to gpxq “ |x|r, we obtain | E η|r ≤ E |η|r, i.e.

pE |ξ|sqt{s ≤ E |ξ|t,
which establishes (27).

The following chain of inequalities among absolute moments is a consequence
of Lyapunov’s inequality:

E |ξ| ≤ pE |ξ|2q1{2 ≤ ¨ ¨ ¨ ≤ pE |ξ|nq1{n. (28)

Hölder’s Inequality. Let 1 ă p ă 8, 1 ă q ă 8, and p1{pq ` p1{qq “ 1. If
E |ξ|p ă 8 and E |η|q ă 8, then E |ξη| ă 8 and

E |ξη| ≤ pE |ξ|pq1{ppE |η|qq1{q. (29)

PROOF. If E |ξ|p “ 0 or E |η|q “ 0, (29) follows immediately as for the Cauchy–
Bunyakovskii inequality (which is the special case p “ q “ 2 of Hölder’s inequal-
ity).

Now let E |ξ|p ą 0, E |η|q ą 0 and

ξ̃ “ ξ

pE |ξ|pq1{p
, η̃ “ η

pE |η|qq1{q
.

We apply the inequality
xayb ≤ ax ` by, (30)

which holds for positive x, y, a, b and a ` b “ 1, and follows immediately from
the concavity of the logarithm:

lograx ` bys ≥ a log x ` b log y “ log xayb.

Then, putting x “ |ξ̃|p, y “ |η̃|q, a “ 1{p, b “ 1{q, we find that

|ξ̃η̃| ≤ 1

p
|ξ̃|p ` 1

q
|η̃|q,

whence

E |ξ̃η̃| ≤ 1

p
E |ξ̃|p ` 1

q
E |η̃|q “ 1

p
` 1

q
“ 1.

This establishes (29).
[\
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Minkowski’s Inequality. If E |ξ|p ă 8, E |η|p ă 8, 1 ≤ p ă 8, then we have
E |ξ ` η|p ă 8 and

pE |ξ ` η|pq1{p ≤ pE |ξ|pq1{p ` pE |η|pq1{p. (31)

PROOF. We begin by establishing the following inequality: if a, b ą 0 and p ≥ 1,
then

pa ` bqp ≤ 2p´1pap ` bpq. (32)

In fact, consider the function Fpxq “ pa ` xqp ´ 2p´1pap ` xpq. Then

F1pxq “ ppa ` xqp´1 ´ 2p´1pxp´1,

and since p ≥ 1, we have F1paq “ 0, F1pxq ą 0 for x ă a and F1pxq ă 0 for x ą a.
Therefore

Fpbq ≤ maxFpxq “ Fpaq “ 0,

from which (32) follows.
According to this inequality,

|ξ ` η|p ≤ p|ξ| ` |η|qp ≤ 2p´1p|ξ|p ` |η|pq (33)

and therefore if E |ξ|p ă 8 and E |η|p ă 8 it follows that E |ξ ` η|p ă 8.
If p “ 1, inequality (31) follows from (33).
Now suppose that p ą 1. Take q ą 1 so that p1{pq ` p1{qq “ 1. Then

|ξ ` η|p “ |ξ ` η| ¨ |ξ ` η|p´1 ≤ |ξ| ¨ |ξ ` η|p´1 ` |η||ξ ` η|p´1. (34)

Notice that pp ´ 1qq “ p. Consequently

Ep|ξ ` η|p´1qq “ E |ξ ` η|p ă 8,

and therefore by Hölder’s inequality

Ep|ξ||ξ ` η|p´1q ≤ pE |ξ|pq1{ppE |ξ ` η|pp´1qqq1{q

“ pE |ξ|pq1{ppE |ξ ` η|pq1{q ă 8.

In the same way,

Ep|η||ξ ` η|p´1q ≤ pE |η|pq1{ppE |ξ ` η|pq1{q.

Consequently, by (34),

E |ξ ` η|p ≤ pE |ξ ` η|pq1{qppE |ξ|pq1{p ` pE |η|pq1{pq. (35)
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If E |ξ ` η|p “ 0, the desired inequality (31) is evident. Now let E |ξ ` η|p ą 0.
Then we obtain

pE |ξ ` η|pq1´p1{qq ≤ pE |ξ|pq1{p ` pE |η|pq1{p

from (35), and (31) follows since 1 ´p1{qq “ 1{p.
[\

7. Let ξ be a random variable for which E ξ is defined. Then, by Property D, the set
function

QpAq ”
ż

A
ξ dP, A P F , (36)

is well defined. Let us show that this function is countably additive.
First suppose that ξ is nonnegative. If A1, A2, . . . are pairwise disjoint sets from

F and A “ ř
An, the corollary to Theorem 1 implies that

QpAq “ Epξ ¨ IAq “ Epξ ¨ IΣAn q “ Ep
ÿ

ξ ¨ IAn q
“

ÿ
Epξ ¨ IAn q “

ÿ
QpAnq.

If ξ is an arbitrary random variable for which E ξ is defined, the countable additivity
of QpAq follows from the representation

QpAq “ Q`pAq ´ Q´pAq, (37)

where

Q`pAq “
ż

A
ξ`d P, Q´pAq “

ż
A
ξ´d P,

together with the countable additivity for nonnegative random variables and the fact
that minpQ`pΩq, Q´pΩqq ă 8.

Thus if E ξ is defined, the set function Q “ QpAq is a signed measure—a count-
ably additive set function representable as Q “ Q1 ´ Q2, where at least one of the
measures Q1 and Q2 is finite.

We now show that Q “ QpAq has the following important property of absolute
continuity with respect to P:

if PpAq “ 0 then QpAq “ 0 pA P F q
(this property is denoted by the abbreviation Q ! P).

To prove this property it is sufficient to consider nonnegative random variables.
If ξ “ řn

k“1 xkIAk is a simple nonnegative random variable and PpAq “ 0, then

QpAq “ Epξ ¨ IAq “
nÿ

k“1

xk PpAk X Aq “ 0.
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If tξnun≥1 is a sequence of nonnegative simple functions such that ξn Ò ξ ≥ 0, then
the theorem on monotone convergence shows that

QpAq “ Epξ ¨ IAq “ limEpξn ¨ IAq “ 0,

since Epξn ¨ IAq “ 0 for all n ≥ 1 and A with PpAq “ 0.
Thus the Lebesgue integral QpAq “ ş

A ξ d P, considered as a function of sets
A P F , is a signed measure that is absolutely continuous with respect to P pQ ! Pq.
It is quite remarkable that the converse is also valid.

Radon–Nikodým Theorem. Let pΩ,F q be a measurable space, μ a σ-finite mea-
sure, and λ a signed measure (i.e., λ “ λ1 ´ λ2, where at least one of the measures
λ1 and λ2 is finite), which is absolutely continuous with respect to μ. Then there is
an F -measurable function f “ f pωq with values in R “ r´8, 8s such that

λpAq “
ż

A
f pωqμpdωq, A P F . (38)

The function f pωq is unique up to sets of μ-measure zero: if h “ hpωq is an-
other F -measurable function such that λpAq “ ş

A hpωqμpdωq, A P F , then
μtω : f pωq ‰ hpωqu “ 0.

If λ is a measure, then f “ f pωq has its values in R
` “ r0, 8s.

The function f “ f pωq in the representation (38) is called the Radon–Nikodým
derivative or the density of the measure λ with respect to μ, and denoted by dλ{dμ
or pdλ{dμqpωq.

Some important properties of these derivatives are presented in the lemma in
Subsection 8 of the next Sect. 7. Here we state an especially useful particular case
of formula (35) therein, which is often used for recalculation of expectations under
a change of measure.

Namely, let P and rP be two probability measures and E and rE the corresponding
expectations. Suppose that rP is absolutely continuous with respect to P (denotedrP ! P). Then for any nonnegative random variable ξ “ ξpωq the following “for-
mula for recalculation of expectations” holds:

rEξ “ E
”
ξ

drP
dP

ı
. (39)

This formula remains valid also without assuming that ξ is nonnegative with the
following modification of the statement: the random variable ξ is integrable with

respect to rP if and only if ξ drP
dP is integrable with respect to P; then (39) is valid.

The proof of (39) is not hard: for simple functions ξ it follows directly from

the definition of the derivative drP
dP , and for nonnegative ξ we use Theorem 1 (b) of

Sect. 4, which states the existence of simple functions ξn Ò ξ, n Ñ 8, and then
Theorem 1 (a) on monotone convergence. For an arbitrary ξ we have by (39) thatrE|ξ| “ E |ξ| drP

dP . This implies that ξ is integrable with respect to rP if and only if ξ drP
dP

is integrable with respect to P. The formula (39) follows then from the representa-
tion ξ “ ξ` ´ ξ´.
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The Radon–Nikodým theorem, which we quote without proof (for the proof
see, e.g., [39]), will play a key role in the construction of conditional expectations
(Sect. 7).

9. If ξ “ řn
i“1 xiIAi is a simple random variable, Ai “ tω : ξ “ xiu, then

E gpξq “
ÿ

gpxiqPpAiq “
ÿ

gpxiqΔFξpxiq.
In other words, in order to calculate the expectation of a function of the (simple)
random variable ξ it is unnecessary to know the probability measure P completely;
it is enough to know the probability distribution Pξ or, equivalently, the distribution
function Fξ of ξ.

The following important theorem generalizes this property.

Theorem 7 (Change of Variables in a Lebesgue Integral). Let pΩ,F q and pE,E q
be measurable spaces and X “ Xpωq an F {E -measurable function with values in
E. Let P be a probability measure on pΩ,F q and PX the probability measure on
pE,E q induced by X “ Xpωq:

PXpAq “ Ptω : Xpωq P Au, A P E . (40)

Then ż
A

gpxq PXpdxq “
ż

X´1pAq
gpXpωqq Ppdωq, A P E , (41)

for every E -measurable function g “ gpxq, x P E (in the sense that if one integral
exists, the other is well defined, and the two are equal).

PROOF. Let A P E and gpxq “ IBpxq, where B P E . Then (41) becomes

PXpABq “ PpX´1pAq X X´1pBqq, (42)

which follows from (40) and the observation that X´1pAqXX´1pBq “ X´1 pAXBq.
It follows from (42) that (41) is valid for nonnegative simple functions g “ gpxq,

and therefore, by the monotone convergence theorem, also for all nonnegative E -
measurable functions.

In the general case we need only represent g as g` ´g´. Then, since (41) is valid
for g` and g´, if (for example)

ş
A g`pxq PXpdxq ă 8, we have

ż
X´1pAq

g`pXpωqq Ppdωq ă 8

also, and therefore the existence of
ş

A gpxq PXpdxq implies the existence ofş
X´1pAq gpXpωqq Ppdωq. [\

Corollary. Let pE,E q “ pR,BpRqq and let ξ “ ξpωq be a random variable with
probability distribution Pξ. Then if g “ gpxq is a Borel function and either of the
integrals

ş
A gpxq Pξpdxq or

ş
ξ´1pAq gpξpωqq Ppdωq exists, we have
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ż
A

gpxqPξpdxq “
ż
ξ´1pAq

gpξpωqq Ppdωq.

In particular, for A “ R we obtain

E gpξpωqq “
ż
Ω

gpξpωqq Ppdωq “
ż

R
gpxq Pξpdxq. (43)

The measure Pξ can be uniquely reconstructed from the distribution function Fξ

(Theorem 1 of Sect. 3). Hence the Lebesgue integral
ş

R gpxq Pξpdxq is often denoted
by

ş
R gpxq Fξpdxq and called a Lebesgue–Stieltjes integral (with respect to the mea-

sure corresponding to the distribution function Fξpxqq.
Let us consider the case when Fξpxq has a density fξpxq, i.e., let

Fξpxq “
ż x

´8
fξpyq dy, (44)

where fξ “ fξpxq is a nonnegative Borel function and the integral is a Lebesgue
integral with respect to Lebesgue measure on the set p´8, xs (see Remark 3). With
the assumption of (44), formula (43) takes the form

E gpξpωqq “
ż 8

´8
gpxqfξpxq dx, (45)

where the integral is the Lebesgue integral of the function gpxqfξpxq with respect to
Lebesgue measure. In fact, if gpxq “ IBpxq, B P BpRq, the formula becomes

PξpBq “
ż

B
fξpxq dx, B P BpRq; (46)

its correctness follows from Theorem 1 of Sect. 3 and the formula

Fξpbq ´ Fξpaq “
ż b

a
fξpxq dx.

In the general case, the proof is the same as for Theorem 7.

10. Let us consider the special case of measurable spaces pΩ,F q with a measure ρ,
where Ω “ Ω1 ˆ Ω2, F “ F1 b F2, and ρ “ ρ1 ˆ ρ2 is the direct product of
measures ρ1 and ρ2 (i.e., the measure on F such that

ρ1 ˆ ρ2pA ˆ Bq “ ρ1pA1qρ2pBq, A P F1, B P F2;

the existence of this measure follows from the proof of Theorem 8.
The following theorem plays the same role as the theorem on the reduction of a

double Riemann integral to an iterated integral.

Theorem 8 (Fubini’s Theorem). Let ξ “ ξpω1, ω2q be an F1 b F2-measurable
function, integrable with respect to the measure ρ1 ˆ ρ2:
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ż
Ω1ˆΩ2

|ξpω1, ω2q| dpρ1 ˆ ρ2q ă 8. (47)

Then the integrals
ş
Ω1

ξpω1, ω2q ρ1pdω1q and
ş
Ω2

ξpω1, ω2q ρ2pdω2q
(1) are defined for ρ2-almost all ω2 and ρ1-almost all ω1;
(2) are respectively F2- and F1-measurable functions with

ρ2

"
ω2 :

ż
Ω1

|ξpω1, ω2q| ρ1pdω1q “ 8
*

“ 0,

(48)

ρ1

"
ω1 :

ż
Ω2

|ξpω1, ω2q| ρ2pdω2q “ 8
*

“ 0,

and
(3)

ż
Ω1ˆΩ2

ξpω1, ω2q dpρ1 ˆ ρ2q “
ż
Ω1

„ż
Ω2

ξpω1, ω2q ρ2pdω2q
j
ρ1pdω1q

(49)

“
ż
Ω2

„ż
Ω1

ξpω1, ω2q ρ1pdω1q
j
ρ2pdω2q.

PROOF. We first show that ξω1
pω2q “ ξpω1, ω2q is F2-measurable with respect to

ω2, for each ω1 P Ω1.
Let F P F1 b F2 and ξpω1, ω2q “ IFpω1, ω2q. Let

Fω1
“ tω2 P Ω2 : pω1, ω2q P Fu

be the cross-section of F at ω1, and let Cω1
“ tF P F : Fω1

P F2u. We must show
that Cω1

“ F for every ω1.
If F “ A ˆ B, A P F1, B P F2, then

pA ˆ Bqω1
“

"
B if ω1 P A,
∅ if ω1 R A.

Hence rectangles with measurable sides belong to Cω1
. In addition, if F P F ,

then pFqω1
“ Fω1

, and if tFnun≥1 are sets in F , then pŤ
Fnqω1

“ Ť
Fn
ω1

. It follows
that Cω1

“ F .
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Now let ξpω1, ω2q ≥ 0. Then, since the function ξpω1, ω2q is F2-measurable for
each ω1, the integral

ş
Ω2

ξpω1, ω2q ρ2pdω2q is defined. Let us show that this integral
is an F1-measurable function and

ż
Ω1

„ż
Ω2

ξpω1, ω2q ρ2pdω2q
j
ρ1pdω1q “

ż
Ω1ˆΩ2

ξpω1, ω2q dpρ1 ˆ ρ2q. (50)

Let us suppose that ξpω1, ω2q “ IAˆBpω1, ω2q, A P F1, B P F2. Then since
IAˆBpω1, ω2q “ IApω1qIBpω2q, we have

ż
Ω2

IAˆBpω1, ω2q ρ2pdω2q “ IApω1q
ż
Ω2

IBpω2q ρ2pdω2q (51)

and consequently the integral on the left of (51) is an F1-measurable function.
Now let ξpω1, ω2q “ IFpω1, ω2q, F P F “ F1 b F2. Let us show that the

integral f pω1q “ ş
Ω2

IFpω1, ω2q ρ2pdω2q is F1-measurable. For this purpose we put
C “ tF P F : f pω1q is F1-measurable}. According to what has been proved, the
set A ˆ B (where A P F1, B P F2) belongs to C and therefore the algebra A
consisting of finite sums of disjoint sets of this form also belongs to C . It follows
from the monotone convergence theorem that C is a monotonic class, C “ μpC q.
Therefore, because of the inclusions A Ď C Ď F and Theorem 1 of Sect. 2, we
have F “ σpA q “ μpA q Ď μpC q “ C Ď F , i.e., C “ F .

Finally, if ξpω1, ω2q is an arbitrary nonnegative F -measurable function, the F1-
measurability of the integral

ş
Ω2

ξpω1, ω2q ρ2pdωq follows from the monotone con-
vergence theorem and Theorem 2 of Sect. 4.

Let us now show that the measure ρ “ ρ1 ˆ ρ2 defined on F “ F1 b F2, with
the property pρ1 ˆ ρ2qpA ˆ Bq “ ρ1pAq ¨ ρ2pBq, A P F1, B P F2, actually exists
and is unique.

For F P F we put

ρpFq “
ż
Ω1

„ż
Ω2

IFω1
pω2q ρ2pdω2q

j
ρ1pdω1q.

As we have shown, the inner integral is an F1-measurable function, and conse-
quently the set function ρpFq is actually defined for F P F . It is clear that if
F “ A ˆ B, then ρpA ˆ Bq “ ρ1pAqρ2pBq. Now let tFnu be disjoint sets from F .
Then

ρ
´ ÿ

n

Fn
¯

“
ż
Ω1

„ż
Ω2

IpΣFnqω1
pω2q ρ2pdω2q

j
ρ1pdω1q

“
ż
Ω1

ÿ
n

„ż
Ω2

IFn
ω1

pω2q ρ2pdω2q
j
ρ1pdω1q

“
ÿ

n

ż
Ω1

„ż
Ω2

IFn
ω1

pω2q ρ2pdω2q
j
ρ1pdω1q “

ÿ
n

ρpFnq,

i.e., ρ is a (σ-finite) measure on F .
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It follows from Carathéodory’s theorem that this measure ρ is the unique measure
with the property that ρpA ˆ Bq “ ρ1pAqρ2pBq.

We can now establish (50). If ξpω1, ω2q “ IAˆBpω1, ω2q, A P F1, B P F2, then
ż
Ω1ˆΩ2

IAˆBpω1, ω2q dpρ1 ˆ ρ2q “ pρ1 ˆ ρ2qpA ˆ Bq, (52)

and since IAˆBpω1, ω2q “ IApω1qIBpω2q, we have

ż
Ω1

„ż
Ω2

IAˆBpω1, ω2q ρ2pdω2q
j
ρ1pdω1q

“
ż
Ω1

„
IApω1q

ż
Ω2

IBpω2q ρ2pdω2q
j
ρ1pdω1q “ ρ1pAqρ2pBq.

(53)

But, by the definition of ρ1 ˆ ρ2,

pρ1 ˆ ρ2qpA ˆ Bq “ ρ1pAqρ2pBq.
Hence it follows from (52) and (53) that (50) is valid for ξpω1, ω2q “ IAˆBpω1, ω2q.

Now let ξpω1, ω2q “ IFpω1, ω2q, F P F . The set function

λpFq “
ż
Ω1ˆΩ2

IFpω1, ω2q dpρ1 ˆ ρ2q, F P F ,

is evidently a σ-finite measure. It is also easily verified that the set function

vpFq “
ż
Ω1

„ż
Ω2

IFpω1, ω2q ρ2pdω2q
j
ρ1pdω1q

is a σ-finite measure. As was shown above, λ and v coincide on sets of the form
F “ A ˆ B, and therefore on the algebra A . Hence it follows by Carathéodory’s
theorem that λ and v coincide for all F P F .

We turn now to the proof of the full conclusion of Fubini’s theorem. By (47),
ż
Ω1ˆΩ2

ξ`pω1, ω2q dpρ1 ˆ ρ2q ă 8,

ż
Ω1ˆΩ2

ξ´pω1, ω2q dpρ1 ˆ ρ2q ă 8.

By what has already been proved, the integral
ş
Ω2

ξ`pω1, ω2q ρ2pdω2q is an F1-
measurable function of ω1 and

ż
Ω1

„ż
Ω2

ξ`pω1, ω2q ρ2pdω2q
j
ρ1pdω1q “

ż
Ω1ˆΩ2

ξ`pω1, ω2q dpρ1 ˆ ρ2q ă 8.

Consequently by Problem 4 (see also Property J in Subsection 3)
ż
Ω2

ξ`pω1, ω2q ρ2pdω2q ă 8 pρ1-a.s.q.
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In the same way
ż
Ω2

ξ´pω1, ω2q ρ2pdω2q ă 8 pρ1-a.s.q,

and therefore ż
Ω2

|ξpω1, ω2q| ρ2pdω2q ă 8 pρ1-a.s.q.

It is clear that, except on a set N of ρ1-measure zero,
ż
Ω2

ξpω1, ω2q ρ2pdω2q “
ż
Ω2

ξ`pω1, ω2q ρ2pdω2q ´
ż
Ω2

ξ´pω1, ω2q ρ2pdω2q.
(54)

Taking the integrals to be zero for ω1 P N , we may suppose that (54) holds for all
ω1 P Ω1. Then, integrating (54) with respect to ρ1 and using (50), we obtain

ż
Ω1

„ż
Ω2

ξpω1, ω2q ρ2pdω2q
j
ρ1pdω1q “

ż
Ω1

„ż
Ω2

ξ`pω1, ω2q ρ2pdω2q
j
ρ1pdω1q

´
ż
Ω1

„ż
Ω2

ξ´pω1, ω2q ρ2pdω2q
j
ρ1pdω1q

“
ż
Ω1ˆΩ2

ξ`pω1, ω2q dpρ1 ˆ ρ2q ´
ż
Ω1ˆΩ2

ξ´pω1, ω2q dpρ1 ˆ ρ2q

“
ż
Ω1ˆΩ2

ξpω1, ω2q dpρ1 ˆ ρ2q.

Similarly we can establish the first equation in (48) and the equation

ż
Ω1ˆΩ2

ξpω1, ω2q dpρ1 ˆ ρ2q “
ż
Ω2

„ż
Ω1

ξpω1, ω2q ρ1pdω1q
j
ρ2pdω2q.

This completes the proof of the theorem.
[\

Corollary. If
ş
Ω1

rş
Ω2

|ξpω1, ω2q| ρ2pdω2qs ρ1pdω1q ă 8, the conclusion of Fu-
bini’s theorem is still valid.

In fact, under this hypothesis (47) follows from (50), and consequently the con-
clusions of Fubini’s theorem hold.

Example. Let pξ, ηq be a pair of random variables whose distribution has a two-
dimensional density fξ,ηpx, yq, i.e.

Pppξ, ηq P Bq “
ż

B
fξ,ηpx, yq dx dy, B P BpR2q,

where fξ,ηpx, yq is a nonnegative BpR2q-measurable function, and the integral is a
Lebesgue integral with respect to two-dimensional Lebesgue measure.
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Let us show that the one-dimensional distributions for ξ and η have densities
fξpxq and fηpyq, where

fξpxq “
ż 8

´8
fξ,ηpx, yq dy and fηpyq “

ż 8

´8
fξ,ηpx, yq dx. (55)

In fact, if A P BpRq, then by Fubini’s theorem

Ppξ P Aq “ Pppξ, ηq P A ˆ Rq “
ż

AˆR
fξ,ηpx, yq dx dy “

ż
A

„ż
R

fξ,ηpx, yq dy

j
dx.

This establishes both the existence of a density for the probability distribution of ξ
and the first formula in (55). The second formula is established similarly.

According to the theorem in Sect. 5, a necessary and sufficient condition that ξ
and η are independent is that

Fξ,ηpx, yq “ FξpxqFηpyq, px, yq P R2.

Let us show that when there is a two-dimensional density fξ,ηpx, yq, the variables ξ
and η are independent if and only if

fξ,ηpx, yq “ fξpxqfηpyq (56)

(where the equation is to be understood in the sense of holding almost surely with
respect to two-dimensional Lebesgue measure).

In fact, if (56) holds, then by Fubini’s theorem

Fξ,ηpx, yq “
ż

p´8,xsˆp´8,ys
fξ,ηpu, vq du dv “

ż
p´8,xsˆp´8,ys

fξpuqfηpvq du dv

“
ż

p´8,xs
fξpuq du

˜ż
p´8,ys

fηpvq dv

¸
“ FξpxqFηpyq

and consequently ξ and η are independent.
Conversely, if they are independent and have a density fξ,ηpx, yq, then again by

Fubini’s theorem

ż
p´8, xsˆp´8, ys

fξ,ηpu, vq du dv “
˜ż

p´8, xs
fξpuq du

¸ ˜ż
p´8, ys

fηpvq dv

¸

“
ż

p´8, xsˆp´8, ys
fξpuqfηpvq du dv.

It follows that ż
B

fξ,ηpx, yq dx dy “
ż

B
fξpxqfηpyq dx dy

for every B P BpR2q, and it is easily deduced from Property I that (56) holds.
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11. In this subsection we discuss the relation between the Lebesgue and Riemann
integrals.

We first observe that the construction of the Lebesgue integral is independent of
the measurable space pΩ,F q on which the integrands are given. On the other hand,
the Riemann integral is not defined on abstract spaces in general, and for Ω “ Rn it
is defined sequentially: first for R1, and then extended, with corresponding changes,
to the case n ą 1.

We emphasize that the constructions of the Riemann and Lebesgue integrals are
based on different ideas. The first step in the construction of the Riemann integral
is to group the points x P R1 according to their distances along the x axis. On
the other hand, in Lebesgue’s construction (for Ω “ R1) the points x P R1 are
grouped according to a different principle: by the distances between the values of
the integrand. It is a consequence of these different approaches that the Riemann
approximating sums have limits only for “mildly” discontinuous functions, whereas
the Lebesgue sums converge to limits for a much wider class of functions.

Let us recall the definition of the Riemann–Stieltjes integral. Let G “ Gpxq be a
generalized distribution function on R (see Subsection 2 of Sect. 3) and μ its corre-
sponding Lebesgue–Stieltjes measure, and let g “ gpxq be a bounded function that
vanishes outside ra, bs.

Consider a decomposition P “ tx0, . . . , xnu,

a “ x0 ă x1 ă ¨ ¨ ¨ ă xn “ b,

of ra, bs, and form the upper and lower sums

ÿ
P

“
nÿ

i“1

girGpxi`1q ´ Gpxiqs,
ÿ
P

“
nÿ

i“1

g
i
rGpxi`1q ´ Gpxiqs,

where
gi “ sup

xi´1ăy≤xi

gpyq, g
i

“ inf
xi´1ăy≤xi

gpyq.

Define simple functions gPpxq and g
P

pxq by taking

gPpxq “ gi, g
P

pxq “ g
i

on xi´1 ă x ≤ xi, and define gPpaq “ g
P

paq “ gpaq. Then it is clear that,
according to the construction of the Lebesgue–Stieltjes integral (see Remark 3 in
Subsection 2), ÿ

P

“ pL–Sq
ż b

a
gPpxq Gpdxq

and ÿ
P

“ pL–Sq
ż b

a
g
P

pxq Gpdxq.
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Now let tPku be a sequence of decompositions such that Pk Ď Pk`1 and

Pk “ txpkq
0 , . . . , xpkq

nk u are such that max0≤i≤nk |xpkq
i`1 ´ xpkq

i | Ñ 0, k Ñ 8. Then

gP1
≥ gP2

≥ ¨ ¨ ¨ ≥ g ≥ ¨ ¨ ¨ ≥ g
P2

≥ g
P1

,

and if |gpxq| ≤ C we have, by the dominated convergence theorem,

lim
kÑ8

ÿ
Pk

“ pL–Sq
ż b

a
gpxq Gpdxq,

(57)

lim
kÑ8

ÿ
Pk

“ pL–Sq
ż b

a
gpxq Gpdxq,

where gpxq “ limk gPk
pxq, gpxq “ limk g

Pk
pxq.

If the limits limk
ř

Pk
and limk

ř
Pk

are finite and equal, and their common

value is independent of the sequence of decompositions tPku, we say that g “ gpxq
is Riemann–Stieltjes integrable, and the common value of the limits is denoted by

pR–Sq
ż b

a
gpxq Gpdxq or pR–Sq

ż b

a
gpxq dGpxq. (58)

When Gpxq “ x, the integral is called a Riemann integral and denoted by

pRq
ż b

a
gpxq dx.

Now let pL-Sq şb
a gpxqGpdxq be the corresponding Lebesgue–Stieltjes integral (see

Remark 3).

Theorem 9. If g “ gpxq is continuous on ra, bs, it is Riemann–Stieltjes integrable
and

pR–Sq
ż b

a
gpxq Gpdxq “ pL–Sq

ż b

a
gpxq Gpdxq. (59)

PROOF. Since gpxq is continuous, we have gpxq “ gpxq “ gpxq. Hence by (57)

limkÑ8
ř

Pk
“ limkÑ8

ř
Pk

. Consequently a continuous function g “ gpxq is
Riemann–Stieltjes integrable and its Riemann–Stieltjes integral equals the
Lebesgue–Stieltjes integral (again by (57)).

[\
Let us consider in more detail the question of the correspondence between the

Riemann and Lebesgue integrals for the case of Lebesgue measure on the line R.

Theorem 10. Let gpxq be a bounded function on ra, bs.
(a) The function g “ gpxq is Riemann integrable on ra, bs if and only if it is contin-

uous almost everywhere pwith respect to Lebesgue measure λ on Bpra, bsqq.
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(b) If g “ gpxq is Riemann integrable, it is Lebesgue integrable and

pRq
ż b

a
gpxq dx “ pLq

ż b

a
gpxqλpdxq. (60)

PROOF. (a) Let g “ gpxq be Riemann integrable. Then, by (57),

pLq
ż b

a
gpxqλpdxq “ pLq

ż b

a
gpxqλpdxq.

But gpxq ≤ gpxq ≤ gpxq, and hence by Property H

gpxq “ gpxq “ gpxq pλ-a. s.q, (61)

from which it is easy to see that gpxq is continuous almost everywhere (with respect
to λ).

Conversely, let g “ gpxq be continuous almost everywhere (with respect to λ).
Then (61) is satisfied and consequently gpxq differs from the (Borel) measurable
function gpxq only on a set N with λpN q “ 0. But then

tx : gpxq ≤ cu “ tx : gpxq ≤ cu X N ` tx : gpxq ≤ cu X N

“ tx : gpxq ≤ cu X N ` tx : gpxq ≤ cu X N .

It is clear that the set tx : gpxq ≤ cu X N P Bpra, bsq, and that

tx : gpxq ≤ cu X N

is a subset of N having Lebesgue measure λ equal to zero and therefore also be-
longing to Bpra, bqs. Therefore gpxq is Bpra, bsq-measurable and, as a bounded
function, is Lebesgue integrable. Therefore by Property G,

pLq
ż b

a
gpxqλpdxq “ pLq

ż b

a
gpxqλpdxq “ pLq

ż b

a
gpxqλpdxq,

which completes the proof of (a).
(b) If g “ gpxq is Riemann integrable, then according to (a) it is continuous

(λ-a. s). It was shown above than then gpxq is Lebesgue integrable and its Riemann
and Lebesgue integrals are equal.

This completes the proof of the theorem.
[\

Remark 5. Let μ be a Lebesgue–Stieltjes measure on Bpra, bsq. Let Bμpra, bsq be
the system consisting of those subsets Λ Ď ra, bs for which there are sets A and B
in Bpra, bsq such that A Ď Λ Ď B and μpBzAq “ 0. Let μ be the extension of μ
to Bμpra, bsq (μpΛq “ μpAq for Λ such that A Ď Λ Ď B and μpBzAq “ 0). Then
the conclusion of the theorem remains valid if we consider μ instead of Lebesgue
measure λ, and the Riemann–Stieltjes and Lebesgue–Stieltjes integrals with respect
to μ instead of the Riemann and Lebesgue integrals.
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Remark 6. The definition of Lebesgue integral (see Definitions 1 and 2 and formu-
las (3) and (6)) differs both conceptually and “in outward appearance” from those
of Riemann and Riemann–Stieltjes integrals, which employ upper and lower sums
(see (57)).

Now we compare these definitions in more detail.
Let pΩ,F , μq be a measurable space with measure μ. For any F -measurable

nonnegative function f “ f pωq define two integrals, lower L˚f and upper L˚f (de-
noted also by

ş
˚ f dμ and

ş˚
f dμ), by putting

L˚f “ sup
ÿ

i

´
inf
ωPAi

f pωq
¯
μpAiq,

L˚f “ inf
ÿ

i

´
sup
ωPAi

f pωq
¯
μpAiq,

where sup and inf are taken over all finite decompositions pA1,A2, . . . ,Anq of Ω

into F -measurable sets A1,A2, . . . ,An

´ řn
i“1 Ai “ Ω

¯
, n ≥ 1.

It can be shown that L˚f ≤ L˚f and L˚f “ L˚f provided that f is bounded and μ
is finite (Problem 20).

One approach (Darboux–Young) to the definition of the integral Lf of f with
respect to μ consists in saying that f is μ-integrable if L˚f “ L˚f , letting then
Lf “ L˚f (“ L˚f ).

If we now consider Definition 1 of Lebesgue integral E f (Subsection 1), we can
see (Problem 21) that

E f “ L˚f .

Thus for bounded nonnegative functions f “ f pωq the Lebesgue and Darboux–
Young approaches give the same result (E f “ Lf “ L˚f “ L˚f ).

But these approaches to integration become different when we deal with un-
bounded functions or infinite measure μ.

For example, the Lebesgue integrals
ş

p0,1s
dx

x1{2 and
ş

p1,8q
dx
x2 are well defined and

equal to L˚f for f pxq “ x´1{2Ip0, 1s and f pxq “ x´2Ip1,8q respectively. However
in both cases L˚f “ 8.

Thus L˚f ă L˚f here and the functions at hand are not integrable in the
Darboux–Young sense, whereas they are integrable in the Lebesgue sense.

Consider now integration in Riemann’s sense in terms of the above approach
dealing with lower, L˚f , and upper, L˚f , integrals.

Suppose that Ω “ p0, 1s, F “ B (Borel σ-algebra) and μ “ λ (Lebesgue
measure). Let f “ f pxq, x P Ω, be a bounded function (for the present we do not
assume its measurability).

By analogy with L˚f and L˚f define lower and upper Riemann integrals R˚f ,
R˚f by putting

R˚f “ sup
ÿ

i

´
inf
ωPBi

f pωq
¯
λpBiq,

R˚f “ inf
ÿ

i

´
sup
ωPBi

f pωq
¯
λpBiq,



6 Lebesgue Integral: Expectation 245

where pB1,B2, . . . ,Bnq is a finite decomposition of Ω “ p0, 1s with Bi’s of the form
pai, bis (unlike arbitrary F -measurable Ai’s in the definition of L˚f and L˚f ).

Obviously, the above definitions imply that

R˚f ≤ L˚f ≤ L˚f ≤ R˚f .

The Riemann integrability properties given in Theorems 9 and 10 can be restated
and complemented in terms of the following conditions:

(a) R˚f “ R˚f ;
(b) The set Df of discontinuity points of f has zero Lebesgue measure (λpDf q “ 0);
(c) There esists a constant Rpf q such that for any ε ą 0 there is δ ą 0 such that

ˇ̌
ˇ̌Rpf q ´

ÿ
i

f pωiqλppai, bisq
ˇ̌
ˇ̌ ă ε, ωi P pai, bis,

for any finite system of disjoint intervals pai, bis satisfying
ř pai, bis “ p0, 1s

and λppai, bisq ă δ.

Arguing as in the proofs of Theorems 9 and 10 one can show (Problem 22) that
for a bounded function f

(A) conditions (a), (b), (c) are equivalent and
(B) under either of conditions (a), (b), (c)

Rpf q “ R˚f “ R˚f .

11. In this part we present a useful theorem on integration by parts for the Lebesgue–
Stieltjes integral.

Let two generalized distribution functions F “ Fpxq and G “ Gpxq be given on
pR,BpRqq.

Theorem 11. The following formulas are valid for all real a and b, a ă b:

FpbqGpbq ´ FpaqGpaq “
ż b

a
Fps´q dGpsq `

ż b

a
Gpsq dFpsq, (62)

or equivalently

FpbqGpbq ´ FpaqGpaq “
ż b

a
Fps´q dGpsq `

ż b

a
Gps´q dFpsq

`
ÿ

aăs≤b

ΔFpsq ¨ ΔGpsq, (63)

where Fps´q “ limtÒs Fptq, ΔFpsq “ Fpsq ´ Fps´q.

Remark 7. Formula (62) can be written symbolically in “differential” form

dpFGq “ F´ dG ` G dF. (64)
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Remark 8. The conclusion of the theorem remains valid for functions F and G of
bounded variation on ra, bs. (Every such function that is continuous on the right
and has limits on the left can be represented as the difference of two monotone
nondecreasing functions.)

PROOF. We first recall that in accordance with Subsection 1 an integral
şb

ap¨q meansş
pa,bsp¨q. Then (see formula (2) in Sect. 3)

pFpbq ´ FpaqqpGpbq ´ Gpaqq “
ż b

a
dFpsq ¨

ż b

a
dGptq.

Let F ˆG denote the direct product of the measures corresponding to F and G. Then
by Fubini’s theorem

pFpbq ´ FpaqqpGpbq ´ Gpaqq “
ż

pa,bsˆpa,bs
dpF ˆ Gqps, tq

“
ż

pa,bsˆpa,bs
Its≥tups, tq dpF ˆ Gqps, tq `

ż
pa,bsˆpa,bs

Itsătups, tq dpF ˆ Gqps, tq

“
ż

pa,bs
pGpsq ´ Gpaqq dFpsq `

ż
pa,bs

pFpt´q ´ Fpaqq dGptq

“
ż b

a
Gpsq dFpsq `

ż b

a
Fps´q dGpsq ´ GpaqpFpbq ´ Fpaqq ´ FpaqpGpbq ´ Gpaqq,

(65)

where IA is the indicator of the set A.
Formula (62) follows immediately from (65). In turn, (63) follows from (62) if

we observe that
ż b

a
pGpsq ´ Gps´qq dFpsq “

ÿ
aăs≤b

ΔGpsq ¨ ΔFpsq. (66)

[\
Corollary 1. If Fpxq and Gpxq are distribution functions, then

FpxqGpxq “
ż x

´8
Fps´q dGpsq `

ż x

´8
Gpsq dFpsq. (67)

If also

Fpxq “
ż x

´8
f psq ds,

then

FpxqGpxq “
ż x

´8
Fpsq dGpsq `

ż x

´8
Gpsqf psq ds. (68)
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Corollary 2. Let ξ be a random variable with distribution function Fpxq and
E |ξ|n ă 8. Then

ż 8

0

xn dFpxq “ n
ż 8

0

xn´1r1 ´ Fpxqs dx, (69)

ż 0

´8
|x|n dFpxq “ ´

ż 8

0

xn dFp´xq “ n
ż 8

0

xn´1Fp´xq dx (70)

and

E |ξ|n “
ż 8

´8
|x|n dFpxq “ n

ż 8

0

xn´1r1 ´ Fpxq ` Fp´xqs dx. (71)

To prove (69) we observe that

ż b

0

xn dFpxq “ ´
ż b

0

xn dp1 ´ Fpxqq

“ ´bnp1 ´ Fpbqq ` n
ż b

0

xn´1p1 ´ Fpxqq dx. (72)

Let us show that since E |ξ|n ă 8,

bnp1 ´ Fpbq ` Fp´bqq ≤ bnPp|ξ| ≥ bq Ñ 0, b Ñ 8. (73)

In fact,

E |ξ|n “
8ÿ

k“1

ż k

k´1

|x|ndFpxq ă 8

and therefore ÿ
k≥b`1

ż k

k´1

|x|ndFpxq Ñ 0, b Ñ 8.

But ÿ
k≥b`1

ż k

k´1

|x|n dFpxq ≥ bn Pp|ξ| ≥ bq,

which establishes (73).
Taking the limit as b Ñ 8 in (72), we obtain (69). Formula (70) is proved

similarly, and (71) follows from (69) and (70).

13. Let A “ Aptq, t ≥ 0, be a function of locally bounded variation (i.e., of bounded
variation on each finite interval ra, bs), which is continuous on the right and has
limits on the left. Consider the equation

Zt “ 1 `
ż t

0

Zs´ dApsq, (74)

which can be written in differential form as
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dZt “ Zt´ dAptq, Z0 “ 1. (75)

The formula that we have proved for integration by parts lets us solve (74) ex-
plicitly in the class of functions of locally bounded variation.

We introduce the function (called the stochastic exponent, see [43])

EtpAq “ eAptq´Ap0q ź
0≤s≤t

p1 ` ΔApsqqe´ΔApsq, (76)

where ΔApsq “ Apsq ´ Aps´q for s ą 0, and ΔAp0q “ 0.
The function Apsq, 0 ≤ s ≤ t, has bounded variation and therefore has at most

countably many discontinuities and the series
ř

0≤s≤t |ΔApsq| converges. It follows
that ź

0≤s≤t

p1 ` ΔApsqqe´ΔApsq, t ≥ 0,

is a function of locally bounded variation.
If Acptq “ Aptq ´ ř

0≤s≤t ΔApsq is the continuous component of Aptq, we can
rewrite (76) in the form

EtpAq “ eAcptq´Acp0q ź
0ăs≤t

p1 ` ΔApsqq. (77)

Let us write

Fptq “ eAcptq´Acp0q, Gptq “
ź

0ăs≤t

p1 ` ΔApsqq, Gp0q “ 1.

Then by (62)

EtpAq “ FptqGptq “ 1 `
ż t

0

Fpsq dGpsq `
ż t

0

Gps´q dFpsq

“ 1 `
ÿ

0ăs≤t

FpsqGps´qΔApsq `
ż t

0

Gps´qFpsq dAcpsq

“ 1 `
ż t

0

Es´pAq dApsq.

Therefore EtpAq, t ≥ 0, is a (locally bounded) solution of (74). Let us show that
this is the only locally bounded solution.

Suppose that there are two such solutions and let Y “ Yptq, t ≥ 0, be their
difference. Then

Yptq “
ż t

0

Yps´q dApsq.
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Put
T “ inftt ≥ 0: Yptq ‰ 0u,

where we take T “ 8 if Yptq “ 0 for t ≥ 0.
Since Aptq, t ≥ 0, is a function of locally bounded variation, there are two gener-

alized distribution functions A1ptq and A2ptq such that Aptq “ A1ptq ´ A2ptq. If we
suppose that T ă 8, we can find a finite T 1 ą T such that

rA1pT 1q ` A2pT 1qs ´ rA1pTq ` A2pTqs ≤ 1
2 .

Then it follows from the equation

Yptq “
ż t

T
Yps´q dApsq, t ≥ T,

that
sup
t≤T1

|Yptq| ≤ 1
2 sup

t≤T1
|Yptq|

and since supt≤T1 |Yptq| ă 8, we have Yptq “ 0 for T ă t ≤ T 1, contradicting the
assumption that T ă 8.

Thus we have proved the following theorem.

Theorem 12. There is a unique locally bounded solution of (74), and it is given by
(76).

14. PROBLEMS

1. Establish the representation (6).
2. Prove the following extension of Property E. Let ξ and η be random variables

for which E ξ and E η are defined and the sum E ξ ` E η is meaningful (does
not have the form 8 ´ 8 or ´8 ` 8). Then

Epξ ` ηq “ E ξ ` E η.

3. Generalize Property G by showing that if ξ “ η (a. s.) and E ξ exists, then E η
exists and E ξ “ E η.

4. Let ξ be an extended random variable, μ a σ-finite measure, and
ş
Ω

|ξ|dμ ă 8.
Show that |ξ| ă 8 (μ-a. s.) (cf. Property J).

5. Let μ be a σ-finite measure, ξ and η extended random variables for which E ξ
and E η are defined. If

ş
A ξ dμ ≤ ş

A η dμ for all A P F then ξ ≤ η (μ-a. s.).
(Cf. Property I.)

6. Let ξ and η be independent nonnegative random variables. Show that E ξη “
E ξ ¨ E η.

7. Using Fatou’s lemma, show that

Pplim inf Anq ≤ lim inf PpAnq, Pplim supAnq ≥ lim supPpAnq.
8. Find an example to show that in general it is impossible to weaken the hypoth-

esis “|ξn| ≤ η, E η ă 8” in the dominated convergence theorem.
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9. Find an example to show that in general the hypothesis “ξn ≤ η, E η ą ´8”
in Fatou’s lemma cannot be omitted.

10. Prove the following variant of Fatou’s lemma. Let the family tξǹ un≥1 of ran-
dom variables be uniformly integrable. Then

lim supE ξn ≤ E lim sup ξn.

11. Dirichlet’s function

dpxq “
"
1, x irrational,
0, x rational,

is defined on r0, 1s, Lebesgue integrable, but not Riemann integrable. Why?
12. Find an example of a sequence of Riemann integrable functions tfnun≥1, de-

fined on r0, 1s, such that |fn| ≤ 1, fn Ñ f almost everywhere (with Lebesgue
measure), but f is not Riemann integrable.

13. Let paij; i, j ≥ 1q be a sequence of real numbers such that
ř

i,j |aij| ă 8.
Deduce from Fubini’s theorem that

ÿ
i,j

aij “
ÿ

i

´ ÿ
j

aij

¯
“

ÿ
j

´ ÿ
i

aij

¯
. (78)

14. Find an example of a sequence paij; i, j ≥ 1q for which
ř

i,j |aij| “ 8 and the
equations in (78) do not hold.

15. Starting from simple functions and using the theorem on taking limits under
the Lebesgue integral sign, prove the following result on integration by substi-
tution.

Let h “ hpyq be a nondecreasing continuously differentiable function on
ra, bs, and let f pxq be (Lebesgue) integrable on rhpaq, hpbqs. Then the function
f phpyqqh1pyq is integrable on ra, bs and

ż hpbq

hpaq
f pxq dx “

ż b

a
f phpyqqh1pyq dy.

16. Prove formula (70).
17. Let ξ, ξ1, ξ2, . . . be nonnegative integrable random variables such that E ξn Ñ

E ξ and Pp|ξ ´ ξn| ą εq Ñ 0 for every ε ą 0. Show that then E |ξn ´ ξ| Ñ
0, n Ñ 8.

18. Let ξ be an integrable random variable (E |ξ| ă 8). Prove that for any ε ą 0
there exists δ ą 0 such that E IA|ξ| ă ε for any A P F with PpAq ă δ (the
property of “absolute continuity of Lebesgue integral”).

19. Let ξ, η, ζ and ξn, ηn, ζn, n ≥ 1, be random variables such that˚

˚ Convergence in probability ξn
PÑ ξ means that Pt|ξn ´ ξ| ą εu Ñ 0 as n Ñ 8 for any ε ą 0

(for more details see Sect. 10).
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ξn
PÑξ, ηn

PÑη, ζn
PÑζ, ηn ≤ ξn ≤ ζn, n ≥ 1,

E ζnÑ E ζ, E ηnÑ E η,

and the expectations E ξ, E η, E ζ are finite. Show that then E ξn Ñ E ξ
(Pratt’s lemma).
If also ηn ≤ 0 ≤ ζn then E |ξn ´ ξ| Ñ 0.

Deduce that if ξn
PÑξ, E |ξn| Ñ E |ξ| and E |ξ| ă 8, then E |ξn ´ ξ| Ñ 0.

Give an example showing that, in general, under the conditions of Pratt’s
lemma E |ξn ´ ξ| Û 0.

20. Prove that L˚f ≤ L˚f and if f is bounded and μ is finite then L˚f “ L˚f (see
Remark 6).

21. Prove that E f “ L˚f for bounded f (see Remark 6).
22. Prove the final statement of Remark 6.
23. Let X be a random variable and Fpxq its distribution function. Show that

E X` ă 8 ðñ
ż 8

a
log

1

Fpxq dx ă 8 for some a.

24. Show that if limxÑ8 xp Pt|ξ| ą xu “ 0 for p ą 0 then E |ξ|r ă 8 for all
r ă p. Give an example showing that for r “ p it is possible that E |ξ|p “ 8.

25. Find an example of a density f pxq, which is not an even function but has zero
odd moments,

ş8
´8 xkf pxq dx “ 0, k “ 1, 3, . . .

26. Give an example of random variables ξn, n ≥ 1, such that

E
8ÿ

n“1

ξn ‰
8ÿ

n“1

E ξn.

27. Let a random variable X be such that

Pt|X| ą αnu
Pt|X| ą nu Ñ 0, n Ñ 8,

for any α ą 1. Prove that in this case all the moments of X are finite. Hint: use
the formula

E |X|N “ N
ż 8

0

xN´1 Pp|X| ą xq dx.

28. Let X be a random variable taking values k “ 0, 1, 2, . . . with probabilities pk.
By the definition in Sect. 13 of Chap. 1 the function Fpsq “ ř8

k“0 pksk, |s| ≤ 1,
is called the generating function of X. Establish the following formulas:

(i) If X is a Poisson random variable, i.e., pk “ e´λλk{k!, λ ą 0, k “
0, 1, 2, . . . , then

Fpsq “ e´λp1´sq, |s| ≤ 1;

(ii) If X has a geometric distribution, i.e., pk “ pqk, 0 ă p ă 1, q “ 1 ´ p,
k “ 0, 1, 2, . . . , then
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Fpsq “ p
1 ´ sq

, |s| ≤ 1.

29. Besides the generating function Fpsq, it is often expedient to consider the mo-
ment generating function Mpsq “ E esX (for s such that E esX ă 8).

(a) Show that if the moment generating function Mpsq is defined for all s in
a neighborhood of zero (s P r´a, as, a ą 0), then Mpsq has derivatives
Mpkqpsq of any order k “ 1, 2, . . . at s “ 0 and

Mpkqp0q “ E Xk

(which explains the term for Mpsq).
(b) Give an example of a random variable for which Mpsq “ 8 for

all s ą 0.
(c) Show that the moment generating function of a Poisson random vari-

able X with λ ą 0 is Mpsq “ e´λp1´esq for all s P R.

30. Let Xn P Lr, 0 ă r ă 8, and Xn
PÑ X. Then the following conditions are

equivalent:
(i) The family t|Xn|r, n ≥ 1u is uniformly integrable;

(ii) Xn Ñ X in Lr;
(iii) E |Xn|r Ñ E |X|r ă 8.

31. Spitzer’s identity. Let X1,X2, . . . be independent identically distributed ran-
dom variables with PtX1 ≤ 1u “ 1 and let Sn “ X1 ` ¨ ¨ ¨ ` Xn. Then for
|u|, |t| ă 1

8ÿ
n“0

tn E euMn “ exp

˜ 8ÿ
n“1

tn

n
E euS`

n

¸
,

where Mn “ maxp0,X1,X2, . . . ,Xnq, Sǹ “ maxp0, Snq.
32. Let S0 “ 0, Sn “ X1 ` ¨ ¨ ¨ ` Xn, n ≥ 1, be a simple symmetric random walk

(i.e., Xi, i “ 1, 2, . . ., are independent and take the values ˘1 with probabilities
1{2) and τ “ min tn ą 0: Sn ≥ 0u. Show that

Eminpτ, 2mq “ 2E |S2m| “ 4m PtS2m “ 0u, m ≥ 0.

33. Let ξ be a standard Gaussian random variable (ξ „ N p0, 1q). Using integra-
tion by parts, show that E ξk “ pk ´ 1q E ξk´2. Derive from this the formulas:

E ξ2k´1 “ 0 and E ξ2k “ 1 ¨ 3 ¨ . . . ¨ p2k ´ 3qp2k ´ 1q p“ p2k ´ 1q!!q.
34. Show that the function x´1 sin x, x P R, is Riemann integrable, but not

Lebesgue integrable (with Lebesgue measure on pR,BpRqq).
35. Show that the function

ξpω1, ω2q “ e´ω1ω2 ´ 2e´2ω1ω2 , ω1 P Ω1 “ r1,8q, ω2 P Ω2 “ p0, 1s,
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is such that
(a) it is Lebesgue integrable with respect to ω1 P Ω1 for every ω2 and
(b) it is Lebesgue integrable with respect to ω2 P Ω2 for every ω1,

but Fubibi’s theorem does not hold.
36. Prove the Beppo Levi theorem: If random variables ξ1, ξ2, . . . are integrable

(E |ξn| ă 8 for all n ≥ 1), supn E ξn ă 8 and ξn Ò ξ, then ξ is integrable
and E ξn Ò E ξ (cf. Theorem 1 (a)).

37. Prove the following version of Fatou’s lemma: if 0 ≤ ξn Ñ ξ (P-a. s.) and
E ξn ≤ A ă 8, n ≥ 1, then ξ is integrable and E ξ ≤ A.

38. (On relation of Lebesgue and Riemann integration.) Let a Borel function f “
f pxq be Lebesgue integrable on R:

ş
R |f pxq| dx ă 8. Prove that for any ε ą 0

there are:
(a) a step function fεpxq “ řn

i“1 fiIAi pxq with bounded intervals Ai such
that

ş
R |f pxq ´ fεpxq| dx ă ε;

(b) an integrable continuous function gεpxq with bounded support such thatş
R |f pxq ´ gεpxq| dx ă ε.

39. Show that if ξ is an integrable random variable, then

E ξ “
ż 8

0

Ptξ ą xu dx ´
ż 0

´8
Ptξ ă xu dx.

40. Let ξ and η be integrable random variables. Show that

E ξ ´ E η “
ż 8

´8
rPtη ă x ≤ ξu ´ Ptξ ă x ≤ ηus dx.

41. Let ξ be a nonnegative random variable (ξ ≥ 0) with Laplace transform
ϕξpλq “ E e´λξ , λ ≥ 0.

(a) Show that for any 0 ă r ă 1

E ξr “ r
Γp1 ´ rq

ż 8

0

1 ´ ϕξpλq
λr`1

dλ.

Hint: use that for s ≥ 0, 0 ă r ă 1

1

r
Γp1 ´ rqsr “

ż 8

0

1 ´ e´sλ

λr`1
dλ.

(b) Show that if ξ ą 0 then for any r ą 0

E ξ´r “ 1

r Γprq
ż 8

0

ϕξpλ1{rq dλ.

Hint: use that for s ≥ 0, r ą 0

s “ r
Γp1{rq

ż 8

0

exp t´pλ{sqru dλ.
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7 Conditional Probabilities and Conditional Expectations
with Respect to a σ-Algebra

1. Let pΩ,F ,Pq be a probability space and A P F an event such that PpAq ą 0.
As for finite probability spaces, the conditional probability of B with respect to
A (denoted by PpB | Aq) means PpBAq{ PpAq, and the conditional probability of B
with respect to the finite or countable decomposition D “ tD1,D2, . . .u such that
PpDiq ą 0, i ≥ 1 (denoted by PpB |Dq) is the random variable equal to PpB | Diq
for ω P Di, i ≥ 1:

PpB |Dq “
ÿ
i≥1

PpB | DiqIDi pωq.

In a similar way, if ξ is a random variable for which E ξ is defined, the conditional
expectation of ξ with respect to the event A with PpAq ą 0 (denoted by Epξ | Aqq is
EpξIAq{ PpAq (cf. (10) in Sect. 8 of Chap. 1).

The random variable PpB |Dq is evidently measurable with respect to the
σ-algebra G “ σpDq, and is consequently also denoted by PpB |G q (see Sect. 8
of Chap. 1).

However, in probability theory we may have to consider conditional probabilities
with respect to events whose probabilities are zero.

Consider, for example, the following experiment. Let ξ be a random variable
uniformly distributed on r0, 1s. If ξ “ x, toss a coin for which the probability of head
is x, and the probability of tail is 1 ´x. Let ν be the number of heads in n independent
tosses of this coin. What is the “conditional probability Ppν “ k | ξ “ xq”? Since
Ppξ “ xq “ 0, the conditional probability Ppv “ k | ξ “ xq is undefined, although it
is intuitively plausible that “it ought to be Ck

nxkp1 ´ xqn´k.”
Let us now give a general definition of conditional expectation (and, in particular,

of conditional probability) with respect to a σ-algebra G , G Ď F , and compare it
with the definition given in Sect. 8 of Chap. 1 for finite probability spaces.

2. Let pΩ,F ,Pq be a probability space, G a σ-algebra, G Ď F (G is a σ-subalgebra
of F ), and ξ “ ξpωq a random variable. Recall that, according to Sect. 6, the expec-
tation E ξ was defined in two stages: first for a nonnegative random variable ξ, then
in the general case by

E ξ “ E ξ` ´ E ξ´,

and only under the assumption that

minpE ξ´, E ξ`q ă 8
(in order to avoid an indeterminacy of the form 8 ´ 8). A similar two-stage con-
struction is also used to define conditional expectations Epξ |G q.

Definition 1.

(1) The conditional expectation of a nonnegative random variable ξ with respect
to the σ-algebra G is a nonnegative extended random variable, denoted by
Epξ |G q or Epξ |G qpωq, such that
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(a) Epξ |G q is G -measurable;
(b) for every A P G ż

A
ξ dP “

ż
A

Epξ |G q dP. (1)

(2) The conditional expectation Epξ |G q, or Epξ |G qpωq, of any random variable ξ
with respect to the σ-algebra G is considered to be defined if

minpEpξ` |G q,Epξ´ |G qq ă 8 pP -a. s.q,
and it is given by the formula

Epξ |G q ” Epξ` |G q ´ Epξ´ |G q,
where, on the set (of probability zero) of sample points for which Epξ` |G q “
Epξ´ |G q “ 8, the difference Epξ` |G q ´ Epξ´ |G q is given an arbitrary
value, for example zero.

We begin by showing that, for nonnegative random variables, Epξ |G q actually
exists. By Subsection 8 of Sect. 6 the set function

QpAq “
ż

A
ξ dP, A P G , (2)

is a measure on pΩ,G q, and is absolutely continuous with respect to P (considered
on (Ω,G ), G Ď F ). Therefore (by the Radon–Nikodým theorem) there is a non-
negative G -measurable extended random variable Epξ |G q such that

QpAq “
ż

A
Epξ |G q d P . (3)

Then (1) follows from (2) and (3).

Remark 1. In accordance with the Radon–Nikodým theorem, the conditional ex-
pectation Epξ |G q is defined only up to sets of P-measure zero. In other words,
Epξ |G q can be taken to be any G -measurable function f pωq for which QpAq “ş

A f pωq d P, A P G (a “version” of the conditional expectation).
Let us observe that, in accordance with the remark on the Radon–Nikodým

theorem,

Epξ |G q ” d Q
d P

pωq, (4)

i.e., the conditional expectation is just the Radon–Nikodým derivative of the mea-
sure Q with respect to P (considered on (Ω,G )).

It is worth to note that if a nonnegative random variable ξ is such that E ξ ă 8,
then Epξ |G q ă 8 (P-a. s.), which directly follows from (1). Similarly, if ξ ≤ 0 and
E ξ ą ´8, then Epξ |G q ą ´8 (P-a. s.).

Remark 2. In connection with (1), we observe that we cannot in general put
Epξ |G q “ ξ, since ξ is not necessarily G -measurable.
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Remark 3. Suppose that ξ is a random variable for which E ξ exists. Then Epξ |G q
could be defined as a G -measurable function for which (1) holds. This is usually just
what happens. Our definition Epξ |G q ” Epξ` |G q ´ Epξ´ |G q has the advantage
that for the trivial σ-algebra G “ t∅, Ωu it reduces to the definition of E ξ but
does not presuppose the existence of E ξ. (For example, if ξ is a random variable
with E ξ` “ 8, E ξ´ “ 8, and G “ F , then E ξ is not defined, but in terms of
Definition 1, Epξ |G ) exists and is simply ξ “ ξ` ´ ξ´).

Remark 4. Let the random variable ξ have a conditional expectation Epξ |G q with
respect to the σ-algebra G . The conditional variance Varpξ |G q of ξ with respect
to G is the random variable

Varpξ |G q “ Erpξ ´ Epξ |G qq2 |G s.
(Cf. the definition of the conditional variance Varpξ |Dq with respect to a decompo-
sition D , as given in Problem 2 in Sect. 8, Chap. 1, and the definition of the variance
in Sect. 8).

Definition 2. Let B P F . The conditional expectation EpIB |G q is denoted by
PpB |G q, or PpB |G qpωq, and is called the conditional probability of the event B
with respect to the σ-algebra G , G Ď F .

It follows from Definitions 1 and 2 that, for a given B P F , PpB |G q is a random
variable such that

(a) PpB |G q is G -measurable,
(b) for every A P G

PpA X Bq “
ż

A
PpB |G q d P . (5)

Definition 3. Let ξ be a random variable and Gη the σ-algebra generated by a ran-
dom element η. Then Epξ |Gηq, if defined, is denoted by Epξ |ηq or Epξ | ηqpωq, and
is called the conditional expectation of ξ with respect to η.

The conditional probability PpB |Gηq is denoted by PpB | ηq or PpB | ηqpωq, and
is called the conditional probability of B with respect to η.

3. Let us show that the definition of Epξ |G q given here agrees with the definition
of conditional expectation in Sect. 8 of Chap. 1.

Let D “ tD1,D2, . . .u be a finite or countable decomposition with atoms Di`ř
i Di “ Ω

˘
such that PpDiq ą 0, i ≥ 1.

Theorem 1. If G “ σpDq and ξ is a random variable for which E ξ is defined, then

Epξ |G q “ Epξ | Diq pP-a. s. on Diq (6)

or equivalently

Epξ |G q “ EpξIDi q
PpDiq pP-a. s. on Diq.

(The notation “ξ “ η (P-a. s. on A)” or “ξ “ η pA;P-a. s.)” means that PpA X tξ ‰
ηuq “ 0.)
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PROOF. According to Lemma 3 of Sect. 4, Epξ |G q “ Ki on Di, where Ki are con-
stants. But ż

Di

ξ d P “
ż

Di

Epξ |G q d P “ Ki PpDiq,

whence

Ki “ 1

PpDiq
ż

Di

ξ d P “ EpξIDi q
PpDiq “ Epξ | Diq.

This completes the proof of the theorem.
[\
Consequently the concept of the conditional expectation Epξ |Dq with respect to

a finite decomposition D “ tD1, . . . ,Dnu, as introduced in Chap. 1, is a special case
of the concept of conditional expectation with respect to the σ-algebra G “ σpDq.

4. Properties of conditional expectations. We shall suppose that the expectations
are defined for all the random variables that we consider and that G Ď F .

A˚. If C is a constant and ξ “ C pa. s.q, then Epξ |G q “ C pa. s.q.
B˚. If ξ ≤ η pa. s.q then Epξ |G q ≤ Epη |G q pa. s.q.
C˚. | Epξ |G q| ≤ Ep|ξ| |G q pa. s.q.
D˚. If a, b are constants and a E ξ ` b E η is defined, then

Epaξ ` bη |G q “ a Epξ |G q ` b Epη |G q pa. s.q.
E˚. Let F˚ “ t∅,Ωu be the trivial σ-algebra. Then

Epξ |F˚q “ E ξ pa. s.q.
F˚. Epξ |F q “ ξ pa. s.q.
G˚. EpEpξ |G qq “ E ξ.
H˚. If G1 Ď G2 then the (first) “telescopic property” holds:

ErEpξ |G2q |G1s “ Epξ |G1q pa. s.q.
I˚. If G1 Ě G2 then the (second) “telescopic property” holds:

ErEpξ |G2q |G1qs “ Epξ |G2q pa. s.q.
J˚. Let a random variable ξ for which E ξ is defined be independent of the σ-

algebra G (i.e., independent of IB, B P G ). Then

Epξ |G q “ E ξ pa. s.q.
K˚. Let η be a G -measurable random variable, E |ξ| ă 8 and E |ξη| ă 8.

Then
Epξη |G q “ η Epξ |G q pa. s.q.
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Let us establish these properties.
A˚. A constant function is measurable with respect to G . Therefore we need

only verify that ż
A
ξ dP “

ż
A

C d P, A P G .

But, by the hypothesis ξ “ C (a. s.) and Property G of Sect. 6, this equation is
obviously satisfied.

B˚. If ξ ≤ η (a. s.), then by Property B of Sect. 6
ż

A
ξ dP ≤

ż
A
η d P, A P G ,

and therefore ż
A

Epξ |G q d P ≤
ż

A
Epη |G q d P, A P G .

The required inequality now follows from Property I (Sect. 6).
C˚. This follows from the preceding property if we observe that ´|ξ| ≤ ξ ≤ |ξ|.
D˚. If A P G then by Problem 2 of Sect. 6,

ż
A
paξ ` bηq d P “

ż
A

aξ d P `
ż

A
bη dP “

ż
A

a Epξ |G q d P

`
ż

A
b Epη |G q d P “

ż
A
ra Epξ |G q ` b Epη |G qs d P,

which establishes D*.
E˚. This property follows from the remark that E ξ is an F˚-measurable func-

tion and the evident fact that if A “ Ω or A “ ∅ thenż
A
ξ d P “

ż
A

E ξ d P .

F˚. Since ξ if F -measurable and
ż

A
ξ d P “

ż
A

Epξ |F q d P, A P F ,

we have Epξ |F q “ ξ (a. s.).
G˚. This follows from E˚ and H˚ by taking G1 “ t∅, Ωu and G2 “ G .
H˚. Let A P G1; then

ż
A

Epξ |G1q dP “
ż

A
ξ d P .

Since G1 Ď G2, we have A P G2 and therefore
ż

A
ErEpξ |G2q |G1s dP “

ż
A

Epξ |G2q d P “
ż

A
ξ dP.
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Consequently, when A P G1,
ż

A
Epξ |G1q dP “

ż
A

ErEpξ |G2q |G1s d P

and arguing as in the proof of Property I (Sect. 6) (see also Problem 5 of Sect. 6)

Epξ |G1q “ ErEpξ |G2q |G1s pa. s.q.
I*. If A P G1, then by the definition of ErEpξ |G2q |G1s

ż
A

ErEpξ |G2q |G1s d P “
ż

A
Epξ |G2q dP.

The function Epξ |G2q is G2-measurable and, since G2 Ď G1, also G1-measurable. It
follows that Epξ |G2q is a variant of the expectation ErEpξ |G2q |G1s, which proves
Property I*.

J*. Since E ξ is a G -measurable function, we have only to verify that
ż

B
ξ d P “

ż
B

E ξ d P for any B P G ,

i.e., that Erξ¨IBs “ E ξ¨E IB. If E |ξ| ă 8, this follows immediately from Theorem 6
of Sect. 6. In the general case use Problem 6 of Sect. 6 instead of this theorem.

The proof of Property K* will be given a little later; it depends on conclusion (a)
of the following theorem.

Theorem 2 (On Taking Limits Under the Conditional Expectation Sign). Let
tξnun≥1 be a sequence of extended random variables.

(a) If |ξn| ≤ η, E η ă 8, and ξn Ñ ξ pa. s.q, then

Epξn |G q Ñ Epξ |G q pa. s.q
and

Ep|ξn ´ ξ| |G q Ñ 0 pa. s.q.
(b) If ξn ≥ η, E η ą ´8, and ξn Ò ξ pa. s.q, then

Epξn |G q Ò Epξ |G q pa. s.q.
(c) If ξn ≤ η, E η ă 8, and ξn Ó ξ pa. s.q, then

Epξn |G q Ó Epξ |G q pa. s.q.
(d) If ξn ≥ η, E η ą ´8, then

Eplim inf ξn |G q ≤ lim inf Epξn |G q pa. s.q.
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(e) If ξn ≤ η, E η ă 8, then

lim supEpξn |G q ≤ Eplim sup ξn |G q pa. s.q.
(f) If ξn ≥ 0 then

Ep
ÿ

ξn |G q “
ÿ

Epξn |G q pa. s.q.
PROOF. (a) Let ζn “ supm≥n |ξm ´ ξ|. Since ξn Ñ ξ (a. s.), we have ζn Ó 0 (a. s.).
The expectations E ξn and E ξ are finite; therefore by Properties D* and C* (a. s.)

| Epξn |G q ´ Epξ |G q| “ | Epξn ´ ξ |G q| ≤ Ep|ξn ´ ξ| |G q ≤ Epζn |G q.
Since Epζn`1 |G q ≤ Epζn |G q (a. s.), the limit h “ limn Epζn |G q exists (a. s.). Then

0 ≤
ż
Ω

h d P ≤
ż
Ω

Epζn |G q d P “
ż
Ω

ζn d P Ñ 0, n Ñ 8,

where the last statement follows from the dominated convergence theorem, since
0 ≤ ζn ≤ 2η, E η ă 8. Consequently

ş
Ω

h dP “ 0 and then h “ 0 (a. s.) by
Property H.

(b) First let η ” 0. Since Epξn |G q ≤ Epξn`1 |G q (a. s.), the limit ζpωq “
limn Epξn |G q exists (a. s.). Then by the equation

ż
A
ξn d P “

ż
A

Epξn |G q d P, A P G ,

and the theorem on monotone convergence,
ż

A
ξ dP “

ż
A

Epξ |G q dP “
ż

A
ζ d P, A P G .

Consequently ξ “ ζ (a. s.) by Property I and Problem 5 of Sect. 6.
For the proof in the general case, we observe that 0 ≤ ξǹ Ò ξ`, and by what has

been proved,
Epξǹ |G q Ò Epξ` |G q pa. s.q. (7)

But 0 ≤ ξń ≤ ξ´, E ξ´ ă 8, and therefore by (a)

Epξń |G q Ñ Epξ´ |G q,
which, with (7), proves (b).

Conclusion (c) follows from (b).
(d) Let ζn “ infm≥n ξm; then ζn Ò ζ, where ζ “ lim inf ξn. According to (b),

Epζn |G q Ò Epζ |G q (a. s.). Therefore (a. s.) Eplim inf ξn |G q “ Epζ |G q “
limn Epζn |G q “ lim inf Epζn |G q ≤ lim inf Epξn |G q.
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Conclusion (e) follows from (d).
(f) If ξn ≥ 0, by Property D* we have

E

˜
nÿ

k“1

ξk

ˇ̌
G

¸
“

nÿ
k“1

Epξk |G q pa. s.q

which, with (b), establishes the required result.
This completes the proof of the theorem.
[\
We can now establish Property K*. Let η “ IB, B P G . Then, for every A P G ,

ż
A
ξη d P “

ż
AXB

ξ d P “
ż

AXB
Epξ |G q d P “

ż
A

IB Epξ |G q d P “
ż

A
η Epξ |G q d P .

By the additivity of the Lebesgue integral, the equation
ż

A
ξη d P “

ż
A
η Epξ |G q d P, A P G , (8)

remains valid for the simple random variables η “ řn
k“1 ykIBk , Bk P G . Therefore,

by Property I (Sect. 6), we have

Epξη |G q “ η Epξ |G q pa. s.q (9)

for these random variables.
Now let η be any G -measurable random variable, and let tηnun≥1 be a sequence

of simple G -measurable random variables such that |ηn| ≤ η and ηn Ñ η. Then
by (9)

Epξηn |G q “ ηn Epξ |G q pa. s.q.
It is clear that |ξηn| ≤ |ξη|, where E |ξη| ă 8. Therefore Epξηn |G q Ñ Epξη |G q
(a. s.) by Property (a). In addition, since E |ξ| ă 8, we have Epξ |G q finite (a. s.)
(see Property C* and Property J of Sect. 6). Therefore ηn Epξ |G q Ñ η Epξ |G q
(a. s.). (The hypothesis that Epξ |G q is finite, almost surely, is essential, since, ac-
cording to the footnote in Subsection 4 of Section 4, 0 ¨8 “ 0, but if ηn “ 1{n, η ”
0, we have 1{n ¨ 8 “ 8 Û 0 ¨ 8 “ 0.)

Remark 5. For the property K* the following conditions suffice: η is G -measurable
and Epξ |G q is well defined.

5. Here we consider the more detailed structure of conditional expectations Epξ |Gηq,
which we also denote, as usual, by Epξ | ηq.

Since Epξ | ηq is a Gη-measurable function, then by Theorem 3 of Sect. 4 (more
precisely, by its obvious modification for extended random variables) there is a
Borel function m “ mpyq from R to R such that

mpηpωqq “ Epξ | ηqpωq (10)
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for all ω P Ω. We denote this function mpyq by Epξ | η “ yq and call it the condi-
tional expectation of ξ with respect to the event tη “ yu, or the conditional expec-
tation of ξ under the condition that η “ y, or given that η “ y.

By definition,
ż

A
ξ dP “

ż
A

Epξ | ηq d P “
ż

A
mpηq dP, A P Gη. (11)

Therefore by Theorem 7 of Sect. 6 (on change of variable under the Lebesgue inte-
gral sign) ż

tω : ηPBu
mpηq d P “

ż
B

mpyq Pηpdyq, B P BpRq, (12)

where Pη is the probability distribution of η. Consequently m “ mpyq is a Borel
function such that ż

tω : ηPBu
ξ d P “

ż
B

mpyq Pηpdyq (13)

for every B P BpRq.
This remark shows that we can give a different definition of the conditional ex-

pectation Epξ | η “ yq.

Definition 4. Let ξ and η be random variables (possibly, extended) and let E ξ be
defined. The conditional expectation of the random variable ξ under the condition
that η “ y is any BpRq-measurable function m “ mpyq for which

ż
tω : ηPBu

ξ d P “
ż

B
mpyq Pηpdyq, B P BpRq. (14)

That such a function exists follows again from the Radon–Nikodým theorem if
we observe that the set function

QpBq “
ż

tω : ηPBu
ξ d P

is a signed measure absolutely continuous with respect to the measure Pη .
Now suppose that mpyq is a conditional expectation in the sense of Definition 4.

Then if we again apply the theorem on change of variable under the Lebesgue inte-
gral sign, we obtain

ż
tω : ηPBu

ξ d P “
ż

B
mpyq Pηpdyq “

ż
tω : ηPBu

mpηq d P, B P BpRq.

The function mpηq is Gη-measurable, and the sets tω : η P Bu, B P BpRq, exhaust
the subsets of Gη .

Hence it follows that mpηq is the expectation Epξ | ηq. Consequently if we know
Epξ | η “ yq we can reconstruct Epξ | ηq, and conversely from Epξ | ηq we can find
Epξ | η “ yq.
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From an intuitive point of view, the conditional expectation Epξ | η “ yq is
simpler and more natural than Epξ | ηq. However, Epξ | ηq, considered as a Gη-
measurable random variable, is more convenient to work with.

Observe that Properties A˚–K˚ above and the conclusions of Theorem 2 can
easily be transferred to Epξ | η “ yq (replacing “almost surely” by “Pη-almost
surely”). Thus, for example, Property K˚ transforms as follows: if E |ξ| ă 8 and
E |ξf pηq| ă 8, where f “ f pyq is a BpRq measurable function, then

Epξf pηq | η “ yq “ f pyq Epξ | η “ yq pPη-a.s.q. (15)

In addition (cf. Property J˚), if ξ and η are independent, then

Epξ | η “ yq “ E ξ pPη-a.s.q.
We also observe that if B P BpR2q and ξ and η are independent, then

ErIBpξ, ηq | η “ ys “ E IBpξ, yq pPη-a.s.q, (16)

and if ϕ “ ϕpx, yq is a BpR2q-measurable function such that E |ϕpξ, ηq| ă 8, then

Erϕpξ, ηq | η “ ys “ Erϕpξ, yqs pPη-a.s.q.
To prove (16) we make the following observation. If B “ B1 ˆ B2, the validity

of (16) will follow from
ż

tω : ηPAu
IB1ˆB2

pξ, ηq Ppdωq “
ż

pyPAq
E IB1ˆB2

pξ, yq Pηpdyq.

But the left-hand side here is Ptξ P B1, η P A X B2u, and the right-hand side is
Ppξ P B1q Ppη P A X B2q; their equality follows from the independence of ξ and η.
In the general case the proof depends on an application of Theorem 1 of Sect. 2 on
monotone classes (cf. the corresponding part of the proof of Fubini’s theorem).

Definition 5. The conditional probability of the event A P F under the condition
that η “ y (notation: PpA | η “ yq) is EpIA | η “ yq.

It is clear that PpA | η “ yq could be defined as a BpRq-measurable function such
that

PpA X tη P Buq “
ż

B
PpA | η “ yq Pηpdyq, B P BpRq. (17)

6. Let us calculate some examples of conditional probabilities and conditional ex-
pectations.

Example 1. Let η be a discrete random variable with Ppη “ ykq ą 0,
ř8

k“1 Ppη “
ykq “ 1. Then

PpA | η “ ykq “ PpA X tη “ ykuq
Ppη “ ykq , k ≥ 1.
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For y R ty1, y2, . . .u the conditional probability PpA | η “ yq can be defined in any
way, for example as zero.

If ξ is a random variable for which E ξ exists, then

Epξ | η “ ykq “ 1

Ppη “ ykq
ż

tω : η“yku
ξ d P .

When y R ty1, y2, . . .u the conditional expectation Epξ | η “ yq can be defined in
any way (for example, as zero).

Example 2. Let pξ, ηq be a pair of random variables whose distribution has a density
fξ,ηpx, yq:

Ptpξ, ηq P Bu “
ż

B
fξ,ηpx, yq dx dy, B P BpR2q.

Let fξpxq and fηpyq be the densities of the probability distributions of ξ and η (see
(46), (55), and (56) in Sect. 6).

Let us put

fξ|η px | yq “ fξ,ηpx, yq
fηpyq , (18)

taking fξ|ηpx | yq “ 0 if fηpyq “ 0.
Then

Ppξ P C | η “ yq “
ż

C
fξ|ηpx | yq dx, C P BpRq, (19)

i.e., fξ|ηpx | yq is the density of a conditional probability distribution.
In fact, to prove (19) it is enough to verify (17) for B P BpRq, A “ tξ P Cu. By

(43) and (45) of Sect. 6 and Fubini’s theorem,
ż

B

„ż
C

fξ|ηpx | yq dx

j
Pηpdyq “

ż
B

„ż
C

fξ|ηpx | yq dx

j
fηpyq dy

“
ż

CˆB
fξ|ηpx | yq fηpyq dx dy

“
ż

CˆB
fξ,ηpx, yq dx dy

“ Ptpξ, ηq P C ˆ Bu “ Ptpξ P Cq X pη P Bqu,
which proves (17).
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In a similar way we can show that if E ξ exists, then

Epξ | η “ yq “
ż 8

´8
x fξ|ηpx | yq dx. (20)

Example 3. Let the length of time that a piece of apparatus will continue to operate
be described by a nonnegative random variable η “ ηpωq whose distribution func-
tion Fηpyq has a density fηpyq (naturally, Fηpyq “ fηpyq “ 0 for y ă 0). Find the
conditional expectation Epη ´ a | η ≥ aq, i.e., the average time for which the appa-
ratus will continue to operate given that it has already been operating for time a.

Let Ppη ≥ aq ą 0. Then according to the definition of conditional probability
given in Subsection 1 and (45) of Sect. 6 we have

Epη ´ a | η ≥ aq “ Erpη ´ aqItη≥aus
Ppη ≥ aq “

ş
Ω

pη ´ aqItη≥au Ppdωq
Ppη ≥ aq

“
ş8

a py ´ aq fηpyq dyş8
a fηpyq dy

.

It is interesting to observe that if η is exponentially distributed, i.e.

fηpyq “
"
λe´λy, y ≥ 0,
0, y ă 0,

(21)

then E η “ Epη | η ≥ 0q “ 1{λ and Epη ´ a | η ≥ aq “ 1{λ for every a ą 0.
In other words, in this case the average time for which the apparatus continues to
operate, assuming that it has already operated for time a, is independent of a and
simply equals the average time E η.

Let us find the conditional distribution Ppη ´ a ≤ x | η ≥ aq assuming (21). We
have

Ppη ´ a ≤ x | η ≥ aq “ Ppa ≤ η ≤ a ` xq
Ppη ≥ aq

“ Fηpa ` xq ´ Fηpaq ` Ppη “ aq
1 ´ Fηpaq ` Ppη “ aq

“ r1 ´ e´λpa`xqs ´ r1 ´ e´λas
1 ´ r1 ´ e´λas

“ e´λar1 ´ e´λxs
e´λa

“ 1 ´ e´λx.

Therefore the conditional distribution Ppη ´ a ≤ x | η ≥ aq is the same as the
unconditional distribution Ppη ≤ xq. This remarkable property is characteristic for
the exponential distribution: there are no other distributions that have densities and
possess the property Ppη ´ a ≤ x | η ≥ aq “ Ppη ≤ xq, a ≥ 0, 0 ≤ x ă 8.
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Example 4 (Buffon’s Needle). Suppose that we toss a needle of unit length “at
random” onto a pair of parallel straight lines, a unit distance apart, in a plane (see
Fig. 29). What is the probability that the needle will intersect at least one of the
lines?

To solve this problem we must first define what it means to toss the needle “at
random.” Let ξ be the distance from the midpoint of the needle to the left-hand line.
We shall suppose that ξ is uniformly distributed on r0, 1s, and (see Fig. 29) that the
angle θ is uniformly distributed on r´π{2, π{2s. In addition, we shall assume that ξ
and θ are independent.

Fig. 29

Let A be the event that the needle intersects one of the lines. It is easy to see that
if

B “ tpa, xq : |a| ≤ π{2, x P r0, 1
2 cos as Y r1 ´ 1

2 cos a, 1su,
then A “ tω : pθ, ξq P Bu, and therefore the probability in question is

PpAq “ E IApωq “ E IBpθpωq, ξpωqq.
By Property G˚ and formula (16),

E IBpθpωq, ξpωqq “ EpErIBpθpωq, ξpωqq | θpωqsq
“

ż
Ω

ErIBpθpωq, ξpωqq | θpωqs Ppdωq

“
ż π{2

´π{2
ErIBpθpωq, ξpωqq | θpωq “ as Pθpdaq

“ 1

π

ż π{2

´π{2
E IBpa, ξpωqq da “ 1

π

ż π{2

´π{2
cos a da “ 2

π
,

where we have used the fact that

E IBpa, ξpωqq “ Ptξ P r0, 12 cos as Y r1 ´ 1
2 cos asu “ cos a.
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Thus the probability that a “random” toss of the needle intersects one of the lines
is 2{π. This result can be used as the basis for an experimental evaluation of π. In
fact, let the needle be tossed N times independently. Define ξi to be 1 if the needle
intersects a line on the ith toss, and 0 otherwise. Then by the law of large numbers
(see, for example, (5) in Sect. 5 of Chap. 1)

P
"ˇ̌

ˇ̌ξ1 ` ¨ ¨ ¨ ` ξN

N
´ PpAq

ˇ̌
ˇ̌ ą ε

*
Ñ 0, N Ñ 8,

for every ε ą 0.
In this sense the frequency satisfies

ξ1 ` ¨ ¨ ¨ ` ξN

N
« PpAq “ 2

π

and therefore
2N

ξ1 ` ¨ ¨ ¨ ` ξN
« π.

This formula has actually been used for a statistical evaluation of π. In 1850,
R. Wolf (an astronomer in Zurich) threw a needle 5000 times and obtained the value
3.1596 for π. Apparently this problem was one of the first applications (now known
as “Monte Carlo methods”) of probabilistic-statistical regularities to numerical anal-
ysis.

Remark 6. Example 4 (Buffon’s problem) is a typical example of a problem on
geometric probabilities. In such problems one often can see how to assign probabil-
ities to “elementary events” from geometric considerations based, for example, on a
“symmetry.” (Cf. Subsections 3 and 4 in Sect. 1 of Chap. 1 and Sect. 3 of the present
Chapter.) Problems 9 to 12 below deal with geometric probabilities.

7. If tξnun≥1 is a sequence of nonnegative random variables, then according to con-
clusion (f) of Theorem 2,

E
´ ÿ

ξn |G
¯

“
ÿ

Epξn |G q pa. s.q.

In particular, if B1,B2, . . . is a sequence of pairwise disjoint sets,

P
´ ÿ

Bn |G
¯

“
ÿ

P
`
Bn |G ˘ pa. s.q. (22)

It must be emphasized that this equation is satisfied only almost surely and that
consequently the conditional probability PpB |G qpωq cannot be considered as a
measure in B for given ω. One might suppose that, except for a set N of mea-
sure zero, Pp¨ |G qpωq would still be a measure for ω P N . However, in general this
is not the case, for the following reason. Let N pB1,B2, . . .q be the set of sample
points ω such that the countable additivity property (22) fails for these B1,B2, . . ..
Then the excluded set N is
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N “
ď

N pB1,B2, . . .q, (23)

where the union is taken over all B1,B2, . . . in F . Although the P-measure of each
set N pB1,B2, . . .q is zero, the P-measure of N can be different from zero (because
of an uncountable union in (23)). (Recall that the Lebesgue measure of a single point
is zero, but the measure of the set N “ r0, 1s, which is an uncountable sum of the
individual points txu, 0 ≤ x ă 1, is 1.)

However, it would be convenient if the conditional probability Pp¨ |G qpωq were
a measure for each ω P Ω, since then, for example, the calculation of conditional
expectations Epξ |G qpωq could be carried out (see Theorem 3 below) in a simple
way by averaging with respect to the measure Pp¨ |G qpωq:

Epξ |G q “
ż
Ω

ξpω̃q Ppdω̃ |G qpωq pa. s.q

(cf. (10) in Sect. 8 of Chap. 1).
We introduce the following definition.

Definition 6. A function Ppω;Bq, defined for all ω P Ω and B P F , is a regular
conditional probability with respect to G Ď F if

(a) Ppω; ¨q is a probability measure on F for every ω P Ω;
(b) For each B P F the function Ppω;Bq, as a function of ω, is a version of the

conditional probability PpB |G qpωq, i.e., Ppω;Bq “ PpB |G qpωq (a. s.).

Theorem 3. Let Ppω;Bq be a regular conditional probability with respect to G and
let ξ be an integrable random variable. Then

Epξ |G qpωq “
ż
Ω

ξpω̃qPpω; dω̃q pa. s.q. (24)

PROOF. If ξ “ IB,B P F , the required formula (24) becomes

PpB |G qpωq “ Ppω;Bq pa. s.q,
which holds by Definition 6 (b). Consequently (24) holds for simple functions.

Now let ξ ≥ 0 and ξn Ò ξ, where ξn are simple functions. Then by (b) of Theo-
rem 2 we have Epξ |G qpωq “ limn Epξn |G qpωq (a. s.). But since Ppω; ¨q is a mea-
sure for every ω P Ω, we have

lim
n

Epξn |G qpωq “ lim
n

ż
Ω

ξnpω̃qPpω; dω̃q “
ż
Ω

ξpω̃qPpω; dω̃q

by the monotone convergence theorem.
The general case reduces to this one if we use the representation ξ “ ξ` ´ ξ´.

This completes the proof.
[\
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Corollary. Let G “ Gη , where η is a random variable, and let the pair pξ, ηq have
a probability distribution with density fξ,ηpx, yq. Let E |gpξq| ă 8. Then

Epgpξq | η “ yq “
ż 8

´8
gpxq fξ|ηpx | yq dx,

where fξ|ηpx | yq is the density of the conditional distribution (see (18)).

In order to be able to state the basic result on the existence of regular conditional
probabilities, we need the following definitions.

Definition 7. Let pE,E q be a measurable space, X “ Xpωq a random element with
values in E, and G a σ-subalgebra of F . A function Qpω;Bq, defined for ω P Ω and
B P E , is a regular conditional distribution of X with respect to G if

(a) for each ω P Ω the function Qpω;Bq is a probability measure on pE,E q;
(b) for each B P E the function Qpω;Bq, as a function of ω, is a version of the

conditional probability PpX P B |G qpωq, i.e.

Qpω;Bq “ PpX P B |G qpωq pa. s.q.
Definition 8. Let ξ be a random variable. A function F “ Fpω; xq, ω P Ω, x P R, is
a regular distribution function for ξ with respect to G if:

(a) Fpω; xq is, for each ω P Ω, a distribution function on R;
(b) Fpω; xq “ Ppξ ≤ x |G qpωq (a. s.), for each x P R.

Theorem 4. A regular distribution function and a regular conditional distribution
always exist for the random variable ξ with respect to a σ-algebra G Ď F .

PROOF. For each rational number r P R, define Frpωq “ Ppξ ≤ r |G qpωq, where
Ppξ ≤ r |G qpωq “ EpItξ≤ru |G qpωq is any version of the conditional probability,
with respect to G , of the event tξ ≤ ru. Let triu be the set of rational numbers
in R. If ri ă rj, Property B* implies that Ppξ ≤ ri |G q ≤ Ppξ ≤ rj |G q (a. s.), and
therefore if Aij “ tω : Frj pωq ă Fri pωqu, A “ Ť

Aij, we have PpAq “ 0. In other
words, the set of points ω at which the distribution function Frpωq, r P triu, fails to
be monotonic has measure zero.

Now let

Bi “
!
ω : lim

nÑ8 Fri`p1{nqpωq ‰ Fri pωq
)
, B “

8ď
i“1

Bi.

It is clear that Itξ≤ri`p1{nqu Ó Itξ≤riu, n Ñ 8. Therefore, by (a) of Theorem 2,
Fri`p1{nqpωq Ñ Fri pωq (a. s.), and therefore the set B on which continuity on the
right (along the rational numbers) fails also has measure zero, PpBq “ 0.

In addition, let

C “
!
ω : lim

nÑ8 Fnpωq ‰ 1
)

Y
"
ω : lim

nÑ´8 Fnpωq ‰ 0

*
.

Then, since tξ ≤ nu Ò Ω, n Ñ 8, and tξ ≤ nu Ó ∅, n Ñ ´8, we have PpCq “ 0.
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Now put

Fpω; xq “
#
lim
rÓx

Frpωq, ω R A Y B Y C,

Gpxq, ω P A Y B Y C,

where Gpxq is any distribution function on R; we show that Fpω; xq satisfies the
conditions of Definition 8.

Let ω R A Y B Y C. Then it is clear that Fpω; xq is a nondecreasing func-
tion of x. If x ă x1 ≤ r, then Fpω; xq ≤ Fpω; x1q ≤ Fpω; rq “ Frpωq Ó
Fpω, xq when r Ó x. Consequently Fpω; xq is continuous on the right. Simi-
larly limxÑ8 Fpω; xq “ 1, limxÑ´8 Fpω; xq “ 0. Since Fpω; xq “ Gpxq when
ω P A Y B Y C, it follows that Fpω; xq is a distribution function on R for every
ω P Ω, i.e., condition (a) of Definition 6 is satisfied.

By construction, Ppξ ≤ r |G qpωq “ Frpωq “ Fpω; rq. If r Ó x, we have Fpω; rq Ó
Fpω; xq for all ω P Ω by the continuity on the right that we just established. But by
conclusion (a) of Theorem 2, we have Ppξ ≤ r |G qpωq Ñ Ppξ ≤ x |G qpωq (a. s.).
Therefore Fpω; xq “ Ppξ ≤ x |G qpωq (a. s.), which establishes condition (b) of
Definition 8.

We now turn to the proof of the existence of a regular conditional distribution
of ξ with respect to G .

Let Fpω; xq be the function constructed above. Put

Qpω;Bq “
ż

B
Fpω; dxq,

where the integral is a Lebesgue–Stieltjes integral. From the properties of the inte-
gral (see Subsection 8 in Sect. 6), it follows that Qpω;Bq is a measure in B for each
given ω P Ω. To establish that Qpω;Bq is a version of the conditional probability
Ppξ P B |G qpωq, we use the principle of appropriate sets.

Let C be the collection of sets B in BpRq for which Qpω;Bq “ Ppξ P B |G qpωq
(a. s.). Since Fpω; xq “ Ppξ ≤ x |G qpωq (a. s.), the system C contains the sets B
of the form B “ p´8, xs, x P R. Therefore C also contains the intervals of the
form pa, bs, and the algebra A consisting of finite sums of disjoint sets of the form
pa, bs. Then it follows from the continuity properties of Qpω;Bq (ω fixed) and from
conclusion (b) of Theorem 2 that C is a monotonic class, and since A Ď C Ď
BpRq, we have, from Theorem 1 of Sect. 2,

BpRq “ σpA q Ď σpC q “ μpC q “ C Ď BpRq,
whence C “ BpRq.

This completes the proof of the theorem.
[\
By using topological considerations we can extend the conclusion of Theorem 4

on the existence of a regular conditional distribution to random elements with values
in what are known as Borel spaces. We need the following definition.
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Definition 9. A measurable space pE,E q is a Borel space if it is Borel equivalent to a
Borel subset of the real line, i.e., there is a one-to-one mapping ϕ “ ϕpeq : pE,E q Ñ
pR,BpRqq such that

(1) ϕpEq ” tϕpeq : e P Eu is a set in BpRq;
(2) ϕ is E -measurable (ϕ´1pAq P E , A P ϕpEq X BpRq),
(3) ϕ´1 is BpRq{E -measurable (ϕpBq P ϕpEq X BpRq, B P E ).

Theorem 5. Let X “ Xpωq be a random element with values in the Borel space
pE,E q. Then there is a regular conditional distribution of X with respect to G Ď F .

PROOF. Let ϕ “ ϕpeq be the function in Definition 9. By (2) in this definition
ϕpXpωqq is a random variable. Hence, by Theorem 4, we can define the conditional
distribution Qpω;Aq of ϕpXpωqq with respect to G , A P ϕpEq X BpRq.

We introduce the function Q̃pω;Bq “ Qpω;ϕpBqq, B P E . By (3) of Definition 9,
ϕpBq P ϕpEq X BpRq and consequently Q̃pω;Bq is defined. Evidently Q̃pω;Bq is a
measure in B P E for every ω. Now fix B P E . By the one-to-one character of the
mapping ϕ “ ϕpeq,

Q̃pω;Bq “ Qpω;ϕpBqq “ PtϕpXq P ϕpBq |G upωq “ PtX P B |G upωq pa. s.q.
Therefore Q̃pω;Bq is a regular conditional distribution of X with respect to G .
This completes the proof of the theorem.
[\

Corollary. Let X “ Xpωq be a random element with values in a complete separa-
ble metric space pE,E q. Then there is a regular conditional distribution of X with
respect to G . In particular, such a distribution exists for the spaces pRn,BpRnqq and
pR8,BpR8qq.

The proof follows from Theorem 5 and the well-known topological result that
such spaces pE,E q are Borel spaces.

8. The theory of conditional expectations developed above makes it possible to give
a generalization of Bayes’s theorem; this has applications in statistics.

Recall that if D “ tA1, . . . ,Anu is a partition of the space Ω with PpAiq ą 0,
Bayes’s theorem, see (9) in Sect. 3 of Chap. 1, states that

PpAi | Bq “ PpAiq PpB | Aiqřn
j“1 PpAjq PpB | Ajq (25)

for every B with PpBq ą 0. Therefore if θ “ řn
i“1 aiIAi is a discrete random variable

then, according to (10) in Sect. 8 of Chap. 1,

Ergpθq | Bs “
řn

i“1 gpaiq PpAiq PpB | Aiqřn
j“1 PpAjq PpB | Ajq , (26)
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or

Ergpθq | Bs “
ş8

´8 gpaq PpB | θ “ aq Pθpdaqş8
´8 PpB | θ “ aq Pθpdaq , (27)

where PθpAq “ Ptθ P Au.
On the basis of the definition of Ergpθq | Bs given at the beginning of this sec-

tion, it is easy to establish that (27) holds for all events B with PpBq ą 0, random
variables θ and functions g “ gpaq with E |gpθq| ă 8.

We now consider an analog of (27) for conditional expectations Ergpθq |G s with
respect to a σ-algebra G , G Ď F .

Let

QpBq “
ż

B
gpθpωqq Ppdωq, B P G . (28)

Then by (4)

Ergpθq |G spωq “ d Q
d P

pωq. (29)

We also consider the σ-algebra Gθ. Then, by (5),

PpBq “
ż
Ω

PpB |Gθq d P (30)

or, by the formula for change of variable in Lebesgue integrals,

PpBq “
ż 8

´8
PpB | θ “ aq Pθpdaq. (31)

Since
QpBq “ ErgpθqIBs “ Ergpθq ¨ EpIB |Gθqs,

we have

QpBq “
ż 8

´8
gpaq PpB | θ “ aq Pθpdaq. (32)

Now suppose that the conditional probability PpB | θ “ aq is regular and admits
the representation

PpB | θ “ aq “
ż

B
ρpω; aqλpdωq, (33)

where ρ “ ρpω; aq is nonnegative and measurable in the two variables jointly, and
λ is a σ-finite measure on pΩ, G q.

Let E |gpθq| ă 8. Let us show that (P-a. s.)

Ergpθq |G spωq “
ş8

´8 gpaqρpω; aq Pθpdaqş8
´8 ρpω, aq Pθpdaq (34)

(generalized Bayes theorem).
In proving (34) we shall need the following lemma.
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Lemma. Let pΩ,F q be a measurable space.

(a) Let μ and λ be σ-finite measures, μ ! λ, and f “ f pωq an F -measurable
function. Then ż

Ω

f dμ “
ż
Ω

f
dμ
dλ

dλ (35)

(in the sense that if either integral exists, the other exists and they are equal).
(b) If v is a signed measure and μ, λ are σ-finite measures, v ! μ, μ ! λ, then

dv
dλ

“ dv
dμ

¨ dμ
dλ

pλ-a. s.q (36)

and
dv
dμ

“ dv
dλ

N
dμ
dλ

pμ-a. s.q. (37)

PROOF. (a) Since

μpAq “
ż

A

ˆ
dμ
dλ

˙
dλ, A P F ,

(35) is evidently satisfied for simple functions f “
ÿ

fiIAi . The general case follows
from the representation f “ f ` ´ f ´ and the monotone convergence theorem (cf.
the proof of (39) in Sect. 6).

(b) From (a) with f “ dv{dμ we obtain

vpAq “
ż

A

ˆ
dv
dμ

˙
dμ “

ż
A

ˆ
dv
dμ

˙ ˆ
dμ
dλ

˙
dλ.

Then ν ! λ and therefore

vpAq “
ż

A

dν
dλ

dλ,

whence (36) follows since A is arbitrary, by Property I (Sect. 6).
Property (37) follows from (36) and the remark that

μ

"
ω :

dμ
dλ

“ 0

*
“

ż
tω : dμ{dλ“0u

dμ
dλ

dλ “ 0

(on the set tω : dμ{dλ “ 0u the right-hand side of (37) can be defined arbitrarily,
for example as zero). This completes the proof of the lemma.

[\
To prove (34) we observe that by Fubini’s theorem and (33),

QpBq “
ż

B

„ż 8

´8
gpaqρpω; aq Pθpdaq

j
λpdωq, (38)

PpBq “
ż

B

„ż 8

´8
ρpω; aq Pθpdaq

j
λpdωq. (39)
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Then by the lemma
d Q
d P

“ d Q {dλ
d P {dλ

pP-a. s.q.
Taking account of (38), (39) and (29), we have (34).

Remark 7. Formula (34) remains valid if we replace θ by a random element with
values in some measurable space pE,E q (and replace integration over R by integra-
tion over E).

Let us consider some special cases of (34).
Let the σ-algebra G be generated by the random variable ξ, G “ Gξ. Suppose

that

Ppξ P A | θ “ aq “
ż

A
qpx; aqλpdxq, A P BpRq, (40)

where q “ qpx; aq is a nonnegative function, measurable with respect to both vari-
ables jointly, and λ is a σ-finite measure on pR,BpRqq. Then by the formula for
change of variable in Lebesgue integrals and (34) we obtain

Ergpθq | ξ “ xs “
ş8

´8 gpaq qpx; aq Pθpdaqş8
´8 qpx; aq Pθpdaq . (41)

In particular, let pθ, ξq be a pair of discrete random variables, θ “ ř
aiIAi , ξ “ř

xjIBj . Then, taking λ to be the counting measure pλptxiuq “ 1, i “ 1, 2, . . .q we
find from (41) that

Ergpθq | ξ “ xjs “
ř

i gpaiq Ppξ “ xj | θ “ aiq Ppθ “ aiqř
i Ppξ “ xj | θ “ aiq Ppθ “ aiq . (42)

(Compare (26).)
Now let pθ, ξq be a pair of absolutely continuous random variables with density

fθ,ξpa, xq. Then by (19) the representation (40) applies with qpx; aq “ fξ|θpx | aq and
Lebesgue measure λ. Therefore

Ergpθq | ξ “ xs “
ş8

´8 gpaq fξ|θpx | aq fθpaq daş8
´8 fξ|θpx | aq fθpaq da

. (43)

9. Here we give one more version of the generalized Bayes theorem (see (34)),
which is especially appropriate in problems related to the change of probability
measures.

Theorem 6. Let P and rP be two probability measures on a measurable space
pΩ,F q with rP being absolutely continuous with respect to P (denoted rP ! P)

and let drP
dP be the Radon–Nikodým derivative of rP with respect to P. Let G be a

σ-subalgebra of F pG Ď F q and Ep ¨ |G q and rEp ¨ |G q be conditional expecta-
tions with respect to P and rP given G . Let ξ be a nonnegative (F -measurable)



7 Conditional Probabilities and Conditional Expectations with Respect to a σ-Algebra 275

random variable. Then the following “recalculation formula of conditional expec-
tations” holds:

rEpξ |G q “
E

´
ξ drP

dP

ˇ̌̌
G

¯

E
´

drP
dP

ˇ̌̌
G

¯ prP-a. s.q. (44)

Formula (44) is valid also for any random variable ξ whose conditional expectationrEpξ |G q is well defined.

PROOF. Note first of all that the rP-measure (as well as the P-measure) of the event!
ω : E

´
drP
dP

ˇ̌
ˇG¯

“ 0
)

equals zero. Indeed, if A P G , then

ż
A

E
´drP

dP

ˇ̌
ˇG¯

dP “
ż

A

drP
dP

dP “
ż

A
drP “ rPpAq,

and therefore the set A “
!
ω : E

´
drP
dP

ˇ̌
ˇG¯

“ 0
)

has zero rP-measure.

Let ξ ≥ 0. By the definition of conditional expectation, rEpξ |G q is a G -
measurable random variable such that

rErIA
rEpξ |G qs “ rErIAξs (45)

for any A P G . Hence for the proof of (44) we only need to establish that the (G -
measurable) random variable in the right-hand side of (44) satisfies the equality

rE
„

IA ¨ 1

E
´

drP
dP

ˇ̌
ˇG¯ ¨ E

´
ξ

drP
dP

ˇ̌
ˇG¯j

“ rErIAξs. (46)

Using the properties of conditional expectations and (39) of Sect. 6 we find that

rE
„

IA ¨ 1

E
´

drP
dP

ˇ̌̌
G

¯ ¨ E
´
ξ

drP
dP

ˇ̌
ˇG¯j

“ E
„

IA ¨ 1

E
´

drP
dP

ˇ̌̌
G

¯ ¨ E
´
ξ

drP
dP

ˇ̌
ˇG¯

¨ drP
dP

j

“ E
„

IA ¨ 1

E
´

drP
dP

ˇ̌
ˇG¯ ¨ E

´
ξ

drP
dP

ˇ̌̌
G

¯
¨ E

´drP
dP

ˇ̌̌
G

¯j

“ E
„

IA E
´
ξ

drP
dP

ˇ̌̌
G

¯j
“ E

„
IAξ

drP
dP

j
“ rE rIAξs,

which proves (45) for nonnegative ξ. The general case is treated similarly to the
proof of (39) in Sect. 6 for arbitrary integrable random variables ξ.

[\
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10. The generalized Bayes theorem stated above (see (34), (41), and (43)), which is
one of the basic tools in the “Bayes’s approach” in mathematical statistics, answers
the question of how our knowledge about the distribution of a random variable θ
redistributes depending on the results of observations on a random variable ξ statis-
tically related to θ.

Now we will consider one more application of the concept of conditional ex-
pectation to the estimation problem of an unknown parameter θ based on the ob-
servational data. (We emphasize that unlike the above case, where θ was a random
variable, we now treat θ simply as a parameter taking values in a parameter set Θ
specified a priori, cf. Sect. 7 of Chap. 1).

Actually we will consider an important concept of mathematical statistics, namely,
that of sufficient σ-subalgebra.

Let P “ tPθ, θ P Θu be a family of probability measures on a measurable space
pΩ,F q, these measures depending on a parameter θ running over a parameter set
Θ. The triple E “ pΩ,F ,Pq is often said to specify a probabilistic-statistical
model or a probabilistic-statistical experiment.

To clarify Definition 10 to be given below assume that we have an F -measurable
function T “ Tpωq (a statistic), depending on the outcome ω, and a σ-algebra G “
σpTpωqq generated by this function. It is clear that G Ď F and, in general, F may
contain events which do not belong to G (i.e., F is “richer” than G ). But it may
happen that with regard to determining which value of θ is in fact “acting” we do
not need anything but T “ Tpωq. In this sense it would be natural to call the statistic
T “sufficient.”

Remark 8. When Tpωq “ ω, i.e., when we know the outcomes themselves (rather
then a function of them), we can single out the following two extreme cases.

One of them is when the probabilities Pθ are the same for all θ P Θ. Clearly
neither outcome ω can then give any information about θ.

Another case is when the supports of all the measures Pθ, θ P Θ, are contained
in different subsets of F (i.e., for any two values θ1 and θ2 the measures Pθ1 and
Pθ2 are singular, in which case there are two sets (supports) Ωθ1 and Ωθ2 such that
Pθ1pΩzΩθ1q “ 0, Pθ2pΩzΩθ2q “ 0 and Ωθ1 X Ωθ2 “ ∅). In this case the outcome
ω uniquely determines θ.

Both these cases are of little interest. The cases of interest are, say, when all the
measures Pθ are equivalent to each other (and their supports are then the same), or
these measures are dominated, which is a weaker property than equivalence, namely,
there exists a σ-finite measure λ such that Pθ ! λ for all θ P Θ. In the general
statistical theory it is customarily assumed that the family at hand is dominated
(which allows one to exclude some measure-theoretic pathologies). The role of this
property is fully revealed by the Factorization Theorem 7 to be stated below.

The following definition may be regarded as one of the ways to formalize the
concept of sufficiency of “information” contained in a σ-subalgebra G Ď F .

Definition 10. Let pΩ,F ,Pq be a probabilistic-statistical model, P “ tPθ, θ P
Θu, and G be a σ-subalgebra of F (G Ď F ). Then G is said to be sufficient for the
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family P if there exist versions of conditional probabilities Pθp ¨ |G qpωq, θ P Θ,
ω P Ω, independent of θ, i.e., there is a function PpA;ωq, A P F , ω P Ω, such that

PθpA |G qpωq “ PpA;ωq pPθ-a. s.q (47)

for all A P F and θ P Θ; in other words, PpA;ωq is a version of PθpA |G qpωq for
all θ P Θ.

If G “ σpTpωqq, then the statistic T “ Tpωq is called sufficient for the family P .

Remark 9. As was pointed out above, we are interested in finding sufficient statis-
tics in our statistical research because we try to obtain functions T “ Tpωq of out-
comes ω which provide the reduction of data preserving the information (about
θ). For example, suppose that ω “ px1, x2, . . . , xnq, where xi P R and n is very
large. Then finding “good” estimators for θ (as, e.g., in Sect. 7 of Chap. 1) may be
a complicated problem because of large dimensionality of the data x1, x2, . . . , xn.
However it may happen (as we observed in Sect. 7 of Chap. 1) that for obtaining
“good” estimators it suffices to know only the value of a “summarizing” statistic
like Tpωq “ x1 ` x2 ` ¨ ¨ ¨ ` xn rather than individual values x1, x2, . . . , xn.

Clearly such a statistic provides an essential reduction of data (and computational
complexity) being at the same time sufficient for obtaining “good” estimators for θ.

The following factorization theorem provides conditions that ensure sufficiency
of a σ-subalgebra G for the family P .

Theorem 7. Let P “ tPθ, θ P Θu be a dominated family, i.e., there exists a σ-
finite measure λ on pΩ,F q such that the measures Pθ are absolutely continuous
with respect to λ pPθ ! λq for all θ P Θ.

Let gpλq
θ pωq “ dPθ

dλ pωq be a Radon–Nikodým derivative of Pθ with respect to λ.
The σ-subalgebra G is sufficient for the family P if and only if the functions

gpλq
θ pωq admit the following factorization: there are nonnegative functions ĝpλq

θ pωq
and hpωq such that ĝpλq

θ pωq are G -measurable, hpωq is F -measurable and

gpλq
θ pωq “ ĝpλq

θ pωq hpωq pλ-a. s.q (48)

for all θ P Θ.
If we can take the measure Pθ0 for λ, where θ0 is a parameter in Θ, then G is

sufficient if and only if the derivative gpθ0q
θ pωq “ dPθ

dPθ0
itself is G -measurable.

PROOF. Sufficiency. By assumption, the dominating measure λ is σ-finite. This
means that there are F -measurable disjoint sets Ωk, k ≥ 1, such that Ω “ ř

k≥1 Ωk

and 0 ă λpΩkq ă 8, k ≥ 1.
Form the measure

λ̃p¨q “
ÿ
k≥1

1

2k

λpΩk X ¨ q
1 ` λpΩkq .

This measure if finite, λ̃pΩq ă 8, and λ̃pΩq ą 0. Without loss of generality it can
be taken to be a probability measure, λ̃pΩq “ 1.
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Then by the formula (44) of recalculating conditional expectations we find that,
for any F -measurable bounded random variable X “ Xpωq,

EθpX |G q “
Eλ̃

´
X d Pθ

dλ̃

ˇ̌
ˇG¯

Eλ̃

´
d Pθ

dλ̃

ˇ̌̌
G

¯ pPθ-a. s.q. (49)

By (48) we have

gpλ̃q
θ “ d Pθ

dλ̃
“ d Pθ

dλ
¨ dλ

dλ̃
“ gpλq

θ

dλ

dλ̃
“ ĝpλq

θ h
dλ

dλ̃
. (50)

Therefore (49) takes the form

EθpX |G q “
Eλ̃

´
Xĝpλq

θ h dλ
dλ̃

ˇ̌
ˇG¯

Eλ̃

´
ĝpλq
θ h dλ

dλ̃

ˇ̌
ˇG¯ pPθ-a. s.q. (51)

But ĝpλq
θ are G -measurable and

EθpX |G q “
Eλ̃

´
Xh dλ

dλ̃

ˇ̌
ˇG¯

Eλ̃

´
h dλ

dλ̃

ˇ̌
ˇG¯ pPθ-a. s.q. (52)

The right-hand side here does not depend on θ, hence the property (47) holds.
Thus by Definition 10 the σ-algebra G is sufficient.

The necessity will be proved only under the additional assumption that the family
P “ tPθ, θ P Θu is not only dominated by a σ-finite measure λ, but also that there
is a θ0 P Θ such that all the measures Pθ ! Pθ0 , i.e., that for any θ P Θ the
measure Pθ is absolutely continuous with respect to Pθ0 . (In the general case the
proof becomes more complicated, see Theorem 34.6 in [10].)

So, let G be a sufficient σ-algebra, i.e., (47) holds. We will show that under the
assumption that Pθ ! Pθ0 , θ P Θ, the derivative gpθ0q

θ “ dPθ

dPθ0
is G -measurable for

any θ P Θ.
Let A P F . Then using the properties of conditional expectations we find for any

θ P Θ that
`
with gpθ0q

θ “ d Pθ {d Pθ0

˘

PθpAq “ Eθ IA “ Eθ EθpIA |G q “ Eθ Eθ0pIA |G q “ Eθ0rgpθ0q
θ Eθ0pIA |G qs

“ Eθ0 Eθ0pgpθ0q
θ Eθ0pIA |G q |G q “ Eθ0prEθ0pgpθ0q

θ |G qs ¨ rEθ0pIA |G qsq
“ Eθ0 Eθ0pIA Eθ0pgpθ0q

θ |G q |G q “ Eθ0 IA Eθ0pgpθ0q
θ |G q “

ż
A

Eθ0pgpθ0q
θ |G q dPθ0 .

Therefore the G -measurable function Eθ0pgpθ0q
θ |G q is a version of the derivative

gpθ0q
θ “ d Pθ

d Pθ0
.
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Hence if λ “ Pθ0 , sufficiency of G implies the factorization property (48)

with ĝpθ0q
θ “ gpθ0q

θ and h ” 1.
In the general case (again under the additional assumption Pθ ! Pθ0 , θ P Θ) we

find that

gpλq
θ “ dPθ

dλ
“ dPθ

dPθ0

¨ dPθ0

dλ
“ gpθ0q

θ

dPθ0

dλ
.

Denoting

ĝpθ0q
θ “ gpθ0q

θ , h “ dPθ0

dλ
,

we obtain the desired factorization representation (48).
[\

Remark 10. It is worth to emphasize that there exists a sufficient σ-algebra for any
family P “ tPθ, θ P Θu (without any assumptions like P being dominated). We
can always take the “richest” σ-algebra F for this σ-algebra.

Indeed, in this case EθpX |F q “ X (Pθ-a. s.) for any integrable random variable
X and therefore (47) is fulfilled.

It is clear that such sufficient σ-algebra is not of much interest because it does
not provide any “reduction of data.” What we are really interested in is to find the
minimal sufficient σ-algebra Gmin, i. e. the σ-algebra which is the intersection of
all sufficient σ-subalgebras (cf. the proof of Lemma 1 in Sect. 2, which implies that
such a σ-algebra exists). But regretfully an explicit construction of such σ-algebras
is, as a rule, rather complicated (see, however, Sects. 13–15, Chap. 2 in Borovkov’s
book [13]).

Remark 11. Suppose that P “ tPθ, θ P Θu is a dominated family (Pθ ! λ, θ P Θ,

with λ a σ-finite measure) and the density gpλq
θ “ d Pθ

dλ pωq is representable as

gpλq
θ pωq “ Gpλq

θ pTpωqq hpωq pλ-a. s.q (53)

for all θ P Θ, where T “ Tpωq is an F {E -measurable function (random element,
see Sect. 5) taking values in a set E with a σ-algebra E of its subsets. The functions
Gpλq

θ ptq, t P E, and hpωq, ω P Ω, are assumed to be nonnegative and E -and F -
measurable respectively.

By comparing (48) and (53) we see that σ-algebra G “ σpTpωqq is sufficient and
the function T “ Tpωq is a sufficient statistic (in the sense of Definition 10).

Note that in dominated settings it is the factorization representation (53) that is
usually taken for the definition of the sufficient statistic T “ Tpωq involved in this
equation.

Example 5 (Exponential Family). Assume that Ω “ Rn, F “ BpRnq and the mea-
sure Pθ is such that

Pθpdωq “ Pθpdx1q ¨ ¨ ¨ Pθpdxnq (54)

for ω “ px1, . . . , xnq, where the measure Pθpdxq, x P R, has the following structure:
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Pθpdxq “ αpθq eβpθqspxqγpxqλpdxq. (55)

Here s “ spxq is a B-measurable function and the meaning of αpθq, βpθq, γpxq,
λpdxq is obvious. (The family of measures Pθ, θ P Θ, presents the simplest example
of an exponential family.) It follows from (54) and (55) that

Pθpdωq “ αnpθqeβpθqrspx1q`¨¨¨`spxnqsγpx1q ¨ ¨ ¨ γpxnq dx1 . . . dxn. (56)

Comparing (56) with (53) we see that Tpωq “ spx1q ` ¨ ¨ ¨ ` spxnq, ω “
px1, . . . , xnq, is a sufficient statistic (for the exponential family at hand).

If we denote X1pωq “ x1, . . . ,Xnpωq “ xn for ω “ px1, . . . , xnq, then the struc-
ture of the measures Pθ (which have the form of the direct product of measures Pθ)
implies that relative to them X1, . . . ,Xn are a sequence of independent identically
distributed random variables. Thus the statistic Tpωq “ spX1pωqq ` ¨ ¨ ¨ ` spXnpωqq
is a sufficient statistic related to such a sequence X1pωq, . . . ,Xnpωq. (In Problem 20
we ask whether this statistic is minimal sufficient.)

Example 6. Let Ω “ Rn, F “ BpRnq, ω “ px1, . . . , xnq, and the distributions Pθ,
θ ą 0, have densities (with respect to the Lebesgue measure λ)

d Pθ

dλ
pωq “

#
θ´n, if 0 ≤ xi ≤ θ for all i “ 1, . . . , n,

0 otherwise.

Putting

Tpωq “ max
1≤i≤n

xi,

hpωq “
#
1, if xi ≥ 0 for all i “ 1, . . . , n,

0 otherwise,

Gpλq
θ ptq “

#
θ´n, if 0 ≤ t ≤ θ,

0 otherwise,

we obtain
dPθ

dλ
pωq “ Gpλq

θ pTpωqqhpωq. (57)

Thus Tpωq “ max1≤i≤n xi is a sufficient statistic.

11. Let Θ be a subset of the real line and E “ pΩ,F ,P “ tPθ, θ P Θuq a
probabilistic-statistical model. We are now interested in construction of “good” es-
timators for the parameter θ.

By an estimator we mean any random variable θ̂ “ θ̂pωq (cf. Sect. 7 of Chap. 1).
The theorem to be stated below shows how the use of a sufficient σ-algebra

enables us to improve the “quality” of an estimator measured by the mean-square
deviation of θ̂ from θ. More precisely, we say that θ̂ is an unbiased estimator of θ if
Eθ |θ̂| ă 8 and Eθ θ̂ “ θ for all θ P Θ (cf. the property (2) in Sect. 7 of Chap. 1).
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Theorem 8 (Rao–Blackwell). Let G be a sufficient σ-algebra for the family P and
θ̂ “ θ̂pωq an estimator.

(a) If θ̂ is an unbiased estimator, then the estimator

T “ Eθpθ̂ |G q (58)

is also unbiased.
(b) The estimator T is “better” than θ̂ in the sense that

EθpT ´ θq2 ≤ Eθpθ̂ ´ θq2, θ P Θ. (59)

PROOF. Conclusion (a) follows from

Eθ T “ Eθ Eθpθ̂ |G q “ Eθ θ̂ “ θ.

For the proof of (b) we have only to note that by Jensen’s inequality (see Prob-
lem 5 with gpxq “ px ´ θq2),

pEθpθ̂ |G q ´ θq2 ≤ Eθrpθ̂ ´ θq2 |G s.
Taking the expectation Eθp¨q of both sides we obtain (59). [\
12. PROBLEMS

1. Let ξ and η be independent identically distributed random variables with E ξ
defined. Show that

Epξ | ξ ` ηq “ Epη | ξ ` ηq “ ξ ` η

2
pa. s.q.

2. Let ξ1, ξ2, . . . be independent identically distributed random variables with
E |ξi| ă 8. Show that

Epξ1 | Sn, Sn`1, . . .q “ Sn

n
pa. s.q,

where Sn “ ξ1 ` ¨ ¨ ¨ ` ξn.
3. Suppose that the random elements pX, Yq are such that there is a regular con-

ditional distribution PxpBq “ PpY P B | X “ xq. Show that if E |gpX, Yq| ă 8
then

ErgpX, Yq | X “ xs “
ż

gpx, yq Pxpdyq pPx-a.s.q.
4. Let ξ be a random variable with distribution function Fξpxq. Show that

Epξ | a ă ξ ≤ bq “
şb

a x dFξpxq
Fξpbq ´ Fξpaq

(assuming that Fξpbq ´ Fξpaq ą 0).
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5. Let g “ gpxq be a convex Borel function with E |gpξq| ă 8. Show that
Jensen’s inequality

gpEpξ |G qq ≤ Epgpξq |G q
holds (a.s.) for the conditional expectations.

6. Show that a necessary and sufficient condition for the random variable ξ and
the σ-algebra G to be independent (i.e., the random variables ξ and IBpωq are
independent for every B P G ) is that Epgpξq |G q “ E gpξq for every Borel
function gpxq with E |gpξq| ă 8.

7. Let ξ be a nonnegative random variable and G a σ-algebra, G Ď F . Show that
Epξ |G q ă 8 (a. s.) if and only if the measure Q, defined on sets A P G by
QpAq “ ş

A ξ d P, is σ-finite.
8. Show that the conditional probabilities PpA | Bq are “continuous” in the sense

that limn PpAn | Bnq “ PpA | Bq whenever limn An “ A, limn Bn “ B, PpBnq ą
0, PpBq ą 0.

9. Let Ω “ p0, 1q, F “ Bpp0, 1qq and P the Lebesgue measure. Let Xpωq and
Ypωq be two independent random variables uniformly distributed on p0, 1q.
Consider the random variable Zpωq “ |Xpωq ´ Ypωq| (the distance between
the “points” Xpωq and Ypωq). Prove that the distribution function FZpzq has
a density fZpzq and fZpzq “ 2p1 ´ zq, 0 ≤ z ≤ 1. (This, of course, implies
that E Z “ 1{3.)

10. Suppose that two points A1 and A2 are chosen “at random” in the circle of
radius R (tpx, yq : x2 ` y2 ≤ R2u), i. e. these points are chosen independently
with probabilities (in polar coordinates, Ai “ pρi, θiq, i “ 1, 2)

Ppρi P dr, θi P dθq “ r dr dθ
πR2

, i “ 1, 2.

Show that the distance ρ between A1 and A2 has a density fρprq and

fρprq “ 2r
πR2

„
2 arccos

´ r
2R

¯
´ r

R

c
1 ´

´ r
2R

¯2
j
,

where 0 ă r ă 2R.
11. A point P “ px, yq is chosen “at random” (explain what it means!) in the unit

square (with vertices p0, 0q, p0, 1q, p1, 1q, p1, 0q). Find the probability that this
point will be closer to the point p1, 1q than to p1{2, 1{2q.

12. Two people A and B made an appointment to meet between 7 and 8 p.m. But
both of them forgot the exact time of the meeting and come between 7 and 8
“at random” waiting at most 10 minutes. Show that the probability for them to
meet is 11{36.

13. Let X1,X2, . . . be a sequence of independent random variables and Sn “řn
i“1 Xi. Show that S1 and S3 are conditionally independent relative to the

σ-algebra σpS2q generated by S2.
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14. Two σ-algebras G1 and G2 are said to be conditionally independent relative to
a σ-algebra G3 if

PpA1A2 |G3q “ PpA1 |G3q PpA2 |G3q for all Ai P Gi, i “ 1, 2.

Show that conditional independence of G1 and G2 relative to G3 holds (P-a. s.)
if and only if any of the following conditions is fulfilled:

(a) PpA1 |σpG2 Y G3qq “ PpA1 |G3q for all A1 P G1;
(b) PpB |σpG2 Y G3qq “ PpB |G3q for any set B in a system P1, which is

a π-system such that G1 “ σpP1q;
(c) PpB1B2 |σpG2 Y G3qq “ PpB1 |G3q PpB2 |G3q for any B1 and B2 in

π-systems P1 and P2 respectively such that G1 “ σpP1q and G2 “
σpP2q;

(d) EpX |σpG2 YG3qq “ EpX |G3q for any σpG2 YG3q-measurable random
variable X for which the expectation E X is well defined (see Defini-
tion 2 in Sect. 6).

15. Prove the following extended version of Fatou’s lemma for conditional expec-
tations (cf. (d) in Theorem 2):
Let pΩ,F ,Pq be a probability space and pξnqn≥1 a sequence of random vari-
ables such that the expectations E ξn, n ≥ 1, and E lim inf ξn (which may
take the values ˘8, see Definition 2 in Sect. 6) are well defined. Let G be a
σ-subalgebra of F and

sup
n≥1

Epξń Ipξn ≥ aq |G q Ñ 0 pP-a. s.q, a Ñ 8.

Then
Eplim inf ξn |G q ≤ lim inf Epξn |G q (P-a. s.).

16. Let, as in the previous problem, pξnqn≥1 be a sequence of random variables
such that the expectations E ξn, n ≥ 1, are well defined and G a σ-subalgebra
of F such that

sup
n

lim
kÑ8 Ep|ξn|Ip|ξn| ≥ kq |G q “ 0 (P-a. s.). (60)

Then
Epξn |G q Ñ Epξ |G q (P-a. s.)

provided that ξn Ñ ξ (P-a. s.) and E ξ is well defined.
17. In the previous problem replace (60) by supn Ep|ξn|α |G q ă 8 (P-a. s.) for

some α ą 1. Then
Epξn |G q Ñ Epξ |G q (P-a. s.).

18. Let ξn
LpÑ ξ for some p ≥ 1. Then Epξn |G q LpÑ Epξ |G q.
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19. (a) Let VarpX | Yq ” ErpX´EpX | Yqq2 | Ys. Show that VarX “ EVarpX| Yq`
VarEpX | Yq.

(b) Show that CovpX, Yq “ CovpX,EpY | Xqq.
20. Determine whether the sufficient statistic Tpωq “ spX1pωqq ` ¨ ¨ ¨ ` spXnpωqq

in Example 5 is minimal.
21. Prove the factorization representation (57).
22. In Example 6 (Subsection 10), show that EθpXi | Tq “ n`1

2n T , where Xipωq “ xi

for ω “ px1, . . . , xnq, i “ 1, . . . , n.

8 Random Variables: II

1. In the first chapter we introduced characteristics of simple random variables, such
as the variance, covariance, and correlation coefficient. These extend similarly to the
general case. Let pΩ,F ,Pq be a probability space and ξ “ ξpωq a random variable
for which E ξ is defined.

The variance of ξ is
Var ξ “ Epξ ´ E ξq2.

The number σ “ `?
Var ξ is the standard deviation (Cf. Definition 5 in Sect. 4,

Chap. 1).
If ξ is a random variable with a Gaussian (normal) density

fξpxq “ 1?
2πσ

e´px´mq2{2σ2

, σ ą 0, ´8 ă m ă 8, (1)

the meaning of the parameters m and σ in (1) is very simple:

m “ E ξ, σ2 “ Var ξ.

Hence the probability distribution of this random variable ξ, which we call Gaus-
sian, or normally distributed, is completely determined by its mean value m and
variance σ2. (It is often convenient to write ξ „ N pm, σ2q.)

Now let pξ, ηq be a pair of random variables. Their covariance is

Covpξ, ηq “ Epξ ´ E ξqpη ´ E ηq (2)

(assuming that the expectations are defined).
If Covpξ, ηq “ 0 we say that ξ and η are uncorrelated.
If 0 ă Var ξ ă 8 and 0 ă Var η ă 8, the number

ρpξ, ηq ” Covpξ, ηq?
Var ξ ¨ Var η (3)

is the correlation coefficient of ξ and η.
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The properties of variance, covariance, and correlation coefficient were investi-
gated in Sect. 4 of Chap. 1 for simple random variables. In the general case these
properties can be stated in a completely analogous way.

Let ξ “ pξ1, . . . , ξnq be a random vector whose components have finite second
moments. The covariance matrix of ξ is the n ˆ n matrix R “ }Rij}, where Rij “
Covpξi, ξjq. It is clear that R is symmetric. Moreover, it is positive semi-definite, i.e.

nÿ
i, j“1

Rijλiλj ≥ 0

for all λi P R, i “ 1, . . . , n, since

nÿ
i, j“1

Rijλiλj “ E

«
nÿ

i“1

pξi ´ E ξiqλi

ff2

≥ 0.

The following lemma shows that the converse is also true.

Lemma. A necessary and sufficient condition that an n ˆ n matrix R is the co-
variance matrix of a vector ξ “ pξ1, . . . , ξnq is that the matrix R is symmetric and
positive semi-definite, or, equivalently, that there is an n ˆ k matrix A p1 ≤ k ≤ nq
such that

R “ AA˚,

where ˚ denotes the transpose.

PROOF. We showed above that every covariance matrix is symmetric and positive
semi-definite.

Conversely, let R be a matrix with these properties. We know from matrix theory
that corresponding to every symmetric positive semi-definite matrix R there is an
orthogonal matrix O (i.e., OO˚ “ E, the identity matrix) such that

O˚
RO “ D,

where

D “
¨
˚̋ d1 0

. . .
0 dn

˛
‹‚

is a diagonal matrix with nonnegative elements di, i “ 1, . . . , n.
It follows that

R “ ODO˚ “ pOBqpB˚O˚q,
where B is the diagonal matrix with elements bi “ `?

di, i “ 1, . . . , n. Conse-
quently if we put A “ OB we have the required representation R “ AA˚ for R.

It is clear that every matrix AA˚ is symmetric and positive semi-definite. Con-
sequently we have only to show that R is the covariance matrix of some random
vector.
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Let η1, η2, . . . , ηn be a sequence of independent normally distributed random
variables, N (0,1). (The existence of such a sequence follows, for example, from
Corollary 1 of Theorem 1, Sect. 9, and in principle could easily be derived from
Theorem 2 of Sect. 3.) Then the random vector ξ “ Aη (vectors are thought of as
column vectors) has the required properties. In fact,

E ξξ˚ “ EpAηqpAηq˚ “ A ¨ E ηη˚ ¨ A˚ “ AEA˚ “ AA˚.

(If ζ “ }ζij} is a matrix whose elements are random variables, E ζ means the matrix
} E ξij}q.

This completes the proof of the lemma.
[\
We now turn our attention to the two-dimensional Gaussian (normal) density

fξ,ηpx, yq “ 1

2πσ1σ2

a
1 ´ ρ2

exp

"
´ 1

2p1 ´ ρ2q
„ px ´ m1q2

σ2
1

´2ρ
px ´ m1qpy ´ m2q

σ1σ2
` py ´ m2q2

σ2
2

j*
, (4)

characterized by the five parameters m1, m2, σ1, σ2 and ρ (cf. (14) in Sect. 3),
where |m1| ă 8, |m2| ă 8, σ1 ą 0, σ2 ą 0, |ρ| ă 1. (See Fig. 28 in Sect. 3.) An
easy calculation identifies these parameters:

m1 “ E ξ, σ2
1 “ Var ξ,

m2 “ E η, σ2
2 “ Var η,

ρ “ ρpξ, ηq.
In Sect. 4 of Chap. 1 we explained that if ξ and η are uncorrelated pρpξ, ηq “ 0q, it
does not follow that they are independent. However, if the pair pξ, ηq is Gaussian, it
does follow that if ξ and η are uncorrelated then they are independent.

In fact, if ρ “ 0 in (4), then

fξ,ηpx, yq “ 1

2πσ1σ2
e´px´m1q2{2σ2

1 ¨ e´py´m2q2{2σ2
2 .

But by (55) in Sect. 6 and (4),

fξpxq “
ż 8

´8
fξ,ηpx, yq dy “ 1?

2πσ1

e´px´m1q2{2σ2
1 ,

fηpyq “
ż 8

´8
fξ,ηpx, yq dx “ 1?

2πσ2

e´py´m2q2{2σ2
2 .

Consequently
fξ,ηpx, yq “ fξpxq ¨ fηpyq,

from which it follows that ξ and η are independent (see the end of Subsection 9
of Sect. 6).
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2. A striking example of the utility of the concept of conditional expectation (intro-
duced in Sect. 7) is its application to the solution of the following problem which is
connected with estimation theory (cf. Subsection 8 of Sect. 4 of Chap. 1).

Let pξ, ηq be a pair of random variables such that ξ is observable but η is not. We
ask how the unobservable component η can be “estimated” from the knowledge of
observation of ξ.

To state the problem more precisely, we need to define the concept of an esti-
mator. Let ϕ “ ϕpxq be a Borel function. We call the random variable ϕpξq an
estimator of η in terms of ξ, and Erη ´ ϕpξqs2 the (mean-square) error of this
estimator. An estimator ϕ˚pξq is called optimal (in the mean-square sense) if

Δ ” Erη ´ ϕ˚pξqs2 “ inf
ϕ

Erη ´ ϕpξqs2, (5)

where inf is taken over all Borel functions ϕ “ ϕpxq.

Theorem 1. Let E η2 ă 8. Then there is an optimal estimator ϕ˚ “ ϕ˚pξq and
ϕ˚pxq can be taken to be the function

ϕ˚pxq “ Epη | ξ “ xq. (6)

PROOF. Without loss of generality we may consider only estimators ϕpξq for which
Eϕ2pξq ă 8. Then if ϕpξq is such an estimator, and ϕ˚pξq “ Epη | ξq, we have

Erη ´ ϕpξqs2 “ Erpη ´ ϕ˚pξqq ` pϕ˚pξq ´ ϕpξqqs2
“ Erη ´ ϕ˚pξqs2 ` Erϕ˚pξq ´ ϕpξqs2

` 2Erpη ´ ϕ˚pξqqpϕ˚pξq ´ ϕpξqqs ≥ Erη ´ ϕ˚pξqs2,
since Erϕ˚pξq ´ ϕpξqs2 ≥ 0 and, by the properties of conditional expectations,

Erpη ´ ϕ˚pξqqpϕ˚pξq ´ ϕpξqqs “ EtErpη ´ ϕ˚pξqqpϕ˚pξq ´ ϕpξqq | ξsu
“ Etpϕ˚pξq ´ ϕpξqq Epη ´ ϕ˚pξq | ξqu “ 0.

This completes the proof of the theorem.
[\

Remark 1. It is clear from the proof that the conclusion of the theorem is still valid
when ξ is not merely a random variable but any random element with values in a
measurable space pE,E q. We would then assume that the estimator ϕ “ ϕpxq is an
E {BpRq-measurable function.

Let us consider the form of ϕ˚pxq on the hypothesis that pξ, ηq is a Gaussian pair
with density given by (4).

From (1), (4) and (18) of Sect. 7 we find that the density fη|ξpy | xq of the condi-
tional probability distribution is given by

fη|ξpy | xq “ 1a
2πp1 ´ ρ2qσ2

2

e´py´mpxqq2{r2σ2
2p1´ρ2qs, (7)
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where
mpxq “ m2 ` σ2

σ1
ρ ¨ px ´ m1q. (8)

Then by the Corollary of Theorem 3, Sect. 7,

Epη | ξ “ xq “
ż 8

´8
y fη|ξpy | xq dy “ mpxq (9)

and

Varpη | ξ “ xq ” Erpη ´ Epη | ξ “ xqq2 | ξ “ xs
“

ż 8

´8
py ´ mpxqq2fη|ξpy | xq dy

“ σ2
2p1 ´ ρ2q. (10)

Notice that the conditional variance Varpη | ξ “ xq is independent of x and there-
fore

Δ “ Erη ´ Epη | ξqs2 “ σ2
2p1 ´ ρ2q. (11)

Formulas (9) and (11) were obtained under the assumption that Var ξ ą 0 and
Var η ą 0. However, if Var ξ ą 0 and Var η “ 0 they are still evidently valid.

Hence we have the following result (cf. (16), (17) in Sect. 4 of Chap. 1).

Theorem 2 (Theorem on the Normal Correlation). Let pξ, ηq be a Gaussian vector
with Var ξ ą 0. Then the optimal estimator of η in terms of ξ is

Epη | ξq “ E η ` Covpξ, ηq
Var ξ

pξ ´ E ξq, (12)

and its error is

Δ ” Erη ´ Epη | ξqs2 “ Var η ´ Cov2pξ, ηq
Var ξ

. (13)

Remark 2. The curve ypxq “ Epη | ξ “ xq is the regression curve of η on ξ or of η
with respect to ξ. In the Gaussian case Epη | ξ “ xq “ a ` bx and consequently the
regression of η and ξ is linear. Hence it is not surprising that the right-hand sides
of (12) and (13) agree with the corresponding parts of (16) and (17) in Sect. 4 of
Chap. 1 for the optimal linear estimator and its error.

Corollary. Let ε1 and ε2 be independent Gaussian random variables with mean
zero and unit variance, and

ξ “ a1ε1 ` a2ε2, η “ b1ε1 ` b2ε2.

Then E ξ “ E η “ 0, Var ξ “ a21 ` a22, Var η “ b21 ` b22, Covpξ, ηq “ a1b1 ` a2b2,
and if a21 ` a22 ą 0, then
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Epη | ξq “ a1b1 ` a2b2
a21 ` a22

ξ, (14)

Δ “ pa1b2 ´ a2b1q2
a21 ` a22

. (15)

3. Let us consider the problem of determining the distribution functions of random
variables that are functions of other random variables.

Let ξ be a random variable with distribution function Fξpxq (and density fξpxq, if
it exists), let ϕ “ ϕpxq be a Borel function and η “ ϕpξq. Letting Iy “ p´8, yq, we
obtain

Fηpyq “ Ppη ≤ yq “ Ppϕpξq P Iyq “ Ppξ P ϕ´1pIyqq “
ż
ϕ´1pIyq

Fξpdxq, (16)

which expresses the distribution function Fηpyq in terms of Fξpxq and ϕ.
For example, if η “ aξ ` b, a ą 0, we have

Fηpyq “ P
ˆ
ξ ≤ y ´ b

a

˙
“ Fξ

ˆ
y ´ b

a

˙
. (17)

If η “ ξ2, it is evident that Fηpyq “ 0 for y ă 0, while for y ≥ 0

Fηpyq “ Ppξ2 ≤ yq “ Pp´?
y ≤ ξ ≤ ?

yq
“ Fξp?

yq ´ Fξp´?
yq ` Ppξ “ ´?

yq. (18)

We now turn to the problem of determining fηpyq.
Let us suppose that the range of ξ is a (finite or infinite) open interval I “ pa, bq,

and that the function ϕ “ ϕpxq, with domain pa, bq, is continuously differentiable
and either strictly increasing or strictly decreasing. We also suppose that ϕ1pxq ‰ 0,
x P I. Let us write hpyq “ ϕ´1pyq and suppose for definiteness that ϕpxq is strictly
increasing. Then when y P tϕpxq : x P Iu,

Fηpyq “ Ppη ≤ yq “ Ppϕpξq ≤ yq “ Ppξ ≤ ϕ´1pyqq
“ Ppξ ≤ hpyqq “

ż hpyq

´8
fξpxq dx. (19)

By Problem 15 of Sect. 6,

ż hpyq

´8
fξpxq dx “

ż y

´8
fξphpzqqh1pzq dz (20)

and therefore
fηpyq “ fξphpyqqh1pyq. (21)

Similarly, if ϕpxq is strictly decreasing,

fηpyq “ fξphpyqqp´h1pyqq.
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Hence in either case
fηpyq “ fξphpyqq|h1pyq|. (22)

For example, if η “ aξ ` b, a ‰ 0, we have

hpyq “ y ´ b
a

and fηpyq “ 1

|a| fξ

ˆ
y ´ b

a

˙
.

If ξ „ N pm, σ2q and η “ eξ , we find from (22) that

fηpyq “
#

1?
2πσy

exp
”
´ logpy{Mq2

2σ2

ı
, y ą 0,

0 y ≤ 0,
(23)

with M “ em. A probability distribution with the density (23) is said to be logarith-
mically normal or lognormal.

If ϕ “ ϕpxq is neither strictly increasing nor strictly decreasing, formula (22) is
inapplicable. However, the following generalization suffices for many applications.

Let ϕ “ ϕpxq be defined on the set
řn

k“1rak, bks, continuously differentiable and
either strictly increasing or strictly decreasing on each open interval Ik “ pak, bkq,
and with ϕ1pxq ‰ 0 for x P Ik. Let hk “ hkpyq be the inverse of ϕpxq for x P Ik. Then
we have the following generalization of (22):

fηpyq “
nÿ

k“1

fξphkpyqq|h1
kpyq| ¨ IDk pyq, (24)

where Dk is the domain of hkpyq.
For example, if η “ ξ2 we can take I1 “ p´8, 0q, I2 “ p0, 8q, and find that

h1pyq “ ´?
y, h2pyq “ ?

y, and therefore

fηpyq “
" 1

2
?

y rfξp?
yq ` fξp´?

yqs, y ą 0,

0, y ≤ 0.
(25)

We can observe that this result also follows from (18), since Ppξ “ ´?
yq “ 0. In

particular, if ξ „ N (0, 1),

fξ2pyq “
"

1?
2πy e´y{2, y ą 0,

0, y ≤ 0.
(26)

A straightforward calculation shows that

f|ξ|pyq “
"

fξpyq ` fξp´yq, y ą 0,
0, y ≤ 0.

(27)

f`
?

|ξ|pyq “
"
2 ypfξpy2q ` fξp´y2qq, y ą 0,
0, y ≤ 0.

(28)

4. We now consider functions of several random variables.
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If ξ and η are random variables with joint distribution Fξ,ηpx, yq, and ϕ “ ϕpx, yq
is a Borel function, then if we put ζ “ ϕpξ, ηq we see at once that

Fζpzq “
ż

tx,y : ϕpx,yq≤zu
dFξ,ηpx, yq. (29)

For example, if ϕpx, yq “ x ` y, and ξ and η are independent (and therefore
Fξ,ηpx, yq “ Fξpxq ¨ Fηpyqq then Fubini’s theorem shows that

Fζpzq “
ż

tx,y : x`y≤zu
dFξpxq dFηpyq

“
ż

R2

Itx`y≤zupx, yq dFξpxq dFηpyq

“
ż 8

´8
dFξpxq

"ż 8

´8
Itx`y≤zupx, yq dFηpyq

*
“

ż 8

´8
Fηpz ´ xq dFξpxq (30)

and similarly

Fζpzq “
ż 8

´8
Fξpz ´ yq dFηpyq. (31)

If F and G are distribution functions, the function

Hpzq “
ż 8

´8
Fpz ´ xq dGpxq

is denoted by F ˚ G and called the convolution of F and G.
Thus the distribution function Fζ of the sum of two independent random variables

ξ and η is the convolution of their distribution functions Fξ and Fη:

Fζ “ Fξ ˚ Fη.

It is clear that Fξ ˚ Fη “ Fη ˚ Fξ.
Now suppose that the independent random variables ξ and η have densities fξ

and fη . Then we find from (31), with another application of Fubini’s theorem, that

Fζpzq “
ż 8

´8

„ż z´y

´8
fξpuq du

j
fηpyq dy

“
ż 8

´8

„ż z

´8
fξpu ´ yq du

j
fηpyq dy “

ż z

´8

„ż 8

´8
fξpu ´ yqfηpyq dy

j
du,

whence

fζpzq “
ż 8

´8
fξpz ´ yq fηpyq dy, (32)
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and similarly

fζpzq “
ż 8

´8
fηpz ´ xq fξpxq dx. (33)

Let us see some examples of the use of these formulas.
Let ξ1, ξ2, . . . , ξn be a sequence of independent identically distributed random

variables with the uniform density on r´1, 1s:

f pxq “
"

1
2 , |x| ≤ 1,
0, |x| ą 1.

Then by (32) we have

fξ1`ξ2pxq “
"

2´|x|
4 , |x| ≤ 2,

0, |x| ą 2,

fξ1`ξ2`ξ3pxq “
$’&
’%

p3´|x|q2
16 , 1 ≤ |x| ≤ 3,

3´x2

8 , 0 ≤ |x| ≤ 1,
0, |x| ą 3,

and by induction

fξ1`¨¨¨`ξn pxq “
$&
%

1
2npn´1q!

rpn`xq{2sř
k“0

p´1qkCk
npn ` x ´ 2kqn´1, |x| ≤ n,

0, |x| ą n.

Now let ξ „ N pm1, σ
2
1q and η „ N pm2, σ

2
2q. If we write

ϕpxq “ 1?
2π

e´x2{2,

then

fξpxq “ 1

σ1
ϕ

ˆ
x ´ m1

σ1

˙
, fηpxq “ 1

σ2
ϕ

ˆ
x ´ m2

σ2

˙
,

and the formula

fξ`ηpxq “ 1a
σ2
1 ` σ2

2

ϕ

˜
x ´ pm1 ` m2qa

σ2
1 ` σ2

2

¸

follows easily from (32).
Therefore the sum of two independent Gaussian random variables is again a

Gaussian random variable with mean m1 ` m2 and variance σ2
1 ` σ2

2 .
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Let ξ1, . . . , ξn be independent random variables each of which is normally dis-
tributed with mean 0 and variance 1. Then it follows easily from (26) (by induction)
that

fξ21`¨¨¨`ξ2n
pxq “

" 1
2n{2Γpn{2q xpn{2q´1e´x{2, x ą 0,

0, x ≤ 0.
(34)

The variable ξ21 ` ¨ ¨ ¨ ` ξ2n is usually denoted by χ2
n , and its distribution (with

density (34)) is the χ2-distribution (“chi-square distribution”) with n degrees of
freedom (cf. Table 2.3 in Sect. 3).

If we write χn “ `a
χ2

n , it follows from (28) and (34) that

fxn pxq “
#

2xn´1e´x2{2
2n{2Γpn{2q , x ≥ 0,

0, x ă 0.
(35)

The probability distribution with this density is the χ-distribution (chi-distribution)
with n degrees of freedom. When n “ 2 it is called the Rayleigh distribution.

Again let ξ and η be independent random variables with densities fξ and fη . Then

Fξηpzq “
ĳ

tx,y : xy≤zu
fξpxqfηpyq dx dy,

Fξ{ηpzq “
ĳ

tx,y : x{y≤zu
fξpxqfηpyq dx dy.

Hence we easily obtain

fξηpzq “
ż 8

´8
fξ

ˆ
z
y

˙
fηpyq dy

|y| “
ż 8

´8
fη

´ z
x

¯
fξpxq dx

|x| (36)

and

fξ{ηpzq “
ż 8

´8
fξpzyqfηpyq|y| dy. (37)

Applying (37) with independent ξ „ N p0, 1q and η
d“ a

χ2
n{n and using (35),

we find that

fξ{ηpxq “ 1?
πn

Γ
`

n`1
2

˘
Γ

`
n
2

˘ 1`
1 ` x2

n

˘pn`1q{2 .

This is the density of the t-distribution, or Student’s distribution, with n degrees
of freedom (cf. Table 2.3 in Sect. 3). See Problem 17 showing how this distribution
arises in mathematical statistics.
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5. PROBLEMS

1. Verify formulas (9), (10), (24), (27), (28), (34)–(38).
2. Let ξ1, . . . , ξn, n ≥ 2, be independent identically distributed random variables

with distribution function Fpxq (and density f pxq, if it exists), and let ξ “
maxpξ1, . . . , ξnq, ξ “ minpξ1, . . . , ξnq, ρ “ ξ ´ ξ. Show that

Fξ,ξpy, xq “
" pFpyqqn ´ pFpyq ´ Fpxqqn, y ą x,

pFpyqqn, y ≤ x,

fξ,ξpy, xq “
"

npn ´ 1qrFpyq ´ Fpxqsn´2f pxqf pyq, y ą x,
0, y ă x,

Fρpxq “
"

n
ş8

´8rFpyq ´ Fpy ´ xqsn´1f pyq dy, x ≥ 0,

0, x ă 0,

fρpxq “
"

npn ´ 1q ş8
´8rFpyq ´ Fpy ´ xqsn´2f py ´ xqf pyq dy, x ą 0,

0, x ă 0.

3. Let ξ1 and ξ2 be independent Poisson random variables with respective param-
eters λ1 and λ2. Show that ξ1 ` ξ2 has the Poisson distribution with parameter
λ1 ` λ2.

4. Let m1 “ m2 “ 0 in (4). Show that

fξ{ηpzq “ σ1σ2

a
1 ´ ρ2

πpσ2
2z2 ´ 2ρσ1σ2z ` σ2

1q .

5. The maximal correlation coefficient of ξ and η is ρ˚pξ, ηq “ supu,v ρpupξq,
vpξqq, where the supremum is taken over the Borel functions u “ upxq and
v “ vpxq for which the correlation coefficient ρpupξq, vpξqq is defined. Show
that ξ and η are independent if and only if ρ˚pξ, ηq “ 0.

6. Let τ1, τ2, . . . , τk be independent nonnegative identically distributed random
variables with the exponential density

f ptq “ λe´λt, t ≥ 0.

Show that the distribution of τ1 ` ¨ ¨ ¨ ` τk has the density

λktk´1e´λt

pk ´ 1q! , t ≥ 0,

and that

Ppτ1 ` ¨ ¨ ¨ ` τk ą tq “
k´1ÿ
i“0

e´λt pλtqi

i!
.

7. Let ξ „ N p0, σ2q. Show that, for every p ≥ 1,

E |ξ|p “ Cpσ
p,
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where

Cp “ 2p{2

π1{2Γ
ˆ

p ` 1

2

˙

and Γpsq “ ş8
0

e´xxs´1 dx is the Euler’s gamma function. In particular, for
each integer n ≥ 1,

E ξ2n “ p2n ´ 1q!!σ2n.

8. Let ξ and η be independent random variables such that the distributions of
ξ ` η and ξ are the same. Show that η “ 0 a. s.

9. Let pX, Yq be uniformly distributed on the unit circle tpx, yq : x2 `y2 ≤ 1u and
W “ X2 ` Y2. Put

U “ X

c
´2 logW

W
, V “ Y

c
´2 logW

W
.

Show that U and V are independent N p0, 1q-distributed random variables.
10. Let X and Y be independent random variables uniformly distributed on p0, 1q.

Put
U “ a´ log Y cosp2πXq, V “ a´ log Y sinp2πXq.

Show that U and V are independent and N p0, 1q distributed.
11. Give an example of Gaussian random variables ξ and η such that the distribu-

tion of their sum ξ ` η is not Gaussian.
12. Let X1, . . . ,Xn be independent identically distributed random variables with

density f “ f pxq. Let Rn “ maxpX1, . . . ,Xnq´minpX1, . . . ,Xnq be the sample
range of X1, . . . ,Xn. Show that the density fRn pxq, x ą 0, of Rn is

fRn pxq “ npn ´ 1q
ż 8

´8
rFpyq ´ Fpy ´ xqsn´2f pyqf py ´ xq dx,

where Fpyq “ şy
´8 f pzq dz. In particular, when X1, . . . ,Xn are uniformly dis-

tributed on r0, 1s,

fRn pxq “
#

npn ´ 1qxn´2p1 ´ xq, 0 ≤ x ≤ 1,

0, x ă 0 or x ą 1.

13. Let Fpxq be a distribution function. Show that for any a ą 0 the following
functions are also distribution functions:

G1pxq “ 1

a

ż x`a

x
Fpuq du, G2pxq “ 1

2a

ż x`a

x´a
Fpuq du.

14. Let a random variable X have the exponential distribution with parameter λ ą
0 (fXpxq “ λe´λx, x ≥ 0). Find the density of the random variable Y “ X1{α,
α ą 0. (The corresponding distribution is called the Weibull distribution.)
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Let λ “ 1. Find the density of the random variable Y “ logX (its distribution
is called double exponential).

15. Let random variables X and Y have the joint density function f px, yq of the form
f px, yq “ gpa

x2 ` y2q. Find the joint density function of ρ “ ?
X2 ` Y2 and

θ “ arctanpY{Xq. Show that ρ and θ are independent.
Let U “ pcosαqX ` psinαqY and V “ p´ sinαqX ` pcosαqY . Show that the
joint density of U and V is again f px, yq. (This property is due to invariance of
the distribution of pX, Yq with respect to “rotation.”)

16. Let X1, . . . ,Xn be independent identically distributed random variables with
distribution function F “ Fpxq and density f “ f pxq. Denote (cf. Prob-
lem 12) by Xp1q “ minpX1, . . . ,Xnq the smallest of X1, . . . ,Xn, by Xp2q the
second smallest, and so on, and by Xpnq “ maxpX1, . . . ,Xnq the largest of
X1, . . . ,Xn (the variables Xp1q, . . . ,Xpnq so defined are called order statistics
of X1, . . . ,Xn).
Show that: (a) the density function of Xpkq has the form

nf pxqCk´1
n´1rFpxqsk´1r1 ´ Fpxqsn´k;

(b) the joint density f px1, . . . , xnq of Xp1q, . . . ,Xpnq is given by

f px1, . . . , xnq “
#

n! f px1q ¨ ¨ ¨ f pxnq, if x1 ă ¨ ¨ ¨ ă xn,

0 otherwise.

17. Let X1, . . . ,Xn be independent identically distributed Gaussian N pμ, σ2q ran-
dom variables. The statistic

S2 “ 1

n ´ 1

nÿ
i“1

pXi ´ Xq2, where n ą 1, X “ 1

n

nÿ
i“1

Xi,

is called the sample variance. Show that:
(a) E S2 “ σ2;
(b) The sample mean X and sample variance S2 are independent;
(c) X „ N pμ, σ2{nq and pn´1qS2{σ2 has the χ2-distribution with pn´1q

degrees of freedom.
(d) The statistic T “ ?

npX̄ ´ μq{?
S2 has the Student distribution with

n ´ 1 degrees of freedom (independently of μ and σ). In mathemat-
ical statistics T is used for testing hypotheses and setting confidence
intervals for μ.

18. Let X1, . . . ,Xn, . . . be independent identically distributed random variables
and N a random variable independent of Xi’s (N “ 1, 2, . . . ) such that
E N ă 8, VarN ă 8. Put SN “ X1 ` ¨ ¨ ¨ ` XN . Show that

Var SN “ VarX1 E N`pE X1q2 VarN,
Var SN

E SN
“ VarX1

E X1
`E X1

VarN
E N

.
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19. Let Mptq “ E etX be the generating function of a random variable X. Show that
PpX ≥ 0q ≤ Mptq for any t ą 0.

20. Let X,X1, . . . ,Xn be independent identically distributed random variables,
Sn “ řn

i“1 Xi, S0 “ 0, Mn “ max0≤j≤n Sj, M “ supn≥0 Sn. Show that (the

notation ξ
d“ η means that ξ and η have the same distribution):

(a) Mn
d“ pMn´1 ` Xq`, n ≥ 1;

(b) if Sn Ñ ´8 (P-a. s.), then M d“ pM ` Xq`;
(c) if ´8 ă E X ă 0 and E X2 ă 8, then

E M “ VarX ´ VarpS ` Xq´

´2E X
.

21. Under the conditions of the previous problem, let Mpεq “ supn≥0pSn ´ nεq
for ε ą 0. Show that limεÓ0 εMpεq “ pVarXq{2.

9 Construction of a Process with Given Finite-Dimensional
Distributions

1. Let ξ “ ξpωq be a random variable defined on a probability space pΩ,F ,Pq, and
let

Fξpxq “ Ptω : ξpωq ≤ xu
be its distribution function. It is clear that Fξpxq is a distribution function on the real
line in the sense of Definition 1 of Sect. 3.

We now ask the following question. Let F “ Fpxq be some distribution function
on R. Does there exist a random variable whose distribution function is Fpxq?

One reason for asking this question is as follows. Many statements in probabil-
ity theory begin, “Let ξ be a random variable with the distribution function Fpxq;
then . . . .” Consequently if a statement of this kind is to be meaningful we need to
be certain that the object under consideration actually exists. Since to know a ran-
dom variable we first have to know its domain pΩ,F q, and in order to speak of its
distribution we need to have a probability measure P on pΩ,F q, a correct way of
phrasing the question of the existence of a random variable with a given distribution
function Fpxq is this:

Do there exist a probability space pΩ,F ,Pq and a random variable ξ “ ξpωq
on it, such that

Ptω : ξpωq ≤ xu “ Fpxq?
Let us show that the answer is positive, and essentially contained in Theorem 1

of Sect. 3.
In fact, let us put

Ω “ R, F “ BpRq.
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It follows from Theorem 1 of Sect. 3 that there is a probability measure P (and only
one) on pR,BpRqq for which Ppa, bs “ Fpbq ´ Fpaq, a ă b.

Put ξpωq ” ω. Then

Ptω : ξpωq ≤ xu “ Ptω : ω ≤ xu “ Pp´8, xs “ Fpxq.
Consequently we have constructed the required probability space and the random
variable on it.

2. Let us now ask a similar question for random processes.
Let X “ pξtqtPT be a random process (in the sense of Definition 3 in Sect. 5)

defined on the probability space pΩ,F ,Pq, with t P T Ď R.
From a physical point of view, the most fundamental characteristic of a random

process is the set tFt1,...,tn px1, . . . , xnqu of its finite-dimensional distribution func-
tions

Ft1,...,tn px1, . . . , xnq “ Ptω : ξt1 ≤ x1, . . . , ξtn ≤ xnu, (1)

defined for all sets t1, . . . , tn with t1 ă t2 ă ¨ ¨ ¨ ă tn.
We see from (1) that, for each set t1, . . . , tn with t1 ă t2 ă ¨ ¨ ¨ ă tn the functions

Ft1,...,tn px1, . . . , xnq are n-dimensional distribution functions (in the sense of Defi-
nition 2 in Sect. 3) and that the collection tFt1,...,tn px1, . . . , xnqu has the following
consistency property (cf. (20) in Sect. 3):

Ft1,...,tk,...,tn px1, . . . ,8, . . . , xnq
“ Ft1,...,tk´1,tk`1,...,tn px1, . . . , xk´1, xk`1, . . . , xnq. (2)

Now it is natural to ask the following question: under what conditions can a
given family tFt1,...,tn px1, . . . , xnqu of distribution functions Ft1,...,tn px1, . . . , xnq (in
the sense of Definition 2 in Sect. 3) be the family of finite-dimensional distribution
functions of a random process? It is quite remarkable that all such conditions are
covered by the consistency condition (2).

Theorem 1 (Kolmogorov’s Theorem on the Existence of a Process). Let
tFt1,...,tn px1, . . . , xnqu, with ti P T Ď R, t1 ă t2 ă ¨ ¨ ¨ ă tn, n ≥ 1, be a given family
of finite-dimensional distribution functions, satisfying the consistency condition (2).
Then there are a probability space pΩ,F ,Pq and a random process X “ pξtqtPT

such that
Ptω : ξt1 ≤ x1, . . . , ξtn ≤ xnu “ Ft1,...,tn px1, . . . , xnq. (3)

PROOF. Put
Ω “ RT , F “ BpRTq,

i.e., take Ω to be the space of real functions ω “ pωtqtPT with the σ-algebra gener-
ated by the cylindrical sets.

Let τ “ rt1, . . . , tns, t1 ă t2 ă ¨ ¨ ¨ ă tn. Then by Theorem 2 of Sect. 3 we can
construct on the space pRn,BpRnqq a unique probability measure Pτ such that

Pτtpωt1 , . . . , ωtn q : ωt1 ≤ x1, . . . , ωtn ≤ xnu “ Ft1,...,tn px1, . . . , xnq. (4)
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It follows from the consistency condition (2) that the family tPτu is also consis-
tent (see (20) in Sect. 3). According to Theorem 4 of Sect. 3 there is a probability
measure P on pRT ,BpRTqq such that

Ptω : pωt1 , . . . , ωtn q P Bu “ PτpBq
for every set τ “ rt1, . . . , tns, t1 ă ¨ ¨ ¨ ă tn.

From this, it also follows that (4) is satisfied. Therefore the required random
process X “ pξtpωqqtPT can be taken to be the process defined by

ξtpωq “ ωt, t P T. (5)

This completes the proof of the theorem.
[\

Remark 1. The probability space pRT ,BpRTq,Pq that we have constructed is called
canonical, and the construction given by (5) is called the coordinate method of
constructing the process.

Remark 2. Let pEα,Eαq be complete separable metric spaces, where α belongs to
some set A of indices. Let tPτu be a set of consistent finite-dimensional distribution
functions Pτ, τ “ rα1, . . . , αns, on

pEα1
ˆ ¨ ¨ ¨ ˆ Eαn , Eα1

b ¨ ¨ ¨ b Eαn q.
Then there are a probability space pΩ,F ,Pq and a family of F {Eα-measurable
functions pXαpωqqαPA such that

PtpXα1
, . . . ,Xαn q P Bu “ PτpBq

for all τ “ rα1, . . . , αns and B P Eα1
b ¨ ¨ ¨ b Eαn .

This result, which generalizes Theorem 1, follows from Theorem 4 of Sect. 3 if
we put Ω “ ś

α Eα, F “ ś
b

αEα and Xαpωq “ ωα for each ω “ pωαq, α P A.

Corollary 1. Let F1pxq, F2pxq, . . . be a sequence of one-dimensional distribution
functions. Then there exist a probability space pΩ,F ,Pq and a sequence of inde-
pendent random variables ξ1, ξ2, . . . such that

Ptω : ξipωq ≤ xu “ Fipxq. (6)

In particular, there is a probability space pΩ,F ,Pq on which an infinite sequence
of Bernoulli random variables is defined. Notice that Ω can be taken to be the space

Ω “ tω : ω “ pa1, a2, . . .q, ai “ 0 or 1u
(cf. also Theorem 2 below).

To establish the corollary it is enough to put F1,...,npx1, . . . , xnq “ F1px1q ¨ ¨ ¨
Fnpxnq and apply Theorem 1.
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Corollary 2. Let T “ r0,8q and let tPps, x; t, Bu be a family of nonnegative func-
tions defined for s, t P T , t ą s, x P R, B P BpRq, and satisfying the following
conditions:

(a) Pps, x; t, Bq is a probability measure in B for given s, x and t;
(b) for given s, t and B, the function Pps, x; t, Bq is a Borel function of x;
(c) for all 0 ≤ s ă t ă τ and B P BpRq, the Kolmogorov–Chapman equation

Pps, x; τ, Bq “
ż

R
Pps, x; t, dyqPpt, y; τ, Bq (7)

is satisfied.

Also let π “ πp¨q be a probability measure on pR,BpRqq. Then there are a
probability space pΩ,F ,Pq and a random process X “ pξtqt≥0 defined on it, such
that

Ptξt0 ≤ x0, ξt1 ≤ x1, . . . , ξtn ≤ xnu “
ż x0

´8
πpdy0q

ż x1

´8
Pp0, y0; t1, dy1q

. . .

ż xn

´8
Pptn´1, yn´1; tn, dynq (8)

for 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn.
The process X so constructed is a Markov process with initial distribution π and

transition probabilities tPps, x; t, Bu.

Corollary 3. Let T “ t0, 1, 2, . . .u and let tPkpx;Bqu be a family of nonnegative
functions defined for k ≥ 1, x P R, B P BpRq, and such that Pkpx;Bq is a probability
measure in B (for given k and x) and measurable in x (for given k and B). In addition,
let π “ πpBq be a probability measure on pR,BpRqq.

Then there is a probability space pΩ,F ,Pq with a family of random variables
X “ tξ0, ξ1, . . .u defined on it, such that

Ptξ0 ≤ x0, ξ1 ≤ x1, . . . , ξn ≤ xnu
“

ż x0

´8
πpdy0q

ż x1

´8
P1py0; dy1q ¨ ¨ ¨

ż xn

´8
Pnpyn´1; dynq.

3. In the situation of Corollary 1, there is a sequence of independent random vari-
ables ξ1, ξ2, . . . whose one-dimensional distribution functions are F1, F2, . . . , re-
spectively.

Now let pE1,E1q, pE2,E2q, . . . be complete separable metric spaces and let
P1,P2, . . . be probability measures on them. Then it follows from Remark 2 that
there are a probability space pΩ,F ,Pq and a sequence of independent elements
X1,X2, . . . such that Xn is F {En-measurable and PpXn P Bq “ PnpBq, B P En.

It turns out that this result remains valid when the spaces pEn,Enq are arbitrary
measurable spaces.
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Theorem 2 (Ionescu Tulcea’s Theorem on Extending a Measure and the Existence
of a Random Sequence). Let pΩn,Fnq, n “ 1, 2, . . ., be arbitrary measurable
spaces and Ω “ ś

Ωn, F “ ś
b Fn. Suppose that a probability measure P1 is

given on pΩ1,F1q and that, for every set pω1, . . . , ωnq P Ω1 ˆ ¨ ¨ ¨ ˆ Ωn, n ≥
1, probability measures Ppω1, . . . , ωn; ¨q are given on pΩn`1,Fn`1q. Suppose that
for every B P Fn`1 the functions Ppω1, . . . , ωn; Bq are F n ” F1 b ¨ ¨ ¨ b Fn-
measurable functions of pω1, . . . , ωnq and let, for Ai P Fi, n ≥ 1,

PnpA1 ˆ ¨ ¨ ¨ ˆ Anq “
ż

A1

P1pdω1q
ż

A2

Ppω1; dω2q

¨ ¨ ¨
ż

An

Ppω1, . . . , ωn´1; dωnq. (9)

Then there is a unique probability measure P on pΩ,F q such that

Ptω : ω1 P A1, . . . , ωn P Anu “ PnpA1 ˆ ¨ ¨ ¨ ˆ Anq (10)

for every n ≥ 1, and there is a random sequence X “ pX1pωq,X2pωq, . . .q such that

Ptω : X1pωq P A1, . . . ,Xnpωq P Anu “ PnpA1 ˆ ¨ ¨ ¨ ˆ Anq, (11)

where Ai P Ei.

PROOF. The first step is to establish that for each n ą 1 the set function Pn defined
by (9) on the rectangles A1 ˆ ¨ ¨ ¨ ˆ An can be extended to the σ-algebra F n.

For each n ≥ 2 and B P F n we put

PnpBq “
ż
Ω1

P1pdω1q
ż
Ω2

Ppω1; dω2 ¨ ¨ ¨ q
ż
Ωn´1

Ppω1, . . . , ωn´2; dωn´1q

ˆ
ż
Ωn

IBpω1, . . . , ωnqPpω1, . . . , ωn´1; dωnq. (12)

It is easily seen that when B “ A1 ˆ ¨ ¨ ¨ ˆ An the right-hand side of (12) is the
same as the right-hand side of (9). Moreover, when n “ 2 it can be shown, just as in
Theorem 8 of Sect. 6, that P2 is a measure. Consequently it is easily established by
induction that Pn is a measure for all n ≥ 2.

The next step is the same as in Kolmogorov’s theorem on the extension of a
measure in pR8,BpR8qq (Theorem 3, Sect. 3). Namely, for every cylindrical set
JnpBq “ tω P Ω: pω1, . . . , ωnq P Bu, B P F n “ F1 b ¨ ¨ ¨ b Fn, we define the set
function P by

PpJnpBqq “ PnpBq. (13)

If we use (12) and the fact that Ppω1, . . . , ωk; ¨q are measures, it is easy to estab-
lish that the definition (13) is consistent, in the sense that the value of PpJnpBqq is
independent of the representation of the cylindrical set.

It follows that the set function P defined in (13) for cylindrical sets, and in
an obvious way on the algebra that contains all the cylindrical sets, is a finitely
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additive measure on this algebra. It remains to verify its countable additivity and
apply Carathéodory’s theorem.

In Theorem 3 of Sect. 3 the corresponding verification was based on the property
of pRn,BpRnqq that for every Borel set B there is a compact set A Ď B whose
probability measure is arbitrarily close to the measure of B. In the present case this
part of the proof needs to be modified in the following way.

As in Theorem 3 of Sect. 3, let tB̂nun≥1 be a sequence of cylindrical sets

B̂n “ tω : pω1, . . . , ωnq P Bnu
that decrease to the empty set ∅, but have

lim
nÑ8 PpB̂nq ą 0. (14)

For n ą 1, we have from (12)

PpB̂nq “
ż
Ω1

f p1q
n pω1q P1pdω1q,

where

f p1q
n pω1q “

ż
Ω2

Ppω1; dω2q . . .
ż
Ωn

IBn pω1, . . . , ωnq Ppω1, . . . , ωn´1; dωnq.

Since B̂n`1 Ď B̂n, we have Bn`1 Ď Bn ˆ Ωn`1 and therefore

IBn`1
pω1, . . . , ωn`1q ≤ IBn pω1, . . . , ωnqIΩn`1

pωn`1q.

Hence the sequence tf p1q
n pω1qun≥1 decreases. Let f p1qpω1q “ limn f p1q

n pω1q. By the
dominated convergence theorem

lim
n

PpB̂nq “ lim
n

ż
Ω1

f p1q
n pω1q P1pdω1q “

ż
Ω1

f p1qpω1q P1pdω1q.

By hypothesis, limn PpB̂nq ą 0. It follows that there is an ω0
1 P B1 such that

f p1qpω0
1q ą 0, since if ω1 R B1 then f p1q

n pω1q “ 0 for n ≥ 1.
Further, for n ą 2,

f p1q
n pω0

1q “
ż
Ω2

f p2q
n pω2q Ppω0

1 ; dω2q, (15)
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where

f p2q
n pω2q “

ż
Ω3

Ppω0
1 , ω2; dω3q

¨ ¨ ¨
ż
Ωn

IBn pω0
1 , ω2, . . . , ωnq Ppω0

1 , ω2, . . . , ωn´1; dωnq.

We can establish, as for tf p1q
n pω1qu, that tf p2q

n pω2qu is decreasing. Let f p2qpω2q “
limnÑ8 f p2q

n pω2q. Then it follows from (15) that

0 ă f p1qpω0
1q “

ż
Ω2

f p2qpω2q Ppω0
1 ; dω2q,

and there is a point ω0
2 P Ω2 such that f p2qpω0

2q ą 0. Then pω0
1 , ω

0
2q P B2. Con-

tinuing this process, we find a point pω0
1 , . . . , ω

0
n q P Bn for each n. Consequently

pω0
1 , . . . , ω

0
n , . . .q P Ş

B̂n, but by hypothesis we have
Ş

B̂n “ ∅. This contradiction
shows that limn PpB̂nq “ 0.

Thus we have proved the part of the theorem about the existence of the probabil-
ity measure P. The other part follows from this by putting Xnpωq “ ωn, n ≥ 1.

[\
Corollary 4. Let pEn,Enqn≥1 be any measurable spaces and pPnqn≥1 measures on
them. Then there are a probability space pΩ,F ,Pq and a family of independent ran-
dom elements X1,X2, . . . with values in pE1,E1q, pE2,E2q, . . ., respectively, such
that

Ptω : Xnpωq P Bu “ PnpBq, B P En, n ≥ 1.

Corollary 5. Let E “ t1, 2, . . .u, and let tpkpx, yqu be a family of nonnegative func-
tions, k ≥ 1, x, y P E, such that

ř
yPE pkpx; yq “ 1, x P E, k ≥ 1. Also let π “ πpxq

be a probability distribution on E
`
that is, πpxq ≥ 0,

ř
xPE πpxq “ 1

˘
.

Then there are a probability space pΩ,F ,Pq and a family X “ tξ0, ξ1, . . .u of
random variables on it such that

Ptξ0 “ x0, ξ1 “ x1, . . . , ξn “ xnu “ πpx0qp1px0, x1q ¨ ¨ ¨ pnpxn´1, xnq (16)

(cf. (4) in Sect. 12 of Chapter 1) for all xi P E and n ≥ 1. We may take Ω to be the
space

Ω “ tω : ω “ px0, x1, . . .q, xi P Eu.
A sequence X “ tξ0, ξ1, . . .u of random variables satisfying (16) is a Markov chain
with a countable set E of states, transition matrices tpkpx, yqu and initial probability
distribution π. (Cf. the definition in Sect. 12 of Chap. 1 and the definitions in Sect. 1
of Chapter 8, Vol. 2).
4. Kolmogorov’s theorem (Theorem 1) states the existence of a process with a
given set of consistent finite-dimensional distribution functions. Its proof exploits
the canonical probability space and the processes are constructed in a coordinate-
wise manner, which is due to the complexity of the structure of their paths.
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From this point of view of much interest are the instances, where random pro-
cesses having desired properties can be built constructively, and with minimal use
of “probabilistic structures.”

To demonstrate such possibilities, consider the so-called renewal processes.
(A particular case of them is the Poisson process; see Sect. 10 of Chap. 7, Vol. 2.)

Let pσ1, σ2, . . . q be a sequence of independent identically distributed positive
random variables with distribution function F “ Fpxq. (The existence of such a
sequence follows from Corollary 1 to Theorem 1.)

Based on pσ1, σ2, . . . q, we form a new sequence pT0, T1, . . . q with T0 “ 0 and

Tn “ σ1 ` ¨ ¨ ¨ ` σn, n ≥ 1.

For illustrative purposes, let us think of Tn as the time instant of, say, the nth tele-
phone call. Then σn is the time between the pn ´ 1qth and nth calls.

The random process N “ pNtqt≥0 with constructively specified random variables

Nt “
8ÿ

n“1

IpTn ≤ tq (17)

is referred to as a renewal process.
Clearly, Nt could also be defined as

Nt “ maxtn : Tn ≤ tu, (18)

i. e., Nt is the number of calls that occur in the time interval p0, ts, and it is obvious
that

tNt ≥ nu “ tTn ≤ tu. (19)

This simple formula is very useful because it reduces the study of probabilis-
tic properties of the process N “ pNtqt≥0 to the treatment of the variables Tn “
σ1 ` ¨ ¨ ¨ ` σn, which are sums of independent random variables σ1, . . . , σn, n ≥ 1
(see Subsection 4 in Sect. 3 of Chapter 4 and Subsection 4 in Sect. 2 of Chapter 7
(vol. 2)).

Formula (17) implies that the renewal function mptq “ E Nt, t ≥ 0, is connected
with the distribution function Fnptq “ PpTn ≤ tq by the equation

mptq “
8ÿ

n“1

Fnptq. (20)

4. PROBLEMS

1. Let Ω “ r0, 1s, let F be the class of Borel subsets of r0, 1s, and let P be
Lebesgue measure on r0, 1s. Show that the space pΩ,F ,Pq is universal in the
following sense. For every distribution function Fpxq, x P R, there is a ran-
dom variable ξ “ ξpωq such that its distribution function Fξpxq “ Ppξ ≤ xq
coincides with Fpxq. (Hint. Let ξpωq “ F´1pωq, 0 ă ω ă 1, where
F´1pωq “ suptx : Fpxq ă ωu, when 0 ă ω ă 1, and ξp0q, ξp1q can be
chosen arbitrarily.)
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2. Verify the consistency of the families of distributions in the corollaries to The-
orems 1 and 2.

3. Deduce Corollary 2, Theorem 2, from Theorem 1.
4. Let Fn denote the distribution function of Tn, n ≥ 1 (see Subsection 4). Show

that Fn`1ptq “ şt
0

Fnpt ´ sq dFpsq, n ≥ 1, where F1 “ F.
5. Show that PtNt “ nu “ Fnptq ´ Fn`1ptq (see (17)).
6. Show that the renewal function mptq defined in Subsection 4 satisfies the re-

newal equation

mptq “ Fptq `
ż t

0

mpt ´ xq dFpxq. (21)

7. Show that the function defined by (20) is a unique solution of the equation (21)
within the class of functions bounded on finite intervals.

8. Let T be an arbitrary set.
(i) Suppose that for every t P T a probability space pΩt,Ft,Ptq is given.

Put Ω “ ś
tPT Ωt, F “ ś

b
tPTFt. Prove that there is a unique probabil-

ity measure P on pΩ,F q such that

P
´ź

tPT

Bt

¯
“

ź
tPT

PpBtq,

where Bt P Ft, t P T , and Bt “ Ωt for all but finitely many t. (Hint.
Specify P on an appropriate algebra and use the method of the proof of
Ionescu Tulcea’s theorem.)

(ii) Let for every t P T a measurable space pEt,Etq and a probability
measure Pt on it be given. Show that there is a probability space
pΩ,F ,Pq and independent random elements pXtqtPT such that Xt are
F {Et-measurable and PtXt P Bu “ PtpBq, B P Et.

10 Various Kinds of Convergence of Sequences
of Random Variables

1. Just as in analysis, in probability theory we need to use various kinds of conver-
gence of random variables. Four of these are particularly important: in probability,
with probability one, in the mean of order p, in distribution.

First some definitions. Let ξ, ξ1, ξ2, . . . be random variables defined on a proba-
bility space pΩ,F ,Pq.

Definition 1. The sequence ξ1, ξ2, . . . of random variables (denoted by pξnq or

pξnqn≥1q converges in probability to the random variable ξ (notation: ξn
PÑ ξ) if

for every ε ą 0
Pt|ξn ´ ξ| ą εu Ñ 0, n Ñ 8. (1)

We have already encountered this convergence in connection with the law of
large numbers for a Bernoulli scheme, which stated that
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P
ˆˇ̌̌

ˇSn

n
´ p

ˇ̌̌
ˇ ą ε

˙
Ñ 0, n Ñ 8

(see Sect. 5 of Chap. 1). In analysis this is known as convergence in measure.

Definition 2. The sequence ξ1, ξ2, . . . of random variables converges with probabil-
ity one (almost surely, almost everywhere) to the random variable ξ if

Ptω : ξn Û ξu “ 0, (2)

i.e., if the set of sample points ω for which ξnpωq does not converge to ξ has proba-
bility zero.

This convergence is denoted by ξn Ñ ξ (P-a. s.), or ξn Ñ ξ (a. s.), or ξn
a. s.Ñ ξ or

ξn
a.e.Ñ ξ.

Definition 3. The sequence ξ1, ξ2, . . . of random variables converges in the mean of
order p, 0 ă p ă 8, to the random variable ξ if

E |ξn ´ ξ|p Ñ 0, n Ñ 8. (3)

In analysis this is known as convergence in Lp, and denoted by ξn
LPÑ ξ. In the

special case p “ 2 it is called mean square convergence and denoted by ξ “ l.i.m. ξn

(for “limit in the mean”).

Definition 4. The sequence ξ1, ξ2, . . . of random variables converges in distribution

to the random variable ξ (notation: ξn
dÑ ξ or ξn

lawÑ ξ) if

E f pξnq Ñ E f pξq, n Ñ 8, (4)

for every bounded continuous function f “ f pxq. The reason for the terminology is
that, according to what will be proved in Sect. 1 of Chap. 3 condition (4) is equiva-
lent to the convergence of the distribution functions Fξn pxq to Fξpxq at each point x
of continuity of Fξpxq. This convergence is denoted by Fξn ñ Fξ.

We emphasize that the convergence of random variables in distribution is defined
only in terms of the convergence of their distribution functions. Therefore it makes
sense to discuss this mode of convergence even when the random variables are de-
fined on different probability spaces. This convergence will be studied in detail in
Chapter 3, where, in particular, we shall explain why in the definition of Fξn ñ Fξ

we require only convergence at points of continuity of Fξpxq and not at all x.

2. In solving problems of analysis on the convergence (in one sense or another)
of a given sequence of functions, it is useful to have the concept of a fundamental
sequence (or Cauchy sequence). We can introduce a similar concept for each of the
first three kinds of convergence of a sequence of random variables.

Let us say that a sequence tξnun≥1 of random variables is fundamental in proba-
bility, or with probability 1, or in the mean of order p, 0 ă p ă 8, if the correspond-
ing one of the following properties is satisfied: Pt|ξn ´ ξm| ą εu Ñ 0 as m, n Ñ 8
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for every ε ą 0; the sequence tξnpωqun≥1 is fundamental for almost all ω P Ω; the
sequence tξnpωqun≥1 is fundamental in Lp, i.e., E |ξn ´ ξm|p Ñ 0 as n, m Ñ 8.

3. Theorem 1.

(a) A necessary and sufficient condition that ξn Ñ ξ pP-a.s.q is that

P
"
sup
k≥n

|ξk ´ ξ| ≥ ε

*
Ñ 0, n Ñ 8, (5)

for every ε ą 0.
(b) The sequence tξnun≥1 is fundamental with probability 1 if and only if

P
"

sup
k≥n,l≥n

|ξk ´ ξl| ≥ ε

*
Ñ 0, n Ñ 8, (6)

for every ε ą 0; or equivalently

P
"
sup
k≥0

|ξn`k ´ ξn| ≥ ε

*
Ñ 0, n Ñ 8. (7)

PROOF. (a) Let Aε
n “ tω : |ξn ´ ξ| ≥ εu, Aε “ lim supAε

n ” Ş8
n“1

Ť
k≥n Aε

k . Then

tω : ξn Û ξu “
ď
ε≥0

Aε “
8ď

m“1

A1{m.

But

PpAεq “ lim
n

P
ˆ ď

k≥n

Aε
k

˙
,

hence (a) follows from the following chain of implications:

Ptω : ξn Û ξu “ 0 ô P
ˆ ď

εą0

Aε

˙
“ 0 ô P

˜ 8ď
m“1

A1{m

¸
“ 0

ô PpA1{mq “ 0, m ≥ 1 ô PpAεq “ 0, ε ą 0

ô P
ˆ ď

k≥n

Aε
k

˙
Ñ 0, n Ñ 8, ε ą 0

ô P
´
sup
k≥n

|ξk ´ ξ| ≥ ε
¯

Ñ 0, n Ñ 8, ε ą 0.

(b) Let

Bε
k,l “ tω : |ξk ´ ξl| ≥ εu, Bε “

8č
n“1

ď
k≥n
l≥n

Bε
k,l.
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Then {ω : tξnpωqun≥1 is not fundamental} “ Ť
εą0 Bε, and it can be shown as

in (a) that Ptω : tξnpωqun≥1 is not fundamental} “ 0 ô p6q. The equivalence of (6)
and (7) follows from the obvious inequalities

sup
k≥0

|ξn`k ´ ξn| ≤ sup
k≥0
l≥0

|ξn`k ´ ξn`l| ≤ 2 sup
k≥0

|ξn`k ´ ξn|.

This completes the proof of the theorem.
[\

Corollary. Since

P
!
sup
k≥n

|ξk ´ ξ| ≥ ε
)

“ P
" ď

k≥n

p|ξk ´ ξ| ≥ εq
*
≤

ÿ
k≥n

Pt|ξk ´ ξ| ≥ εu,

a sufficient condition for ξn
a. s.Ñ ξ is that

8ÿ
k“1

Pt|ξk ´ ξ| ≥ εu ă 8 (8)

is satisfied for every ε ą 0.

It is appropriate to observe at this point that the reasoning used in obtaining (8)
lets us establish the following simple but important result which is essential in study-
ing properties that are satisfied with probability 1.

Let A1,A2, . . . be a sequence of events in F . Let (see Table 2.1 in Sect. 1)
tAn i.o.u denote the event lim supAn that consists in the realization of infinitely
many of A1,A2, . . .

Borel–Cantelli Lemma.

(a) If
ř

PpAnq ă 8 then PtAn i.o.u “ 0.
(b) If

ř
PpAnq “ 8 and A1,A2, . . . are independent, then PtAn i.o.u “ 1.

PROOF. (a) By definition tAn i.o.u “ lim supAn “ Ş8
n“1

Ť
k≥n Ak. Consequently

PtAn i.o.u “ P
ˆ 8č

n“1

ď
k≥n

Ak

˙
“ limP

´ ď
k≥n

Ak

¯
≤ lim

ÿ
k≥n

PpAkq,

and (a) follows.
(b) If A1,A2, . . . are independent, so are A1,A2, . . . . Hence for N ≥ n we have

P
ˆ Nč

k“n

Ak

˙
“

Nź
k“n

PpAkq,
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and it is then easy to deduce that

P
ˆ 8č

k“n

Ak

˙
“

8ź
k“n

PpAkq. (9)

Since logp1 ´ xq ≤ ´x, 0 ≤ x ă 1,

log
8ź

k“n

r1 ´ PpAkqs “
8ÿ

k“n

logr1 ´ PpAkqs ≤ ´
8ÿ

k“n

PpAkq “ ´8.

Consequently

P
ˆ 8č

k“n

Ak

˙
“ 0

for all n, and therefore PpAn i.o.q “ 1.
This completes the proof of the lemma.
[\

Corollary 1. If Aε
n “ tω : |ξn ´ ξ| ≥ εu then (8) means that

ř8
n“1 PpAε

nq ă 8,
ε ą 0, and then by the Borel–Cantelli lemma we have PpAεq “ 0, ε ą 0, where
Aε “ lim supAε

np“ tAε
ni.o.uq. Therefore

8ÿ
k“1

Pt|ξk ´ ξ| ≥ εu ă 8, ε ą 0 ñ PpAεq “ 0, ε ą 0

ô Ptω : ξn Û ξqu “ 0,

as we already observed above.

Corollary 2. Let pεnqn≥1 be a sequence of positive numbers such that εn Ó 0,
n Ñ 8. Then if ξn converges to ξ in probability sufficiently “fast” in the sense
that

8ÿ
n“1

Pt|ξn ´ ξ| ≥ εnu ă 8, (10)

then ξn
a. s.Ñ ξ.

In fact, let An “ t|ξn ´ ξ| ≥ εnu. Then PpAn i.o.q “ 0 by the Borel–Cantelli
lemma. This means that, for almost every ω P Ω, there is an N “ Npωq such that
|ξnpωq ´ ξpωq| ≤ εn for n ≥ Npωq. But εn Ó 0, and therefore ξnpωq Ñ ξpωq for
almost every ω P Ω.
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4. Theorem 2. We have the following implications:

ξn
a. s.Ñ ξ ñ ξn

PÑ ξ, (11)

ξn
LpÑ ξ ñ ξn

PÑ ξ, p ą 0, (12)

ξn
PÑ ξ ñ ξn

dÑ ξ. (13)

PROOF. Statement (11) follows from comparing the definition of convergence in
probability with (5), and (12) follows from Chebyshev’s inequality.

To prove (13), let f pxq be a continuous function, let |f pxq| ≤ c, let ε ą 0, and
let N be such that Pp|ξ| ą Nq ≤ ε{p4cq. Take δ so that |f pxq ´ f pyq| ≤ ε{2 for
|x| ă N and |x´y| ≤ δ. Then (cf. the “probabilistic” proof of Weierstrass’s theorem
in Subsection 5, Sect. 5, Chap. 1)

E |f pξnq ´ f pξq| “ Ep|f pξnq ´ f pξq|; |ξn ´ ξ| ≤ δ, |ξ| ≤ Nq
` Ep|f pξnq ´ f pξq|; |ξn ´ ξ| ≤ δ, |ξ| ą Nq
` Ep|f pξnq ´ f pξq|; |ξn ´ ξ| ą δq

≤ ε{2 ` ε{2 ` 2c Pt|ξn ´ ξ| ą δu
“ ε ` 2c Pt|ξn ´ ξ| ą δu.

But Pt|ξn ´ ξ| ą δu Ñ 0, and hence E |f pξnq ´ f pξq| ≤ 2ε for sufficiently large n;
since ε ą 0 is arbitrary, this establishes (13).

[\
We now present a number of examples which show, in particular, that the con-

verses of (11) and (12) are false in general.

Example 1. pξn
PÑ ξ œ ξn

a. s.Ñ ξ; ξn
LpÑ ξ œ ξn

a. s.Ñ ξ.q Let Ω “ r0, 1s, F “
Bpr0, 1sq, P “ Lebesgue measure. Put

Ai
n “

„
i ´ 1

n
,

i
n

j
, ξi

n “ IAi
n
pωq, i “ 1, 2, . . . , n; n ≥ 1.

Then the sequence tξ11 ; ξ12 , ξ22 ; ξ13 , ξ23 , ξ33 ; . . .u
of random variables converges both in probability and in the mean of order p ą 0,
but does not converge at any point ω P r0, 1s.
Example 2. (ξn

PÑ ξ ð ξn
a. s.Ñ ξ œ ξn

LpÑ ξ, p ą 0.) Again let Ω “ r0, 1s, F “
Br0, 1s, P “ Lebesgue measure, and let

ξnpωq “
"

en, 0 ≤ ω ≤ 1{n,
0, ω ą 1{n.

Then tξnu converges with probability 1 (and therefore in probability) to zero, but

E |ξn|p “ enp

n
Ñ 8, n Ñ 8,

for every p ą 0.
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Example 3. pξn
LpÑ ξ œ ξn

a. s.Ñ ξ.q Let tξnu be a sequence of independent random
variables with

Ppξn “ 1q “ pn, Ppξn “ 0q “ 1 ´ pn.

Then it is easy to show that

ξn
PÑ 0 ô pn Ñ 0, n Ñ 8, (14)

ξn
LpÑ 0 ô pn Ñ 0, n Ñ 8, (15)

ξn
a. s.Ñ 0 ô

8ÿ
n“1

pn ă 8. (16)

In particular, if pn “ 1{n then ξn
LpÑ 0 for every p ą 0, but ξn

a. s.Û 0.

The following theorem singles out an interesting case when almost sure conver-
gence implies convergence in L1.

Theorem 3. Let pξnq be a sequence of nonnegative random variables such that
ξn

a. s.Ñ ξ and E ξn Ñ E ξ ă 8. Then

E |ξn ´ ξ| Ñ 0, n Ñ 8. (17)

PROOF. We have E ξn ă 8 for sufficiently large n, and therefore for such n we have

E |ξ ´ ξn| “ Epξ ´ ξnqItξ≥ξnu ` Epξn ´ ξqItξnąξu
“ 2Epξ ´ ξnqItξ≥ξnu ` Epξn ´ ξq.

But 0 ≤ pξ ´ ξnqItξ≥ξnu ≤ ξ. Therefore, by the dominated convergence theorem,
limn Epξ ´ ξnqItξ≥ξnu “ 0, which together with E ξn Ñ E ξ proves (17).

[\
Remark. The dominated convergence theorem also holds when almost sure con-
vergence is replaced by convergence in probability (see Problem 1). Hence in The-

orem 3, we may replace “ξn
a. s.Ñ ξ” by “ξn

PÑ ξ.”

5. It is shown in analysis that every fundamental sequence pxnq, xn P R, is conver-
gent (Cauchy criterion). Let us give similar results for the convergence of a sequence
of random variables.

Theorem 4 (Cauchy Criterion for Almost Sure Convergence). A necessary and suf-
ficient condition for the sequence pξnqn≥1 of random variables to converge with
probability 1 (to a random variable ξ) is that it is fundamental with probability 1.

PROOF. If ξn
a. s.Ñ ξ then

sup
k≥n
l≥n

|ξk ´ ξl| ≤ sup
k≥n

|ξk ´ ξ| ` sup
l≥n

|ξl ´ ξ|,

whence the necessity follows (see Theorem 1).
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Now let pξnqn≥1 be fundamental with probability 1. Let N “ tω : pξnpωqq is not
fundamental}. Then whenever ω P ΩzN the sequence of numbers pξnpωqqn≥1 is
fundamental and, by Cauchy’s criterion for sequences of numbers, lim ξnpωq exists.
Let

ξpωq “
"
lim ξnpωq, ω P ΩzN ,
0, ω P N .

(18)

The function so defined is a random variable, and evidently ξn
a. s.Ñ ξ.

This completes the proof.
[\
Before considering the case of convergence in probability, let us establish the

following useful result.

Theorem 5. If the sequence pξnq is fundamental (or convergent) in probability, it
contains a subsequence pξnk q that is fundamental (or convergent) with probability 1.

PROOF. Let pξnq be fundamental in probability. By Theorem 4 it is enough to show
that it contains a subsequence that converges almost surely.

Take n1 “ 1 and define nk inductively as the smallest n ą nk´1 for which

Pt|ξt ´ ξs| ą 2´ku ă 2´k

for all s ≥ n, t ≥ n. Then
ÿ

k

Pt|ξnk`1
´ ξnk | ą 2´ku ă

ÿ
2´k ă 8

and by the Borel–Cantelli lemma

Pt|ξnk`1
´ ξnk | ą 2´k i.o.u “ 0.

Hence 8ÿ
k“1

|ξnk`1
´ ξnk | ă 8

with probability 1.
Let N “ tω :

ř |ξnk`1
´ ξnk | “ 8u. Then if we put

ξpωq “
$&
%

ξn1pωq `
8ř

k“1

pξnk`1
pωq ´ ξnk pωqq, ω P ΩzN ,

0, ω P N ,

we obtain ξnk

a. s.Ñ ξ.
If the original sequence converges in probability, then it is fundamental in prob-

ability (see also (19) below), and consequently this case reduces to the one already
considered.

This completes the proof of the theorem.
[\
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Theorem 6 (Cauchy Criterion for Convergence in Probability). A necessary and
sufficient condition for a sequence pξnqn≥1 of random variables to converge in prob-
ability is that it is fundamental in probability.

PROOF. If ξn
PÑ ξ then

Pt|ξn ´ ξm| ≥ εu ≤ Pt|ξn ´ ξ| ≥ ε{2u ` Pt|ξm ´ ξ| ≥ ε{2u (19)

and consequently pξnq is fundamental in probability.
Conversely, if pξnq is fundamental in probability, by Theorem 5 there are a sub-

sequence pξnk q and a random variable ξ such that ξnk

a. s.Ñ ξ. But then

Pt|ξn ´ ξ| ≥ εu ≤ Pt|ξn ´ ξnk | ≥ ε{2u ` Pt|ξnk ´ ξ| ≥ ε{2u,

from which it is clear that ξn
PÑ ξ. This completes the proof.

[\
Before discussing convergence in the mean of order p, we make some observa-

tions about Lp spaces.
We denote by Lp “ LppΩ,F ,Pq the space of random variables ξ “ ξpωq with

E |ξ|p ” ş
Ω

|ξ|p d P ă 8. Suppose that p ≥ 1 and put

}ξ}p “ pE |ξ|pq1{p.

It is clear that

}ξ}p ≥ 0, (20)

}cξ}p “ |c| }ξ}p, c constant, (21)

and by Minkowski’s inequality (31), Sect. 6,

}ξ ` η}p ≤ }ξ}p ` }η}p. (22)

Hence, in accordance with the usual terminology of functional analysis, the function
} ¨ }p, defined on Lp and satisfying (20)–(22), is (for p ≥ 1) a semi-norm.

For it to be a norm, it must also satisfy

}ξ}p “ 0 ñ ξ “ 0. (23)

This property is, of course, not satisfied, since according to Property H (Sect. 6) we
can only say that ξ “ 0 almost surely.

This fact leads to a somewhat different view of the space Lp. That is, we connect
with every random variable ξ P Lp the class rξs of random variables in Lp that
are equivalent to it pξ and η are equivalent if ξ “ η almost surely). It is easily
verified that the property of equivalence is reflexive, symmetric, and transitive, and
consequently the linear space Lp can be divided into disjoint equivalence classes
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of random variables. If we now think of rLps as the collection of the classes rξs of
equivalent random variables ξ P Lp, and define

rξs ` rηs “ rξ ` ηs.
arξs “ raξs, where a is a constant,

}rξs}p “ }ξ}p,

then rLps becomes a normed linear space.
In functional analysis, we ordinarily describe elements of a space rLps not as

equivalence classes of functions, but simply as functions. In the same way we do
not actually use the notation rLps. From now on, we no longer think about sets
of equivalence classes of functions, but simply about elements, functions, random
variables, and so on.

It is a basic result of functional analysis that the spaces Lp, p ≥ 1, are complete,
i.e., that every fundamental sequence has a limit. Let us state and prove this in
probabilistic language.

Theorem 7 (Cauchy Test for Convergence in the pth Mean). A necessary and suffi-
cient condition that a sequence pξnqn≥1 of random variables in Lp converges in the
mean of order p to a random variable in Lp is that the sequence is fundamental in
the mean of order p.

PROOF. The necessity follows from Minkowski’s inequality. Let pξnq be fundamen-
tal (}ξn ´ ξm}p Ñ 0, n, m Ñ 8). As in the proof of Theorem 5, we select a subse-

quence pξnk q such that ξnk

a. s.Ñ ξ, where ξ is a random variable with }ξ}p ă 8.
Let n1 “ 1 and define nk inductively as the smallest n ą nk´1 for which

}ξt ´ ξs}p ă 2´2k

for all s ≥ n, t ≥ n. Let

Ak “ tω : |ξnk`1
´ ξnk | ≥ 2´ku.

Then by Chebyshev’s inequality

PpAkq ≤ E |ξnk`1
´ ξnk |p

2´kp
≤ 2´2kp

2´kp
“ 2´kp ≤ 2´k.

As in Theorem 5, we deduce that there is a random variable ξ such that ξnk

a. s.Ñ ξ.
We now deduce that }ξn ´ ξ}p Ñ 0 as n Ñ 8. To do this, we fix ε ą 0 and

choose N “ Npεq so that }ξn ´ ξm}p
p ă ε for all n ≥ N, m ≥ N. Then for any fixed

n ≥ N, by Fatou’s lemma (Sect. 6)

E |ξn ´ ξ|p “ E
"
lim

nkÑ8
|ξn ´ ξnk |p

*
“ E

"
lim inf
nkÑ8 |ξn ´ ξnk |p

*

≤ lim inf
nkÑ8 E |ξn ´ ξnk |p “ lim inf

nkÑ8 }ξn ´ ξnk }p
p ≤ ε.
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Consequently E |ξn ´ ξ|p Ñ 0, n Ñ 8. It is also clear that since ξ “ pξ ´ ξnq ` ξn

we have E |ξ|p ă 8 by Minkowski’s inequality.
This completes the proof of the theorem.
[\

Remark 1. In the terminology of functional analysis a complete normed linear
space is called a Banach space. Thus Lp, p ≥ 1, is a Banach space.

Remark 2. If 0 ă p ă 1, the function }ξ}p “ pE |ξ|pq1{p does not satisfy the
triangle inequality (22) and consequently is not a norm. Nevertheless the space (of
equivalence classes) Lp, 0 ă p ă 1, is complete in the metric dpξ, ηq ” E |ξ ´ η|p.

Remark 3. Let L8 “ L8pΩ,F ,Pq be the space (of equivalence classes of) random
variables ξ “ ξpωq for which }ξ}8 ă 8, where }ξ}8, the essential supremum of ξ,
is defined by

}ξ}8 ” ess sup |ξ| ” inft0 ≤ c ≤ 8 : Pp|ξ| ą cq “ 0u.
The function } ¨ }8 is a norm, and L8 is complete in this norm.

6. PROBLEMS

1. Use Theorem 5 to show that almost sure convergence can be replaced by con-
vergence in probability in Theorems 3 and 4 of Sect. 6.

2. Prove that L8 is complete.

3. Show that if ξn
PÑ ξ and also ξn

PÑ η then ξ and η are equivalent (Ppξ ‰ ηq “ 0).

4. Let ξn
PÑ ξ, ηn

PÑ η, and let ξ and η be equivalent (Ptξ ‰ ηu “ 0). Show that

Pt|ξn ´ ηn| ≥ εu Ñ 0, n Ñ 8,

for every ε ą 0.

5. Let ξn
PÑ ξ, ηn

PÑ η. Show that if ϕ “ ϕpx, yq is a continuous function, then

ϕpξn, ηnq PÑ ϕpξ, ηq (Slutsky’s lemma).

6. Let pξn ´ ξq2 PÑ 0. Show that ξ2n
PÑ ξ2.

7. Show that if ξn
dÑ C, where C is a constant, then this sequence converges in

probability:

ξn
dÑ C ñ ξn

PÑ C.

8. Let pξnqn≥1 have the property that
ř8

n“1 E |ξn|p ă 8 for some p ą 0. Show
that ξn Ñ 0 (P-a. s.).

9. Let pξnqn≥1 be a sequence of identically distributed random variables. Show
that
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E |ξ1| ă 8 ô
8ÿ

n“1

Pt|ξ1| ą εnu ă 8, ε ą 0

ô
8ÿ

n“1

P
"ˇ̌

ˇ̌ξn

n

ˇ̌
ˇ̌ ą ε

*
ă 8, ε ą 0 ñ ξn

n
Ñ 0 pP -a. s.q.

10. Let pξnqn≥1 be a sequence of random variables. Suppose that there are a
random variable ξ and a sequence tnku such that ξnk Ñ ξ (P-a. s.) and
maxnk´1ăl≤nk |ξl ´ ξnk´1| Ñ 0 (P-a. s.) as k Ñ 8. Show that then ξn Ñ ξ
(P-a. s.).

11. Let the d-metric on the set of random variables be defined by

dpξ, ηq “ E
|ξ ´ η|

1 ` |ξ ´ η|
and identify random variables that coincide almost surely. Show that d “
dpξ, ηq is a well defined metric and that convergence in probability is equiva-
lent to convergence in the d-metric.

12. Show that there is no metric on the set of random variables such that conver-
gence in that metric is equivalent to almost sure convergence.

13. Let X1 ≤ X2 ≤ . . . and Xn
PÑ X. Show that Xn Ñ X (P-a. s.).

14. Let Xn Ñ X (P-a. s.). Then also n´1
řn

k“1 Xk Ñ X (P-a. s.) (Cesàro summa-
tion). Show by an example that convergence P-a. s. here cannot be replaced by
convergence in probability.

15. Let pΩ,F ,Pq be a probability space and Xn
PÑ X. Show that if the measure P

is atomic, then Xn Ñ X also with probability one. (A set A P F is an P-atom
if for any B P F either PpB X Aq “ PpAq or PpB X Aq “ 0. The measure P
is atomic if there exists a countable family tAnu of disjoint P-atoms such that
P

`Ť8
n“1 An

˘ “ 1.)
16. By the (first) Borel–Cantelli lemma, if

ř8
n“1 Pp|ξn| ą εq ă 8 for any ε ą 0,

then ξn Ñ 0 (P-a. s.). Show by an example that convergence ξn Ñ 0 (P-a. s.)
may hold also under the condition

ř8
n“1 Pp|ξn| ą εq “ 8, ε ą 0.

17. (To the second Borel–Cantelli lemma.) Let Ω “ p0, 1q, B “ Bpp0, 1qq, and P
Lebesgue measure. Consider the events An “ p0, 1{nq. Show that

ř
PpAnq “

8, but each ω P p0, 1q can belong only to finitely many sets A1, . . . ,Ar1{ωs,
i. e. PtAn i. o.u “ 0.

18. Give an example of a sequence of random variables such that lim sup ξn “ 8
and lim inf ξn “ ´8 with probability one, but nevertheless there is a random

variable η such that ξn
PÑ η.

19. Let Ω be an at most countable set. Prove that ξn
PÝÑ ξ implies ξn Ñ ξ (P-a. s.).

20. Let A1,A2, . . . be independent events and
ř8

n“1 PpAnq ă 8. Prove that
Sn “ řn

k“1 IpAkq fulfills the following extension of the second Borel–Cantelli
lemma:

lim
n

Sn

E Sn
“ 1 (P-a. s.).
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21. Let pXnqn≥1 and pYnqn≥1 be two sequences of random variables having the
same finite-dimensional distributions (FX1,...,Xn “ FY1,...,Yn , n ≥ 1). Suppose

Xn
PÑ X. Prove that Yn then converges in probability, Yn

PÑ Y , to a random
variable Y with the same distribution as X.

22. Let pXnqn≥1 be a sequence of independent random variables such that Xn
PÑ X

for some random variable X. Prove that X is a degenerate random variable.
23. Show that for any sequence of random variables ξ1, ξ2, . . . there is a sequence

of constants a1, a2, . . . such that ξn{an Ñ 0 (P-a. s.).
24. Let ξ1, ξ2, . . . be a sequence of random variables and Sn “ ξ1 ` ¨ ¨ ¨ ` ξn,

n ≥ 1. Show that the set tSn Ñ u, i. e. the set of ω P Ω such that the seriesř
k≥1 ξkpωq converges, can be represented as

tSn Ñ u “
č

N≥1

ď
m≥1

č
k≥m

!
sup
l≥k

|Sl ´ Sk| ≤ N´1
)
.

Accordingly, the set tSn Ûu, where the series
ř

k≥1 ξkpωq diverges, is repre-
sentable as

tSn Ûu “
ď

N≥1

č
m≥1

ď
k≥m

!
sup
l≥k

|Sl ´ Sk| ą N´1
)
.

25. Prove the following version of the second Borel–Cantelli lemma: Let
A1,A2, . . . be arbitrary (not necessarily independent) events such that

8ÿ
n“1

PpAnq “ 8 and lim inf
n

ř
i,k≤n

PpAi X Akq
´ ř

1ăk≤n
PpAkq

¯2 ≤ 1;

then PpAn i. o.q “ 1.
26. Show that in the Borel–Cantelli lemma it suffices to assume only pairwise

independence of the events A1,A2, . . . instead of their independence.
27. Prove the following version of the zero–one law (cf. zero–one laws in Sect. 1

of Chapter 4, Vol. 2): if the events A1,A2, . . . are pairwise independent, then

PtAn i. o.u “
#
0, if

ř
PpAnq ă 8,

1, if
ř

PpAnq “ 8.

28. Let A1,A2, . . . be an arbitrary sequence of events such that limn PpAnq “ 0
and

ř
n PpAn X An`1q ă 8. Prove that then PtAn i. o.u “ 0.

29. Prove that if
ř

n Pt|ξn| ą nu ă 8, then lim supnp|ξn|{nq ≤ 1 (P-a. s.).
30. Let ξn Ó ξ (P-a. s.), E |ξn| ă 8, n ≥ 1, and infn E ξn ą ´8. Show that then

ξn
L1Ñ ξ, i. e. E |ξn ´ ξ| Ñ 0.

31. In connection with the Borel–Cantelli lemma, show that PtAn i. o.u “ 1 if and
only if

ř
n PpA X Anq “ 8 for any set A with PpAq ą 0.
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32. Let A1,A2, . . . be independent events with PpAnq ă 1 for all n ≥ 1. Then
PtAn i. o.u “ 1 if and only if PpŤ

Anq “ 1.
33. Let X1,X2, . . . be independent random variables with PtXn “ 0u “ 1{n and

PtXn “ 1u “ 1 ´ 1{n. Let En “ tXn “ 0u. Show that
ř8

n“1 PpEnq “ 8,ř8
n“1 PpEnq “ 8. Conclude from these that limn Xn does not exist (P-a. s.).

34. Let X1,X2, . . . be a sequence of random variables. Show that Xn
PÑ 0 if and

only if

E
|Xn|r

1 ` |Xn|r Ñ 0 for some r ą 0.

In particular, if Sn “ X1 ` ¨ ¨ ¨ ` Xn, then

Sn ´ E Sn

n
PÑ 0 ô E

pSn ´ E Snq2
n2 ` pSn ´ E Snq2 Ñ 0.

Show that

max
1≤k≤n

|Xk| PÑ 0 ñ Sn

n
PÑ 0

for any sequence X1,X2, . . . .
35. Let X1,X2, . . . be independent identically distributed Bernoulli random vari-

ables with PtXk “ ˘1u “ 1{2. Let Un “ řn
k“1pXk{2kq, n ≥ 1. Show

that Un Ñ U (P-a. s.), where U is a random variable uniformly distributed
on p´1,`1q.

11 The Hilbert Space of Random Variables with Finite
Second Moment

1. An important role among the Banach spaces Lp, p ≥ 1, is played by the space
L2 “ L2pΩ,F ,Pq, the space of (equivalence classes of) random variables with
finite second moments.

If ξ and η P L2, we put
pξ, ηq ” E ξη. (1)

It is clear that if ξ, η, ζ P L2 then

paξ ` bη, ζq “ apξ, ζq ` bpη, ζq, a, b P R,

pξ, ξq ≥ 0

and
pξ, ξq “ 0 ô ξ “ 0.

Consequently pξ, ηq is a scalar product. The space L2 is complete with respect to
the norm

}ξ} “ pξ, ξq1{2 (2)
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induced by this scalar product (as was shown in Sect. 10). In accordance with the
terminology of functional analysis, a space with the scalar product (1) is a Hilbert
space.

Hilbert space methods are extensively used in probability theory to study prop-
erties that depend only on the first two moments of random variables (“L2-theory”).
Here we shall introduce the basic concepts and facts that will be needed for an ex-
position of L2-theory (Chapter 6, Vol. 2).

2. Two random variables ξ and η in L2 are said to be orthogonal pξ K ηq if pξ, ηq ”
E ξη “ 0. According to Sect. 8, ξ and η are uncorrelated if Covpξ, ηq “ 0, i.e., if

E ξη “ E ξ E η.

It follows that the properties of being orthogonal and of being uncorrelated coin-
cide for random variables with zero mean values.

A set M Ď L2 is a system of orthogonal random variables if ξ K η for every
ξ, η P M pξ ‰ ηq.

If also }ξ} “ 1 for every ξ P M, then M is an orthonormal system.

3. Let M “ tη1, . . . , ηnu be an orthonormal system and ξ any random variable in
L2. Let us find, in the class of linear estimators

řn
i“1 aiηi, the best mean-square

estimator for ξ (cf. Subsection 2 of Sect. 8).
A simple computation shows that

E

ˇ̌
ˇ̌ξ ´

nÿ
i“1

aiηi

ˇ̌
ˇ̌2 ”

››››ξ ´
nÿ

i“1

aiηi

››››
2

“
ˆ
ξ ´

nÿ
i“1

aiηi, ξ ´
nÿ

i“1

aiηi

˙

“ }ξ}2 ´ 2
nÿ

i“1

aipξ, ηiq `
ˆ nÿ

i“1

aiηi,
nÿ

i“1

aiηi

˙

“ }ξ}2 ´ 2
nÿ

i“1

aipξ, ηiq `
nÿ

i“1

a2i

“ }ξ}2 ´
nÿ

i“1

|pξ, ηiq|2 `
nÿ

i“1

|ai ´ pξ, ηiq|2

≥ }ξ}2 ´
nÿ

i“1

|pξ, ηiq|2, (3)

where we used the equation

a2i ´ 2aipξ, ηiq “ |ai ´ pξ, ηiq|2 ´ |pξ, ηiq|2.
It is now clear that the infimum of E |ξ ´ řn

i“1 aiηi|2 over all real a1, . . . , an is
attained for ai “ pξ, ηiq, i “ 1, . . . , n.
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Consequently the best (in the mean-square sense) linear estimator for ξ in terms
of η1, . . . , ηn is

ξ̂ “
nÿ

i“1

pξ, ηiqηi. (4)

Here

Δ ” inf E

ˇ̌̌
ˇ̌ξ ´

nÿ
i“1

aiηi

ˇ̌̌
ˇ̌
2

“ E |ξ ´ ξ̂|2 “ }ξ}2 ´
nÿ

i“1

|pξ, ηiq|2 (5)

(compare (17), Sect. 4, Chap. 1 and (13), Sect. 8).
Inequality (3) also implies Bessel’s inequality: if M “ tη1, η2, . . .u is an or-

thonormal system and ξ P L2, then

8ÿ
i“1

|pξ, ηiq|2 ≤ }ξ}2; (6)

and equality is attained if and only if

ξ “ l.i.m.
n

nÿ
i“1

pξ, ηiqηi. (7)

The best linear estimator of ξ is often denoted by Êpξ | η1, . . . , ηnq and called the
conditional expectation (of ξ with respect to η1, . . . , ηn) in the wide sense.

The reason for the terminology is as follows. If we consider all estimators ϕ “
ϕpη1, . . . , ηnq of ξ in terms of η1, . . . , ηn (where ϕ is a Borel function), the best
estimator will be ϕ˚ “ Epξ | η1, . . . , ηnq, i.e., the conditional expectation of ξ with
respect to η1, . . . , ηn (cf. Theorem 1, Sect. 8). Hence the best linear estimator is, by
analogy, denoted by Êpξ | η1, . . . , ηnq and called the conditional expectation in the
wide sense. We note that if η1, . . . , ηn form a Gaussian system (see Sect. 13 below),
then Epξ | η1, . . . , ηnq and Êpξ | η1, . . . , ηnq are the same.

Let us discuss the geometric meaning of ξ̂ “ Êpξ | η1, . . . , ηnq.
Let L “ L tη1, . . . , ηnu denote the linear manifold spanned by the orthonormal

system of random variables η1, . . . , ηn (i.e., the set of random variables of the formřn
i“1 aiηi, ai P R).
Then it follows from the preceding discussion that ξ admits the “orthogonal de-

composition”
ξ “ ξ̂ ` pξ ´ ξ̂q, (8)

where ξ̂ P L and ξ ´ ξ̂ K L in the sense that ξ ´ ξ̂ K λ for every λ P L . It is
natural to call ξ̂ the projection of ξ on L (the element of L “closest” to ξq, and to
say that ξ ´ ξ̂ is perpendicular to L .

4. The concept of orthonormality of the random variables η1, . . . , ηn makes it easy
to find the best linear estimator (the projection) ξ̂ of ξ in terms of η1, . . . , ηn. The sit-
uation becomes more complicated if we give up the hypothesis of orthonormality.
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However, the case of arbitrary η1, . . . , ηn can in a certain sense be reduced to the
case of orthonormal random variables, as will be shown below. We shall suppose
for the sake of simplicity that all our random variables have zero mean values.

We shall say that the random variables η1, . . . , ηn are linearly independent if the
equation

nÿ
i“1

aiηi “ 0 (P-a. s.)

is satisfied only when all ai are zero.
Consider the covariance matrix

R “ E ηη˚

of the vector η “ pη1, . . . , ηnq˚, where ˚ denotes the transpose. It is symmetric and
positive semi-definite, and as noticed in Sect. 8, can be diagonalized by an orthogo-
nal matrix O:

O˚
RO “ D,

where

D “
¨
˚̋ d1 0

. . .
0 dn

˛
‹‚

has nonnegative elements di, the eigenvalues of R, i.e., the zeros of the characteristic
equation detpR ´ λEq “ 0, where E is the identity matrix.

If η1, . . . , ηn are linearly independent, the Gram determinant pdetRq is not zero
and therefore di ą 0. Let

B “
¨
˚̋

?
d1 0

. . .
0

?
dn

˛
‹‚

and
β “ B´1O˚η. (9)

Then the covariance matrix of β is

Eββ˚ “ B´1O˚ E ηη˚OB´1 “ B´1O˚
ROB´1 “ E,

and therefore β “ pβ1, . . . , βnq consists of uncorrelated random variables. It is also
clear that

η “ pOBqβ. (10)

Consequently if η1, . . . , ηn are linearly independent there is an orthonormal sys-
tem such that (9) and (10) hold. Here

L tη1, . . . , ηnu “ L tβ1, . . . , βnu.
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This method of constructing an orthonormal system β1, . . . , βn is frequently in-
convenient. The reason is that if we think of ηi as the value of the random sequence
pη1, . . . , ηnq at the instant i, the value βi constructed above depends not only on the
“past,” pη1, . . . , ηiq, but also on the “future,” pηi`1, . . . , ηnq. The Gram–Schmidt or-
thogonalization process, described below, does not have this defect, and moreover
has the advantage that it can be applied to an infinite sequence of linearly indepen-
dent random variables (i.e., to a sequence in which every finite set of the variables
are linearly independent).

Let η1, η2, . . . be a sequence of linearly independent random variables in L2. We
construct a sequence ε1, ε2, . . . as follows. Let ε1 “ η1{}η1}. If ε1, . . . , εn´1 have
been selected so that they are orthonormal, then

εn “ ηn ´ η̂n

}ηn ´ η̂n} , (11)

where η̂n is the projection of ηn on the linear manifold L pε1, . . . , εn´1q generated
by pη1, . . . , ηn´1q:

η̂n “
n´1ÿ
k“1

pηn, εkqεk. (12)

Since η1, . . . , ηn are linearly independent and L tη1, . . . , ηn´1u “ L tε1, . . . , εn´1u,
we have }ηn ´ η̂n} ą 0 and consequently εn is well defined.

By construction, }εn} “ 1 for n ≥ 1, and it is clear that pεn, εkq “ 0 for k ă n.
Hence the sequence ε1, ε2, . . . is orthonormal. Moreover, by (11),

ηn “ η̂n ` bnεn,

where bn “ }ηn ´ η̂n} and η̂n is defined by (12).
Now let η1, . . . , ηn be any set of random variables (not necessarily linearly inde-

pendent). Let detR “ 0, where R ” }rij} is the covariance matrix of pη1, . . . , ηnq,
and let

rank R “ r ă n.

Then, from linear algebra, the quadratic form

Qpaq “
nÿ

i,j “ 1

rijaiaj, a “ pa1, . . . , anq,

has the property that there are n ´ r linearly independent vectors ap1q, . . . , apn´rq
such that Qpapiqq “ 0, i “ 1, . . . , n ´ r.

But

Qpaq “ E

˜
nÿ

k“1

akηk

¸2

.



11 The Hilbert Space of Random Variables with Finite Second Moment 323

Consequently
nÿ

k“1

apiq
k ηk “ 0, i “ 1, . . . , n ´ r,

with probability 1.
In other words, there are n ´ r linear relations among the variables η1, . . . , ηn.

Therefore if, for example, η1, . . . , ηr are linearly independent, the other variables
ηr`1, . . . , ηn can be expressed linearly in terms of them, so that L tη1, . . . , ηnu “
L tη1, . . . , ηru. Hence it is clear that by means of the orthogonalization process
we can find r orthonormal random variables ε1, . . . , εr such that η1, . . . , ηn can be
expressed linearly in terms of them and L tη1, . . . , ηnu “ L tε1, . . . , εru.

5. Let η1, η2, . . . be a sequence of random variables in L2. Let L “ L tη1, η2 . . .u
be the linear manifold spanned by η1, η2, . . ., i.e., the set of random variables of
the form

řn
i“1 aiηi, n ≥ 1, ai P R. Denote L “ L tη1, η2, . . .u the closed linear

manifold spanned by η1, η2, . . ., i.e., the set of random variables in L together with
their mean-square limits.

We say that a set η1, η2, . . . is a countable orthonormal basis (or a complete
orthonormal system) in L2 if:

(a) η1, η2, . . . is an orthonormal system,
(b) L tη1, η2, . . .u “ L2.

A Hilbert space with a countable orthonormal basis is said to be separable.
By (b), for every ξ P L2 and a given ε ą 0 there are numbers a1, . . . , an such that

››››ξ ´
nÿ

i“1

aiηi

›››› ≤ ε.

Then by (3) ››››ξ ´
nÿ

i“1

pξ, ηiqηi

›››› ≤ ε.

Consequently every element of a separable Hilbert space L2 can be represented as

ξ “
8ÿ

i“1

pξ, ηiqηi, (13)

or more precisely as

ξ “ l.i.m.
n

nÿ
i“1

pξ, ηiqηi.

We infer from this and (3) that Parseval’s equation holds:

}ξ}2 “
8ÿ

i“1

|pξ, ηiq|2, ξ P L2. (14)
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It is easy to show that the converse is also valid: if η1, η2, . . . is an orthonormal
system and either (13) or (14) is satisfied, then the system is a basis.

We now give some examples of separable Hilbert spaces and their bases.

Example 1. Let Ω “ R, F “ BpRq, and let P be the Gaussian measure,

Pp´8, as “
ż a

´8
ϕpxq dx, ϕpxq “ 1?

2π
e´x2{2.

Let D “ d{dx and

Hnpxq “ p´1qnDnϕpxq
ϕpxq , n ≥ 0. (15)

We find easily that

Dϕpxq “ ´xϕpxq,
D2ϕpxq “ px2 ´ 1qϕpxq,
D3ϕpxq “ p3x ´ x3qϕpxq,
. . . . . . . . . . . . . . . . . . . . . . . .

(16)

It follows that Hnpxq are polynomials (the Hermite polynomials). From (15) and (16)
we find that

H0pxq “ 1,
H1pxq “ x,
H2pxq “ x2 ´ 1,
H3pxq “ x3 ´ 3x,
. . . . . . . . . . . . . . . . . .

A simple calculation shows that

pHm,Hnq “
ż 8

´8
HmpxqHnpxq Ppdxq

“
ż 8

´8
HmpxqHnpxqϕpxq dx “ n!δmn,

where δmn is the Kronecker delta (0, if m ‰ n, and 1 if m “ n). Hence if we put

hnpxq “ Hnpxq?
n!

,

the system of normalized Hermite polynomials thnpxqun≥0 will be an orthonormal
system. We know from functional analysis (see, e.g., [52], Chapter VII, Sect. 3)
that if

lim
cÓ0

ż 8

´8
ec|x| Ppdxq ă 8, (17)
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the system t1, x, x2, . . .u is complete in L2, i.e., every function ξ “ ξpxq in L2 can
be represented either as

řn
i“1 aiηipxq, where ηipxq “ xi, or as a limit of these func-

tions (in the mean-square sense). If we apply the Gram–Schmidt orthogonalization
process to the sequence η1pxq, η2pxq, . . . with ηipxq “ xi, the resulting orthonor-
mal system will be precisely the system of normalized Hermite polynomials. In the
present case, (17) is satisfied. Hence thnpxqun≥0 is a basis and therefore every ran-
dom variable ξ “ ξpxq on this probability space can be represented in the form

ξpxq “ l.i.m.
n

nÿ
i“0

pξ, hiqhipxq. (18)

Example 2. Let Ω “ t0, 1, 2, . . .u and let P “ tP1, P2, . . .u be the Poisson distri-
bution

Px “ e´λλx

x!
, x “ 0, 1, . . . ; λ ą 0.

Put Δf pxq “ f pxq ´ f px ´1q pf pxq “ 0, x ă 0q, and by analogy with (15) define the
Poisson–Charlier polynomials

Πnpxq “ p´1qnΔnPx

Px
, n ≥ 1, Π0 “ 1. (19)

Since

pΠm,Πnq “
8ÿ

x“0

ΠmpxqΠnpxqPx “ cnδmn,

where cn are positive constants, the system of normalized Poisson–Charlier polyno-
mials tπnpxqun≥0, πnpxq “ Πnpxq{?

cn, is an orthonormal system, which is a basis
since it satisfies (17).

Example 3. In this example we describe the Rademacher and Haar systems, which
are of interest in function theory as well as in probability theory.

Let Ω “ r0, 1s, F “ Bpr0, 1sq, and let P be Lebesgue measure. As we men-
tioned in Sect. 1, every x P r0, 1s has a unique binary expansion

x “ x1
2

` x2
22

` ¨ ¨ ¨ ,

where xi “ 0 or 1. (To ensure uniqueness of the expansion, we agree to consider only
expansions containing an infinite number of zeros. Thus out of the two expansions

1

2
“ 1

2
` 0

22
` 0

23
` ¨ ¨ ¨ “ 0

2
` 1

22
` 1

23
` ¨ ¨ ¨

we choose the first one.)
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Fig. 30 Bernoulli variables

We define random variables ξ1pxq, ξ2pxq, . . . by putting

ξnpxq “ xn.

Then for any numbers ai, equal to 0 or 1,

Ptx : ξ1 “ a1, . . . , ξn “ anu
“ P

"
x :

a1
2

` a2
22

` ¨ ¨ ¨ ` an

2n
≤ x ă a1

2
` a2

22
` ¨ ¨ ¨ ` an

2n
` 1

2n

*

“ P
"

x : x P
„

a1
2

` ¨ ¨ ¨ ` an

2n
,

a1
2

` ¨ ¨ ¨ ` an

2n
` 1

2n

j*
“ 1

2n
.

It follows immediately that ξ1, ξ2, . . . form a sequence of independent Bernoulli
random variables (Fig. 30 shows the construction of ξ1 “ ξ1pxq and ξ2 “ ξ2pxq).

If we now set Rnpxq “ 1 ´ 2ξnpxq, n ≥ 1, it is easily verified that tRnu (the
Rademacher functions, Fig. 31) are orthonormal:

E RnRm “
ż 1

0

RnpxqRmpxq dx “ δnm.

Fig. 31 Rademacher functions
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Notice that p1,Rnq ” E Rn “ 0. It follows that this system is not complete.
However, the Rademacher system can be used to construct the Haar system,

which also has a simple structure and is both orthonormal and complete.
Again let Ω “ r0, 1q and F “ Bpr0, 1qq. Put

H1pxq “ 1,
H2pxq “ R1pxq
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hnpxq “
"
2j{2Rj`1pxq if k´1

2j ≤ x ă k
2j , n “ 2j ` k, 1 ≤ k ≤ 2j, j ≥ 1,

0, otherwise.

It is easy to see that Hnpxq, n ≥ 3, can also be written in the form

H2m`1pxq “
$&
%

2m{2, 0 ≤ x ă 2´pm`1q,
´2m{2, 2´pm`1q ≤ x ă 2´m, m “ 1, 2, . . . ,
0, otherwise,

H2m`jpxq “ H2m`1

ˆ
x ´ j ´ 1

2m

˙
, j “ 1, . . . , 2m, m “ 1, 2, . . .

Figure 32 shows graphs of the first eight functions, to give an idea of the structure
of the Haar functions.

It is easy to see that the Haar system is orthonormal. Moreover, it is complete
both in L1 and in L2, i.e., if f “ f pxq P Lp for p “ 1 or 2, then

ż 1

0

ˇ̌
ˇ̌f pxq ´

nÿ
k“1

pf , HkqHkpxq
ˇ̌
ˇ̌p dx Ñ 0, n Ñ 8.

The system also has the property that

nÿ
k“1

pf , HkqHkpxq Ñ f pxq, n Ñ 8,

with probability 1 (with respect to Lebesgue measure).
In Sect. 4, Chap. 7, Vol. 2 we shall prove these facts by deriving them from gen-

eral theorems on the convergence of martingales. This will, in particular, provide a
good illustration of the application of martingale methods to the theory of functions.

6. If η1, . . . , ηn is a finite orthonormal system then, as was shown above, for every
random variable ξ P L2 there is a random variable ξ̂ in the linear manifold L “
L tη1, . . . , ηnu, namely the projection of ξ on L , such that

}ξ ´ ξ̂} “ inft}ξ ´ ζ} : ζ P L tη1, . . . , ηnuu.
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Fig. 32 The Haar functions H1pxq, . . . ,H8pxq

Here ξ̂ “ řn
i“1pξ, ηiqηi. This result has a natural generalization to the case when

η1, η2, . . . is a countable orthonormal system (not necessarily a basis). In fact, we
have the following result.

Theorem. Let η1, η2, . . . be an orthonormal system of random variables, and L “
L tη1, η2, . . .u the closed linear manifold spanned by the system. Then there is a
unique element ξ̂ P L such that

}ξ ´ ξ̂} “ inft}ξ ´ ζ} : ζ P L u. (20)

Moreover,

ξ̂ “ l.i.m.
n

nÿ
i“1

pξ, ηiqηi (21)

and ξ ´ ξ̂ K ζ, ζ P L .

PROOF. Let d “ inft}ξ ´ ζ} : ζ P L u and choose a sequence ζ1, ζ2, . . . such that
}ξ ´ ζn} Ñ d. Let us show that this sequence is fundamental. A simple calculation
shows that
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}ζn ´ ζm}2 “ 2}ζn ´ ξ}2 ` 2}ζm ´ ξ}2 ´ 4

››››ζn ` ζm

2
´ ξ

››››
2

.

It is clear that pζn ` ζmq{2 P L ; consequently }rpζn ` ζmq{2s ´ ξ}2 ≥ d2 and
therefore }ζn ´ ζm}2 Ñ 0, n,m Ñ 8.

The space L2 is complete (Theorem 7, Sect. 10). Hence there is an element ξ̂
such that }ζn ´ ξ̂} Ñ 0. But L is closed, so ξ̂ P L . Moreover, }ζn ´ ξ} Ñ d, and
consequently }ξ ´ ξ̂} “ d, which establishes the existence of the required element.

Let us show that ξ̂ is the only element of L with the required property. Let ξ̃ P L
and let

}ξ ´ ξ̂} “ }ξ ´ ξ̃} “ d.

Then (by Problem 3)

}ξ̂ ` ξ̃ ´ 2ξ}2 ` }ξ̂ ´ ξ̃}2 “ 2}ξ̂ ´ ξ}2 ` 2}ξ̃ ´ ξ}2 “ 4d2.

But
}ξ̂ ` ξ̃ ´ 2ξ}2 “ 4}1

2 pξ̂ ` ξ̃q ´ ξ}2 ≥ 4d2.

Consequently }ξ̂ ´ ξ̃}2 “ 0. This establishes the uniqueness of the element of L
that is closest to ξ.

Now let us show that ξ ´ ξ̂ K ζ, ζ P L . By (20)

}ξ ´ ξ̂ ´ cζ} ≥ }ξ ´ ξ̂}
for every c P R. But

}ξ ´ ξ̂ ´ cζ}2 “ }ξ ´ ξ̂}2 ` c2}ζ}2 ´ 2pξ ´ ξ̂, cζq.
Therefore

c2}ζ}2 ≥ 2pξ ´ ξ̂, cζq. (22)

Take c “ λpξ ´ ξ̂, ζq, λ P R. Then we find from (22) that

pξ ´ ξ̂, ζq2rλ2}ζ}2 ´ 2λs ≥ 0.

We have λ2}ζ}2 ´2λ ă 0 if λ is a sufficiently small positive number. Consequently
pξ ´ ξ̂, ζq “ 0, ζ P L .

It remains only to prove (21).
The set L “ L tη1, η2, . . .u is a closed subspace of L2 and therefore a Hilbert

space (with the same scalar product). Now the system η1, η2, . . . is a basis for L
and consequently

ξ̂ “ l.i.m.
n

nÿ
k“1

pξ̂, ηkqηk. (23)

But ξ ´ ξ̂ K ηk, k ≥ 1, and therefore pξ̂, ηkq “ pξ, ηkq, k ≥ 0. This, with (23)
establishes (21).

This completes the proof of the theorem.
[\
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Remark. As in the finite-dimensional case, we say that ξ̂ is the projection of ξ on
L “ L tη1, η2, . . .u, that ξ ´ ξ̂ is perpendicular to L and that the representation

ξ “ ξ̂ ` pξ ´ ξ̂q
is the orthogonal decomposition of ξ.

We also denote ξ̂ by Êpξ | η1, η2, . . .q (cf. Êpξ | η1, . . . , ηnq in Subsection 3) and
call it the conditional expectation in the wide sense (of ξ with respect to η1, η2, . . .).
From the point of view of estimating ξ in terms of η1, η2, . . ., the variable ξ̂ is the
best linear estimator, with error

Δ ” E |ξ ´ ξ̂|2 ” }ξ ´ ξ̂}2 “ }ξ}2 ´
8ÿ

i“1

|pξ, ηiq|2,

which follows from (5) and (23).

7. PROBLEMS

1. Show that if ξ “ l.i.m. ξn then }ξn} Ñ }ξ}.
2. Show that if ξ “ l.i.m. ξn and η “ l.i.m. ηn then pξn, ηnq Ñ pξ, ηq.
3. Show that the norm } ¨ } has the parallelogram property

}ξ ` η}2 ` }ξ ´ η}2 “ 2p}ξ}2 ` }η}2q.
4. Let pξ1, . . . , ξnq be a family of orthogonal random variables. Show that they

have the Pythagorean property,

››››
nÿ

i“1

ξi

››››
2

“
nÿ

i“1

}ξi}2.

5. Let ξ1, ξ2, . . . be a sequence of orthogonal random variables, Sn “ ξ1`¨ ¨ ¨`ξn.
Show that if

ř8
n“1 E ξ2n ă 8 then there is a random variable S with E S2 ă 8

such that l.i.m. Sn “ S, i. e. }Sn ´ S}2 “ E |Sn ´ S|2 Ñ 0, n Ñ 8.
6. Show that the Rademacher functions Rn can be defined as

Rnpxq “ sign psin 2nπxq, 0 ≤ x ≤ 1, n “ 1, 2, . . .

7. Prove that, for G Ď F ,

}ξ} ≥ } Epξ |G q} for ξ P L2pF q,

where the equality holds if and only if ξ “ Epξ |G q a. s.
8. Prove that if ξ, η P L2pF q, Epξ | ηq “ η, and Epη | ξq “ ξ, then ξ “ η a. s.
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9. Suppose we are given three sequences pG p1q
n q, pG p2q

n q and pG p3q
n q of σ-

subalgebras of F , and let ξ be a bounded random variable. Suppose we know
that

G p1q
n Ď G p2q

n Ď G p3q
n for each n,

Epξ |G p1q
n q PÑ η, Epξ |G p3q

n q PÑ η.

Prove that Epξ |G p2q
n q PÝÑ η.

12 Characteristic Functions

1. The method of characteristic functions is one of the main tools of the analytic
theory of probability. This will appear very clearly in Chapter 3 in the proofs of
limit theorems and, in particular, in the proof of the central limit theorem, which
generalizes the de Moivre–Laplace theorem. In the present section we merely define
characteristic functions and present their basic properties.

First we make some general remarks.
Besides random variables which take real values, the theory of characteris-

tic functions requires random variables taking complex values (see Subsection 1
of Sect. 5).

Many definitions and properties involving random variables can easily be carried
over to the complex case. For example, the expectation E ζ of a complex random
variable ζ “ ξ ` iη will exist if the expectations E ξ and E η exist. In this case we
define E ζ “ E ξ ` i E η. It is easy to deduce from the Definition 6 (Sect. 5) of the
independence of random elements that the complex random variables ζ1 “ ξ1 ` iη1
and ζ2 “ ξ2 ` iη2 are independent if and only if the pairs pξ1, η1q and pξ2, η2q are
independent; or, equivalently, the σ-algebras Lξ1,η1

and Lξ2,η2
are independent.

Besides the space L2 of real random variables with finite second moment, we
shall consider the Hilbert space of complex random variables ζ “ ξ ` iη with
E |ζ|2 ă 8, where |ζ|2 “ ξ2 ` η2 and the scalar product pζ1, ζ2q is defined by
E ζ1ζ̄2, where ζ̄2 is the complex conjugate of ζ. The term “ random variable” will
now be used for both real and complex random variables, with a comment (when
necessary) on which is intended.

Let us introduce some notation.
When a vector a P Rn is involved in algebraic operations, we consider it to be a

column vector,

a “
¨
˚̋ a1

...
an

˛
‹‚,

and a˚ to be a row vector, a˚ “ pa1, . . . , anq. If a and b P Rn, their scalar product
pa, bq is

řn
i“1 aibi. Clearly pa, bq “ a˚b.
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If a P Rn and R “ }rij} is an n by n matrix,

pRa, aq “ a˚
Ra “

nÿ
i,j“1

rijaiaj. (1)

2. Definition 1. Let F “ Fpxq be an n-dimensional distribution function in
pRn, BpRnqq, x “ px1, . . . , xnq˚. Its characteristic function is

ϕptq “
ż

Rn

eipt,xqdFpxq, t P Rn. (2)

Definition 2. If ξ “ pξ1, . . . , ξnq˚ is a random vector defined on the probability
space pΩ,F ,Pq with values in Rn, its characteristic function is

ϕξptq “
ż

Rn

eipt,xqdFξpxq, t P Rn, (3)

where Fξ “ Fξpxq is the distribution function of the vector ξ “ pξ1, . . . , ξnq˚,
x “ px1, . . . , xnq˚.

If Fpxq has a density f “ f pxq then

ϕptq “
ż

Rn

eipt,xqf pxq dx.

In other words, in this case the characteristic function is just the Fourier transform
of f pxq.

It follows from (3) and Theorem 7 of Sect. 6 (on change of variable in a Lebesgue
integral) that the characteristic function ϕξptq of a random vector can also be defined
by

ϕξptq “ E eipt,ξq, t P Rn. (4)

We now present some basic properties of characteristic functions, stated and
proved for n “ 1. Further important results for the general case will be given as
problems.

Let ξ “ ξpωq be a random variable, Fξ “ Fξpxq its distribution function, and

ϕξptq “ E eitξ

its characteristic function.
We see at once that if η “ aξ ` b then

ϕηptq “ E eitη “ E eitpaξ`bq “ eitb E eiatξ.

Therefore
ϕηptq “ eitbϕξpatq. (5)
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Moreover, if ξ1, ξ2, . . . , ξn are independent random variables and Sn “ ξ1 `¨ ¨ ¨`
ξn, then

ϕSn ptq “
nź

j“1

ϕξj ptq. (6)

In fact,

ϕSn “ E eitpξ1`¨¨¨`ξnq “ E eitξ1 ¨ ¨ ¨ eitξn

“ E eitξ1 ¨ ¨ ¨ E eitξn “
nź

j“1

ϕξj ptq,

where we have used the property that the expectation of a product of independent
(bounded) random variables (either real or complex; see Theorem 6 of Sect. 6, and
Problem 1) is equal to the product of their expectations.

Property (6) is the key to the proofs of limit theorems for sums of independent
random variables by the method of characteristic functions (see Sect. 3, Chap. 3). In
this connection we note that the distribution function FSn is expressed in terms of the
distribution functions of the individual terms in a rather complicated way, namely
FSn “ Fξ1 ˚ ¨ ¨ ¨ ˚ Fξn , where ˚ denotes convolution (see Subsection 4 of Sect. 8).

Here are some examples of characteristic functions.

Example 1. The characteristic function of a Bernoulli random variable ξ with
Ppξ “ 1q “ p, Ppξ “ 0q “ q, p ` q “ 1, 1 ą p ą 0, is

ϕξptq “ peit ` q.

If ξ1, . . . , ξn are independent identically distributed random variables like ξ, then,
writing Tn “ pSn ´ npq{?

npq, we have

ϕTn ptq “ E eiTnt “ e´it
?

np{qrpeit{?
npq ` qsn

“ rpeit
?

q{pnpq ` qe´it
?

p{pnqqsn. (7)

Notice that it follows that as n Ñ 8

ϕTn ptq Ñ e´t2{2, Tn “ Sn ´ np?
npq

. (8)

Example 2. Let ξ „ N pm, σ2q, |m| ă 8, σ2 ą 0. Let us show that

ϕξptq “ eitm´t2σ2{2. (9)

Let η “ pξ ´ mq{σ. Then η „ N p0, 1q and, since

ϕξptq “ eitmϕηpσtq
by (5), it is enough to show that
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ϕηptq “ e´t2{2. (10)

We have

ϕηptq “ E eitη “ 1?
2π

ż 8

´8
eitxe´x2{2 dx

“ 1?
2π

ż 8

´8

8ÿ
n“0

pitxqn

n!
e´x2{2 dx “

8ÿ
n“0

pitqn

n!
1?
2π

ż 8

´8
xne´x2{2 dx

“
8ÿ

n“0

pitq2n

p2nq! p2n ´ 1q!! “
8ÿ

n“0

pitq2n

p2nq!
p2nq!
2nn!

“
8ÿ

n“0

ˆ
´ t2

2

˙n

¨ 1

n!
“ e´t2{2,

where we have used the formula (see Problem 7 in Sect. 8)

1?
2π

ż 8

´8
x2ne´x2{2 dx ” E η2n “ p2n ´ 1q!!.

Example 3. Let ξ be a Poisson random variable,

Ppξ “ kq “ e´λλk

k!
, k “ 0, 1, . . . .

Then

E eitξ “
8ÿ

k“0

eitk e´λλk

k!
“ e´λ

8ÿ
k“0

pλeitqk

k!
“ exptλpeit ´ 1qu. (11)

3. As we observed in Subsection 1 of Sect. 9, with every distribution function in
pR,BpRqq we can associate a random variable of which it is the distribution func-
tion. Hence in discussing the properties of characteristic functions (in the sense ei-
ther of Definition 1 or Definition 2), we may consider only characteristic functions
ϕptq “ ϕξptq of random variables ξ “ ξpωq.

Theorem 1. Let ξ be a random variable with distribution function F “ Fpxq and

ϕptq “ E eitξ

its characteristic function. Then ϕ has the following properties:

(1) |ϕptq| ≤ ϕp0q “ 1;
(2) ϕptq is uniformly continuous for t P R;
(3) ϕptq “ ϕp´tq;
(4) ϕptq is real-valued if and only if F is symmetric pş

B dFpxq “ ş
´B dFpxqq, B P

BpRq, ´B “ t´x : x P Bu;
(5) if E |ξ|n ă 8 for some n ≥ 1, then ϕprqptq exists for every r ≤ n, and
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ϕprqptq “
ż

R
pixqreitx dFpxq, (12)

E ξr “ ϕprqp0q
ir

, (13)

ϕptq “
nÿ

r“0

pitqr

r!
E ξr ` pitqn

n!
εnptq, (14)

where |εnptq| ≤ 3E |ξ|n and εnptq Ñ 0, t Ñ 0;
(6) if ϕp2nqp0q exists and is finite then E ξ2n ă 8;
(7) if E |ξ|n ă 8 for all n ≥ 1 and

lim sup
n

pE |ξ|nq1{n

n
“ 1

T
ă 8,

then

ϕptq “
8ÿ

n“0

pitqn

n!
E ξn (15)

for all |t| ă T .

PROOF. Properties (1) and (3) are evident. Property (2) follows from the inequality

|ϕpt ` hq ´ ϕptq| “ | E eitξpeihξ ´ 1q| ≤ E |eihξ ´ 1|
and the dominated convergence theorem, according to which E |eihξ ´ 1| Ñ 0 as
h Ñ 0.

Property (4). Let F be symmetric. Then if gpxq is a bounded odd Borel function,
we have

ş
R gpxq dFpxq “ 0 (observe that for simple odd functions this follows di-

rectly from the definition of the symmetry of F). Consequently
ş

R sin tx dFpxq “ 0
and therefore

ϕptq “ E cos tξ.

Conversely, let ϕξptq be a real function. Then by property (3)

ϕ´ξptq “ ϕξp´tq “ ϕξptq “ ϕξptq, t P R.

Hence (as will be shown below in Theorem 2) the distribution functions F´ξ and
Fξ of the random variables ´ξ and ξ are the same, and therefore (by Theorem 1 of
Sect. 3)

Ppξ P Bq “ Pp´ξ P Bq “ Ppξ P ´Bq
for every B P BpRq.

Property (5). If E |ξ|n ă 8, we have E |ξ|r ă 8 for r ≤ n, by Lyapunov’s
inequality (28) (Sect. 6).



336 2 Mathematical Foundations of Probability Theory

Consider the difference quotient

ϕpt ` hq ´ ϕptq
h

“ E eitξ

ˆ
eihξ ´ 1

h

˙
.

Since ˇ̌̌
ˇeihx ´ 1

h

ˇ̌̌
ˇ ≤ |x |,

and E |ξ| ă 8, it follows from the dominated convergence theorem that the limit

lim
hÑ0

E eitξ

ˆ
eihξ ´ 1

h

˙

exists and equals

E eitξ lim
hÑ0

ˆ
eihξ ´ 1

h

˙
“ i Epξeitξq “ i

ż 8

´8
xeitx dFpxq. (16)

Hence ϕ1ptq exists and

ϕ1ptq “ ipE ξeitξq “ i
ż 8

´8
xeitx dFpxq.

The existence of the derivatives ϕprqptq, 1 ă r ≤ n, and the validity of (12),
follow by induction.

Formula (13) follows immediately from (12). Let us now establish (14).
Since

eiy “ cos y ` i sin y “
n´1ÿ
k“0

piyqk

k!
` piyqn

n!
rcos θ1y ` i sin θ2ys

for real y, with |θ1| ≤ 1 and |θ2| ≤ 1, we have

eitξ “
n´1ÿ
k“0

pitξqk

k!
` pitξqn

n!
rcos θ1pωqtξ ` i sin θ2pωqtξs (17)

and

E eitξ “
n´1ÿ
k“0

pitqk

k!
E ξk ` pitqn

n!
rE ξn ` εnptqs, (18)
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where
εnptq “ Erξnpcos θ1pωqtξ ` i sin θ2pωqtξ ´ 1qs.

It is clear that |εnptq| ≤ 3E |ξn|. The theorem on dominated convergence shows that
εnptq Ñ 0, t Ñ 0.

Property (6). We give a proof by induction. Suppose first that ϕ2p0q exists and
is finite. Let us show that in that case E ξ2 ă 8. By L’Hôpital’s rule and Fatou’s
lemma,

ϕ2p0q “ lim
hÑ0

1

2

„
ϕ1p2hq ´ ϕ1p0q

2h
` ϕ1p0q ´ ϕ1p´2hq

2h

j

“ lim
hÑ0

2ϕ1p2hq ´ 2ϕ1p´2hq
8h

“ lim
hÑ0

1

4h2
rϕp2hq ´ 2ϕp0q ` ϕp´2hqs

“ lim
hÑ0

ż 8

´8

ˆ
eihx ´ e´ihx

2h

˙2

dFpxq

“ ´ lim
hÑ0

ż 8

´8

ˆ
sin hx

hx

˙2

x2 dFpxq ≤ ´
ż 8

´8
lim
hÑ0

ˆ
sin hx

hx

˙2

x2 dFpxq

“ ´
ż 8

´8
x2 dFpxq.

Therefore, ż 8

´8
x2 dFpxq ≤ ´ϕ2p0q ă 8.

Now let ϕp2k`2qp0q exist, finite, and let
ş`8

´8 x2k dFpxq ă 8. If
ş8

´8 x2k dFpxq “ 0,

then
ş8

´8 x2k`2 dFpxq “ 0 also. Hence we may suppose that
ş8

´8 x2k dFpxq ą 0.
Then, by Property (5),

ϕp2kqptq “
ż 8

´8
pixq2keitx dFpxq

and therefore,

p´1qkϕp2kqptq “
ż 8

´8
eitx dGpxq,

where Gpxq “ şx
´8 u2k dFpuq.

Consequently the function p´1qkϕp2kqptqG´1p8q is the characteristic function
of the probability distribution Gpxq ¨ G´1p8q and by what we have proved,

G´1p8q
ż 8

´8
x2 dGpxq ă 8.

But G´1p8q ą 0, and therefore

ż 8

´8
x2k`2 dFpxq “

ż 8

´8
x2 dGpxq ă 8.
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Property (7). Let 0 ă t0 ă T . Then, by Stirling’s formula (6) (Sect. 2 of Chap. 1)
we find that

lim sup
pE |ξ|nq1{n

n
ă 1

t0
ñ lim sup

pE |ξ|ntn
0q1{n

n
ă 1

ñ lim sup

ˆ
E |ξ|ntn

0

n!

˙1{n

ă 1.

Consequently the series
řrE |ξ|ntn

0{n!s converges by Cauchy’s test, and therefore
the series

ř8
r“0rpitqr{r!s E ξr converges for |t| ≤ t0. But by (14), for n ≥ 1,

ϕptq “
nÿ

r“0

pitqr

r!
E ξr ` Rnptq,

where |Rnptq| ≤ 3p|t|n{n!q E |ξ|n. Therefore

ϕptq “
8ÿ

r“0

pitqr

r!
E ξr

for all |t| ă T . This completes the proof of the theorem.
[\

Remark 1. By a method similar to that used for (14), we can establish that if
E |ξ|n ă 8 for some n ≥ 1, then

ϕptq “
nÿ

k“0

ikpt ´ sqk

k!

ż 8

´8
xkeisx dFpxq ` inpt ´ sqn

n!
εnpt ´ sq, (19)

where |εnpt ´ sq| ≤ 3E |ξn|, and εnpt ´ sq Ñ 0 as t ´ s Ñ 0.

Remark 2. With reference to the condition that appears in Property (7), see also
Subsection 9, below, on the “uniqueness of the solution of the moment problem.”

4. The following theorem shows that the characteristic function is uniquely deter-
mined by the distribution function.

Fig. 33



12 Characteristic Functions 339

Theorem 2 (Uniqueness). Let F and G be distribution functions with the same char-
acteristic function, i.e.

ż 8

´8
eitx dFpxq “

ż 8

´8
eitx dGpxq (20)

for all t P R. Then Fpxq ” Gpxq.

PROOF. Choose a and b P R, and ε ą 0, and consider the function f ε “ f εpxq
shown in Fig. 33. We show that

ż 8

´8
f εpxq dFpxq “

ż 8

´8
f εpxq dGpxq. (21)

Let n ≥ 0 be large enough so that ra, b ` εs Ď r´n, ns, and let the sequence
tδnu be such that 1 ≥ δn Ó 0, n Ñ 8. Like every continuous function on r´n, ns
that has equal values at the endpoints, f ε “ f εpxq can be uniformly approximated
by trigonometric polynomials (the Weierstrass–Stone theorem, see [28]), i.e., there
is a finite sum

f εn pxq “
ÿ

k

ak exp

ˆ
iπx

k
n

˙
(22)

such that
sup

´n≤x≤n
|f εpxq ´ f εn pxq| ≤ δn. (23)

Let us extend the periodic function f εn pxq to all of R, and observe that

sup
x

|f εn pxq| ≤ 2.

Then, since by (20) and (22)

ż 8

´8
f εn pxq dFpxq “

ż 8

´8
f εn pxq dGpxq,

we haveˇ̌
ˇ̌ ż 8

´8
f εpxq dFpxq ´

ż 8

´8
f εpxq dGpxq

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌ ż n

´n
f ε dF ´

ż n

´n
f ε dG

ˇ̌
ˇ̌

≤
ˇ̌
ˇ̌ ż n

´n
f εn dF ´

ż n

´n
f εn dG

ˇ̌
ˇ̌ ` 2δn

≤
ˇ̌ˇ̌ ż 8

´8
f εn dF ´

ż 8

´8
f εn dG

ˇ̌ˇ̌ ` 2δn

`2Fpr´n, nsq ` 2Gpr´n, nsq,
(24)
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where FpAq “ ş
A dFpxq, GpAq “ ş

A dGpxq. As n Ñ 8, the right-hand side of (24)
tends to zero, and this establishes (21).

As ε Ñ 0, we have f εpxq Ñ Ipa,bspxq. It follows from (21) by the dominated
convergence theorem that

ż 8

´8
Ipa,bspxq dFpxq “

ż 8

´8
Ipa,bspxq dGpxq,

i.e., Fpbq ´ Fpaq “ Gpbq ´ Gpaq. Since a and b are arbitrary, it follows that Fpxq “
Gpxq for all x P R.

This completes the proof of the theorem.
[\

5. The preceding theorem says that a distribution function F “ Fpxq is uniquely de-
termined by its characteristic function ϕ “ ϕptq. The next theorem gives an explicit
representation of F in terms of ϕ.

Theorem 3 (Inversion Formula). Let F “ Fpxq be a distribution function and

ϕptq “
ż 8

´8
eitx dFpxq

its characteristic function.

(a) For any pair of points a and b pa ă bq at which F “ Fpxq is continuous,

Fpbq ´ Fpaq “ lim
cÑ8

1

2π

ż c

´c

e´ita ´ e´itb

it
ϕptq dt. (25)

(b) If
ş8

´8 |ϕptq| dt ă 8, the distribution function Fpxq has a density f pxq,

Fpxq “
ż x

´8
f pyq dy (26)

and

f pxq “ 1

2π

ż 8

´8
e´itxϕptq dt. (27)

PROOF. We first observe that if Fpxq has density f pxq then

ϕptq “
ż 8

´8
eitxf pxq dx, (28)

and (27) is just the Fourier transform of the (integrable) function ϕptq. Integrating
both sides of (27) and applying Fubini’s theorem, we obtain
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Fpbq ´ Fpaq “
ż b

a
f pxq dx “ 1

2π

ż b

a

„ż 8

´8
e´itxϕptq dt

j
dx

“ 1

2π

ż 8

´8
ϕptq

«ż b

a
e´itx dx

ff
dt

“ 1

2π

ż 8

´8
ϕptqe´ita ´ e´itb

it
dt.

After these remarks, which to some extent clarify (25), we turn to the proof.
(a) We have

Φc ” 1

2π

ż c

´c

e´ita ´ e´itb

it
ϕptq dt

“ 1

2π

ż c

´c

e´ita ´ e´itb

it

„ż 8

´8
eitx dFpxq

j
dt

“ 1

2π

ż 8

´8

„ż c

´c

e´ita ´ e´itb

it
eitx dt

j
dFpxq

“
ż 8

´8
Ψcpxq dFpxq, (29)

where we have put

Ψcpxq “ 1

2π

ż c

´c

e´ita ´ e´itb

it
eitx dt

and applied Fubini’s theorem, which is applicable in this case because

ˇ̌
ˇ̌e´ita ´ e´itb

it
¨ eitx

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌e´ita ´ e´itb

it

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˇ
ż b

a
e´itxdx

ˇ̌
ˇ̌
ˇ ≤ b ´ a

and ż c

´c

ż 8

´8
pb ´ aq dFpxq dt ≤ 2cpb ´ aq ă 8.

In addition,

Ψcpxq “ 1

2π

ż c

´c

sin tpx ´ aq ´ sin tpx ´ bq
t

dt

“ 1

2π

ż cpx´aq

´cpx´aq
sin v

v
dv ´ 1

2π

ż cpx´bq

´cpx´bq
sin u

u
du. (30)

The function

gps, tq “
ż t

s

sin v
v

dv
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is uniformly continuous in s and t, and

gps, tq Ñ π (31)

as s Ó ´8 and t Ò 8 (see [35], 3.721 or “Dirichlet integral” in Wikipedia). Hence
there is a constant C such that |Ψcpxq| ă C ă 8 for all c and x. Moreover, it follows
from (30) and (31) that

Ψcpxq Ñ Ψpxq, c Ñ 8,

where

Ψpxq “
$&
%

0, x ă a, x ą b,
1
2 , x “ a, x “ b,
1, a ă x ă b.

Let μ be the measure on pR,BpRqq such that μpa, bs “ Fpbq ´ Fpaq. Recall
that by assumption a and b are continuity points of Fpxq, hence Fpa´q “ Fpaq,
Fpb´q “ Fpbq and μpaq “ μpbq “ 0. Then if we apply the dominated convergence
theorem and use the formulas of Problem 1 of Sect. 3, we find that, as c Ñ 8,

Φc “
ż 8

´8
Ψcpxq dFpxq Ñ

ż 8

´8
Ψpxq dFpxq

“ μpa, bq ` 1
2μtau ` 1

2μtbu “ Fpbq ´ Fpaq.
Hence (25) is established.

(b) Let
ş8

´8 |ϕptq| dt ă 8. Write

f pxq “ 1

2π

ż 8

´8
e´itxϕptq dt.

It follows from the dominated convergence theorem that this is a continuous function
of x and therefore is integrable on ra, bs. Consequently we find, applying Fubini’s
theorem again, that

ż b

a
f pxq dx “

ż b

a

1

2π

ˆż 8

´8
e´itxϕptq dt

˙
dx

“ 1

2π

ż 8

´8
ϕptq

«ż b

a
e´itx dx

ff
dt “ lim

cÑ8
1

2π

ż c

´c
ϕptq

«ż b

a
e´itxdx

ff
dt

“ lim
cÑ8

1

2π

ż c

´c

e´ita ´ eitb

it
ϕptq dt “ Fpbq ´ Fpaq

for all points a and b of continuity of Fpxq.
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Hence it follows that

Fpxq “
ż x

´8
f pyq dy, x P R,

and since f pxq is continuous and Fpxq is nondecreasing, f pxq is the density of Fpxq.
This completes the proof of the theorem.
[\

Remark. The inversion formula (25) provides a second proof of Theorem 2.

Theorem 4. A necessary and sufficient condition for the components of the random
vector ξ “ pξ1, . . . , ξnq˚ to be independent is that its characteristic function is the
product of the characteristic functions of the components:

E eipt1ξ1`¨¨¨`tnξnq “
nź

k“1

E eitkξk , pt1, . . . , tnq˚ P Rn.

PROOF. The necessity follows from Problem 1. To prove the sufficiency we let
Fpx1, . . . , xnq be the distribution function of the vector ξ “ pξ1, . . . , ξnq˚ and
Fkpxq, the distribution functions of the ξk, 1 ≤ k ≤ n. Put G “ Gpx1, . . . , xnq “
F1px1q ¨ ¨ ¨ Fnpxnq. Then, by Fubini’s theorem, for all pt1, . . . , tnq˚ P Rn

ż
Rn

eipt1x1` ¨¨¨ `tnxnq dGpx1, . . . , xnq “
nź

k“1

ż
R

eitkxk dFkpxkq

“
nź

k“1

E eitkξk “ E eipt1ξ1`¨¨¨`tnξnq

“
ż

Rn

eipt1x1`¨¨¨`tnxnq dFpx1, . . . , xnq.

Therefore by Theorem 2 (or rather, by its multidimensional analog; see Problem 3)
we have F “ G, and consequently, by the theorem of Sect. 5, the random variables
ξ1, . . . , ξn are independent.

[\
6. Theorem 1 gives us necessary conditions for a function to be a characteristic func-
tion. Hence if ϕ “ ϕptq fails to satisfy, for example, one of the first three conclusions
of the theorem, that function cannot be a characteristic function. We quote without
proof some results in the same direction.

Bochner–Khinchin Theorem. Let ϕptq be continuous, t P R, with ϕp0q “ 1.
A necessary and sufficient condition that ϕptq is a characteristic function is that it is
positive semi-definite, i.e., that for all real t1, . . . , tn and all complex λ1, . . . , λn, n “
1, 2, . . .,

nÿ
i,j“1

ϕpti ´ tjqλiλ̄j ≥ 0. (32)
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The necessity of (32) is evident since if ϕptq “ ş8
´8 eitx dFpxq then

nÿ
i,j“1

ϕpti ´ tjqλiλ̄j “
ż 8

´8

ˇ̌
ˇ̌ nÿ

k“1

λkeitkx

ˇ̌
ˇ̌2 dFpxq ≥ 0.

The proof of the sufficiency of (32) is more difficult. (See [31], XIX.2.)

Pólya’s Theorem. Let a continuous even function ϕptq satisfy ϕptq ≥ 0, ϕp0q “
1, ϕptq Ñ 0 as t Ñ 8 and let ϕptq be convex on p´8, 0q. (Hence also on p0,8q.)
Then ϕptq is a characteristic function ([31], XV.2).

This theorem provides a very convenient method of constructing characteristic
functions. Examples are

ϕ1ptq “ e´|t|,

ϕ2ptq “
#
1 ´ |t|, |t| ≤ 1,

0, |t| ą 1.

Another is the function ϕ3ptq drawn in Fig. 34. On r´a, as, the function ϕ3ptq
coincides with ϕ2ptq. However, the corresponding distribution functions F2 and F3

are evidently different. This example shows that in general two characteristic func-
tions can be the same on a finite interval without their distribution functions being
the same.

Fig. 34

Marcinkiewicz’s Theorem. If a characteristic function has the form expPptq,
where Pptq is a polynomial, then this polynomial is of degree at most two ([65],
7.3).

It follows, for example, that e´t4 is not a characteristic function.

7. The following theorem shows that a property of the characteristic function of a
random variable can lead to a nontrivial conclusion about the nature of the random
variable.
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Theorem 5. Let ϕξptq be the characteristic function of the random variable ξ.

(a) If |ϕξpt0q| “ 1 for some t0 ‰ 0, then ξ is a lattice random variable concentrated
at the points a ` nh, h “ 2π{|t0|, that is,

8ÿ
n“´8

Ptξ “ a ` nhu “ 1, (33)

where a is a constant.
(b) If |ϕξptq| “ |ϕξpαtq| “ 1 for two different points t and αt, where α is irrational,

then ξ is degenerate, that is Ptξ “ au “ 1, where a is some number.
(c) If |ϕξptq| ” 1, then ξ is degenerate.

PROOF. (a) If |ϕξpt0q| “ 1, t0 ‰ 0, there is a number a such that ϕpt0q “ eit0a.
Then

eit0a “
ż 8

´8
eit0x dFpxq ñ 1 “

ż 8

´8
eit0px´aq dFpxq ñ

1 “
ż 8

´8
cos t0px ´ aq dFpxq ñ

ż 8

´8
r1 ´ cos t0px ´ aqs dFpxq “ 0.

Since 1 ´ cos t0px ´ aq ≥ 0, it follows from property H (Subsection 2 of Sect. 6)
that

1 “ cos t0pξ ´ aq pP -a. s.q,
which is equivalent to (33).

(b) It follows from |ϕξptq| “ |ϕξpαtq| “ 1 and from (33) that

8ÿ
n“´8

P
"
ξ “ a ` 2π

t
n

*
“

8ÿ
m“´8

P
"
ξ “ b ` 2π

αt
m

*
“ 1.

If ξ is not degenerate, there must be at least two common points:

a ` 2π

t
n1 “ b ` 2π

αt
m1, a ` 2π

t
n2 “ b ` 2π

αt
m2,

in the sets"
a ` 2π

t
n, n “ 0,˘1, . . .

*
and

"
b ` 2π

αt
m, m “ 0, ˘1, . . .

*
,

whence
2π

t
pn1 ´ n2q “ 2π

αt
pm1 ´ m2q,

and this contradicts the assumption that α is irrational. Conclusion (c) follows
from (b).

This completes the proof of the theorem.
[\
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8. Let ξ “ pξ1, . . . , ξkq˚ be a random vector and

ϕξptq “ E eipt,ξq, t “ pt1, . . . , tkq˚,

its characteristic function. Let us suppose that E |ξi|n ă 8 for some n ≥ 1, i “
1, . . . , k. From Hölder’s and Lyapunov’s inequalities (Sect. 6, (29), and (27) respec-
tively) it follows that the (mixed) moments Epξν1

1 ¨ ¨ ¨ ξνk
k q exist for all nonnegative

ν1, . . . , νk such that ν1 ` ¨ ¨ ¨ ` νk ≤ n.
As in Theorem 1, this implies the existence and continuity of the partial deriva-

tives Bν1`¨¨¨`νk

Btν1
1 . . . Btνk

k

ϕξpt1, . . . , tkq

for ν1 ` ¨ ¨ ¨ ` νk ≤ n. Then if we expand ϕξpt1, . . . , tkq in a Taylor series, we see
that

ϕξpt1, . . . , tkq “
ÿ

ν1`¨¨¨`νk≤n

iν1`¨¨¨`νk

ν1! ¨ ¨ ¨ νk!
mpν1,...,νkq

ξ tν1
1 ¨ ¨ ¨ tνk

k ` op|t|nq, (34)

where |t| “ |t1| ` ¨ ¨ ¨ ` |tk| and

mpν1,...,νkq
ξ “ E ξν1

1 ¨ ¨ ¨ ξνk
k

is the mixed moment of order˚ ν “ pν1, . . . , νkq.
Now ϕξpt1, . . . , tkq is continuous, ϕξp0, . . . , 0q “ 1, and consequently this func-

tion is different from zero in some neighborhood |t| ă δ of zero. In this neighbor-
hood the partial derivative

Bν1`¨¨¨`νk

Btν1
1 ¨ ¨ ¨ Btνk

k

logϕξpt1, . . . , tkq

exists and is continuous, where log z denotes the principal value of the logarithm (if
z “ reiθ, we take log z to be log r ` iθ). Hence we can expand logϕξpt1, . . . , tkq by
Taylor’s formula,

logϕξpt1, . . . , tkq “
ÿ

ν1`¨¨¨`νk≤n

iν1`¨¨¨`νk

ν1! ¨ ¨ ¨ νk!
spν1,...,νkq
ξ tν1

1 ¨ ¨ ¨ tνk
k ` op|t|nq, (35)

where the coefficients spν1,...,νkq
ξ are the (mixed) semi-invariants or cumulants of

order ν “ pν1, . . . , νkq of ξ “ pξ1, . . . , ξkq˚.

˚ We write the integer-valued vector ν row-wise, since it is not subject to algebraic operations.
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Observe that if ξ and η are independent, then

logϕξ`ηptq “ logϕξptq ` logϕηptq, (36)

and therefore
spν1,...,νkq
ξ`η “ spν1,...,νkq

ξ ` spν1,...,νkq
η . (37)

(It is this property that gives rise to the term “semi-invariant” for spν1,...,νkq
ξ .)

To simplify the formulas and make (34) and (35) look “one-dimensional,” we
introduce the following notation.

If ν “ pν1, . . . , νkq is a vector whose components are nonnegative integers, we
put

ν! “ ν1! ¨ ¨ ¨ νk!, |ν| “ ν1 ` ¨ ¨ ¨ ` νk, tν “ tν1
1 ¨ ¨ ¨ tνk

k .

We also put spνq
ξ “ spν1,...,νkq

ξ , mpvq
ξ “ mpν1,...,νkq

ξ .
Then (34) and (35) can be written

ϕξptq “
ÿ

|ν|≤n

i|ν|

ν!
mpνq

ξ tν ` op|t|nq, (38)

logϕξptq “
ÿ

|ν|≤n

i|ν|

ν!
spνq
ξ tν ` op|t|nq. (39)

The following theorem and its corollaries give formulas that connect moments
and semi-invariants.

Theorem 6. Let ξ “ pξ1, . . . , ξkq˚ be a random vector with E |ξi|n ă 8, i “
1, . . . , k, n ≥ 1. Then for ν “ pν1, . . . , νkq such that |ν| ≤ n

mpνq
ξ “

ÿ
λp1q`¨¨¨`λpqq“ν

1

q!
ν!

λp1q! ¨ ¨ ¨λpqq!

qź
p“1

spλppqq
ξ , (40)

spνq
ξ “

ÿ
λp1q`¨¨¨`λpqq“ν

p´1qq´1

q
ν!

λp1q! ¨ ¨ ¨λpqq!

qź
p“1

mpλppqq
ξ , (41)

where
ř

λp1q`¨¨¨`λpqq“ν indicates summation over all ordered sets of nonnegative
integral vectors λppq, |λppq| ą 0, whose sum is ν.

PROOF. Since
ϕξptq “ expplogϕξptqq,

if we expand the function exp by Taylor’s formula and use (39), we obtain

ϕξptq “ 1 `
nÿ

q“1

1

q!

¨
˝ ÿ

1≤|λ|≤n

i|λ|

λ!
spλq
ξ tλ

˛
‚

q

` op|t|nq. (42)
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Comparing terms in tλ on the right-hand sides of (38) and (42), and using |λp1q| `
¨ ¨ ¨ ` |λpqq| “ |λp1q ` ¨ ¨ ¨ ` λpqq|, we obtain (40).

Moreover,

logϕξptq “ log

„
1 `

ÿ
1≤|λ|≤n

i|λ|

λ!
mpλq

ξ tλ ` op|t|nq
j
. (43)

For small z we have the expansion

logp1 ` zq “
nÿ

q“1

p´1qq´1

q
zq ` opzqq.

Using this in (43) and then comparing the coefficients of tλ with the corresponding
coefficients on the right-hand side of (38), we obtain (41).

[\
Corollary 1. The following formulas connect moments and semi-invariants:

mpνq
ξ “

ÿ
tr1λp1q`¨¨¨`rxλpxq“vu

1

r1! ¨ ¨ ¨ rx!

ν!

pλp1q!qr1 ¨ ¨ ¨ pλpxq!qrx

xź
j“1

rspλpjqq
ξ srj , (44)

spνq
ξ “

ÿ
tr1λp1q`¨¨¨`rxλpxq“νu

p´1qq´1pq ´ 1q!
r1! ¨ ¨ ¨ rx!

ν!

pλp1q!qr1 ¨ ¨ ¨ pλpxq!qrx

xź
j“1

rmpλpjqq
ξ srj , (45)

where
ř

tr1λp1q`¨¨¨`rxλpxq“νu denotes summation over all unordered sets of different

nonnegative integral vectors λpjq, |λpjq| ą 0, and over all ordered sets of positive
integral numbers rj such that r1λp1q ` ¨ ¨ ¨ ` rxλ

pxq “ ν.

To establish (44) we suppose that among all the vectors λp1q, . . . , λpqq that occur
in (40), there are r1 equal to λpi1q, . . . , rx equal to λpixq prj ą 0,
r1 ` ¨ ¨ ¨ ` rx “ qq, where all the λpisq are different. There are q!{pr1! . . . , rx!q dif-
ferent sets of vectors, corresponding (except for order) with the set tλp1q, . . . , λpqqu.
But if two sets, say, tλp1q, . . . , λpqqu and tλ̄p1q, . . . , λ̄pqqu differ only in order, thenśq

p“1 spλppqq
ξ “ śq

p“1 spλ̄ppqq
ξ . Hence if we identify sets that differ only in order, we

obtain (44) from (40).
Formula (45) can be deduced from (41) in a similar way.

Corollary 2. Let us consider the special case when ν “ p1, . . . , 1q. In this case

the moments mpνq
ξ ” E ξ1 ¨ ¨ ¨ ξk, and the corresponding semi-invariants are called

simple.

Formulas connecting simple moments and simple semi-invariants can be read
off from the formulas given above. However, it is useful to have them written in a
different way.

For this purpose, we introduce the following notation.
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Let ξ “ pξ1, . . . , ξkq˚ be a vector, and Iξ “ t1, 2, . . . , ku its set of indices. If
I Ď Iξ, let ξI denote the vector consisting of the components of ξ whose indices
belong to I. Let χpIq be the vector tχ1, . . . , χku for which χi “ 1 if i P I, and
χi “ 0 if i R I. These vectors are in one-to-one correspondence with the sets I Ď Iξ.
Hence we can write

mξpIq “ mpχpIqq
ξ , sξpIq “ spχpIqq

ξ .

In other words, mξpIq and sξpIq are simple moments and semi-invariants of the
subvector ξI of ξ.

In accordance with the definition given in Subsection 3 of Sect. 1, Chap. 1, a
decomposition of a set I is an unordered collection of disjoint nonempty sets Ip such
that

ř
p Ip “ I.

In terms of these definitions, we have the formulas

mξpIq “
ÿ

Σq
p“1Ip“I

qź
p“1

sξpIpq, (46)

sξpIq “
ÿ

Σq
p“1Ip“I

p´1qq´1pq ´ 1q!
qź

p“1

mξpIpq, (47)

where
ř

Σq
p“1Ip“I denotes summation over all decompositions of I, 1 ≤ q ≤ NpIq,

with NpIq being the number of elements of the set I.
We shall derive (46) from (44). If ν “ χpIq and λp1q `¨ ¨ ¨`λpqq “ ν, then λppq “

χpIpq, Ip Ď I, where the λppq are all different, λppq! “ ν! “ 1, and every unordered
set tχpI1q, . . . , χpIqqu is in one-to-one correspondence with the decomposition I “řq

p“1 Ip. Consequently (46) follows from (44).

In a similar way, (47) follows from (45).

Example 4. Let ξ be a random variable pk “ 1q and mn “ mpnq
ξ “ E ξn, sn “ spnq

ξ .
Then (40) and (41) imply the following formulas:

m1 “ s1,
m2 “ s2 ` s21,
m3 “ s3 ` 3s1s2 ` s31,
m4 “ s4 ` 3s22 ` 4s1s3 ` 6s21s2 ` s41,
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

(48)

and

s1 “ m1 “ E ξ,
s2 “ m2 ´ m2

1 “ Var ξ,
s3 “ m3 ´ 3m1m2 ` 2m3

1,
s4 “ m4 ´ 3m2

2 ´ 4m1m3 ` 12m2
1m2 ´ 6m4

1,
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

(49)
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Example 5. Let ξ „ N pm, σ2q. Since, by (9),

logϕξptq “ itm ´ t2σ2

2
,

we have s1 “ m, s2 “ σ2 by (39), and all the semi-invariants, from the third on, are
zero: sn “ 0, n ≥ 3.

We may observe that by Marcinkiewicz’s theorem a function expPptq, where
P is a polynomial, can be a characteristic function only when the degree of that
polynomial is at most 2. It follows, in particular, that the Gaussian distribution is
the only distribution with the property that all its semi-invariants sn are zero from a
certain index onward.

Example 6. If ξ is a Poisson random variable with parameter λ ą 0, then by (11)

logϕξptq “ λpeit ´ 1q.
It follows that

sn “ λ (50)

for all n ≥ 1.

Example 7. Let ξ “ pξ1, . . . , ξnq˚ be a random vector. Then

mξp1q “ sξp1q,
mξp1, 2q “ sξp1, 2q ` sξp1qsξp2q,

mξp1, 2, 3q “ sξp1, 2, 3q ` sξp1, 2qsξp3q ` sξp1, 3qsξp2q (51)

` sξp2, 3qsξp1q ` sξp1qsξp2qsξp3q,
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

These formulas show that the simple moments can be expressed in terms of the
simple semi-invariants in a very symmetric way. If we put ξ1 ” ξ2 ” ¨ ¨ ¨ ” ξk, we
then, of course, obtain (48).

The group-theoretical origin of the coefficients in (48) becomes clear from (51).
It also follows from (51) that

sξp1, 2q “ mξp1, 2q ´ mξp1qmξp2q “ E ξ1ξ2 ´ E ξ1 E ξ2, (52)

i.e., sξp1, 2q is just the covariance of ξ1 and ξ2.

9. Let ξ be a random variable with distribution function F “ Fpxq and characteristic
function ϕptq. Let us suppose that all the moments mn “ E ξn, n ≥ 1 exist.

It follows from Theorem 2 that a characteristic function uniquely determines a
probability distribution. Let us now ask the following question (uniqueness for the
moments problem): Do the moments tmnun≥1 determine the probability distribu-
tion uniquely?
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More precisely, let F and G be distribution functions with the same moments, i.e.

ż 8

´8
xn dFpxq “

ż 8

´8
xn dGpxq (53)

for all integers n ≥ 0. The question is whether F and G must be the same.
In general, the answer is “no.” To see this, consider the distribution F with density

f pxq “
"

ke´αxλ , x ą 0,
0, x ≤ 0,

where α ą 0, 0 ă λ ă 1
2 , and k is determined by the condition

ş8
0

f pxqdx “ 1.
Write β “ α tanλπ and let gpxq “ 0 for x ≤ 0 and

gpxq “ ke´αxλr1 ` ε sinpβxλqs, |ε| ă 1, x ą 0.

It is evident that gpxq ≥ 0. Let us show that

ż 8

0

xne´αxλ sinβxλ dx “ 0 (54)

for all integers n ≥ 0.
For p ą 0 and complex q with Re q ą 0, we have (see [1], Chapter 6, formula

6.1.1) ż 8

0

tp´1e´qt dt “ Γppq
qp

.

Take p “ pn ` 1q{λ, q “ α ` iβ, t “ xλ. Then

ż 8

0

xλtrpn`1q{λs´1ue´pα`iβqxλλxλ´1dx “ λ

ż 8

0

xne´pα`iβqxλ dx

“ λ

ż 8

0

xne´αxλ cosβxλ dx ´ iλ
ż 8

0

xne´αxλ sinβxλ dx

“ Γp n`1
λ q

αpn`1q{λp1 ` i tanλπqpn`1q{λ . (55)

But

p1 ` i tanλπqpn`1q{λ “ pcosλπ ` i sinλπqpn`1q{λpcosλπq´pn`1q{λ

“ eiπpn`1qpcosλπq´pn`1q{λ

“ cosπpn ` 1q ¨ cospλπq´pn`1q{λ,

since sinπpn ` 1q “ 0.
Hence the right-hand side of (55) is real and therefore (54) is valid for all inte-

gral n ≥ 0. Now let Gpxq be the distribution function with density gpxq. It follows
from (54) that the distribution functions F and G have equal moments, i.e., (53)
holds for all integers n ≥ 0.
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We now give some conditions that guarantee the uniqueness of the solution of
the moment problem.

Theorem 7. Let F “ Fpxq be a distribution function and μn “ ş8
´8 |x|ndFpxq. If

lim sup
nÑ8

μ
1{n
n

n
ă 8, (56)

the moments tmnun≥1, where mn “ ş8
´8 xn dFpxq, determine the distribution func-

tion F “ Fpxq uniquely.

PROOF. It follows from (56) and conclusion (7) of Theorem 1 that there is a t0 ą 0
such that, for all |t| ≤ t0, the characteristic function

ϕptq “
ż 8

´8
eitx dFpxq

can be represented in the form

ϕptq “
8ÿ

k“0

pitqk

k!
mk

and consequently the moments tmnun≥1 uniquely determine the characteristic func-
tion ϕptq for |t| ≤ t0.

Take a point s with |s| ≤ t0{2. Then, as in the proof of (15), we deduce from (56)
that

ϕptq “
8ÿ

k“0

pt ´ sqk

k!
ϕpkqpsq

for |t ´ s| ≤ t0, where

ϕpkqpsq “ ik
ż 8

´8
xkeisx dFpxq

is uniquely determined by the moments tmnun≥1. Consequently the moments de-
termine ϕptq uniquely for |t| ≤ 3

2 t0. Continuing this process, we see that tmnun≥1

determines ϕptq uniquely for all t, and therefore also determines Fpxq.
This completes the proof of the theorem.
[\

Corollary 3. The moments uniquely determine the probability distribution if it is
concentrated on a finite interval.

Corollary 4. A sufficient condition for the moment problem to have a unique solu-
tion is that

lim sup
nÑ8

pm2nq1{2n

2n
ă 8. (57)
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For the proof it is enough to observe that the odd moments can be estimated in
terms of the even ones, and then use (56).

Example. Let Fpxq be the normal distribution function,

Fpxq “ 1?
2πσ2

ż x

´8
e´t2{2σ2

dt.

Then m2n`1 “ 0, m2n “ rp2nq!{2nn!sσ2n, and it follows from (57) that these are the
moments only of the normal distribution.

Finally we state, without proof:
Carleman’s test for the uniqueness of the moments problem. ([31], VII.3)

(a) Let tmnun≥1 be the moments of a probability distribution, and let

8ÿ
n“0

1

pm2nq1{2n
“ 8.

Then they determine the probability distribution uniquely.
(b) If tmnun≥1 are the moments of a distribution that is concentrated on r0,8q,

then the solution will be unique if we require only that

8ÿ
n“0

1

pmnq1{2n
“ 8.

10. Let F “ Fpxq and G “ Gpxq be distribution functions with characteristic func-
tions f “ f ptq and g “ gptq, respectively. The following theorem, which we give
without proof, makes it possible to estimate how close F and G are to each other (in
the uniform metric) in terms of the closeness of f and g.

Theorem (Esseen’s Inequality). Let Gpxq have derivative G1pxq with sup |G1pxq| ≤
C. Then for every T ą 0

sup
x

|Fpxq ´ Gpxq| ≤ 2

π

ż T

0

ˇ̌̌
ˇ f ptq ´ gptq

t

ˇ̌̌
ˇ dt ` 24

πT
sup

x
|G1pxq|. (58)

11. We present two tables of characteristic functions ϕptq of some frequently used
probability distributions (see Tables 2.2 and 2.3 of distributions and their parameters
in Subsection 1 of Sect. 3).

12. PROBLEMS

1. Let ξ and η be independent random variables, f pxq “ f1pxq ` if2pxq, gpxq “
g1pxq `ig2pxq, where fkpxq and gkpxq are Borel functions, k “ 1, 2. Show that
if E |f pξq| ă 8 and E |gpηq| ă 8, then

E |f pξqgpηq| ă 8
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Table 2.4

Discrete distributions Characteristic functions

Discrete uniform 1
N

eit

1´eit p1 ´ eitNq
Bernoulli q ` peit

Binomial rq ` peitsn

Poisson exptλpeit ´ 1qu
Geometric p

1´qeit

Negative binomial
”

p
1´qeit

ır

Table 2.5

Distributions having a
density Characteristic functions

Uniform
on ra, bs

eitb´eita

itpb´aq

Normal, or Gaussian exp
!

itm ´ σ2t2

2

)

Gamma p1 ´ itβq´α

Beta Γpα`βq
Γpαq

8ř
k“0

pitqkΓpα`kq
k! Γpα`β`kq Γp1`kq

Exponential λ
λ´it

Two-sided exponential λ2eitα

t2`λ2

Chi-square p1 ´ 2itq´n{2

Student, or t-distribution

?
πΓppn`1q{2q

Γpn{2q
expt´?

nu|t|
22pm´1qpm´1q!

m´1ř
k“0

p2kq!C2k
n´1`kp2?

n|t|qm´1´k,

for integer m “ n`1
2

Cauchy e´θ|t|

and
E f pξqgpηq “ E f pξq ¨ E gpηq.

2. Let ξ “ pξ1, . . . , ξnq˚ and E }ξ}n ă 8, where }ξ} “ `ař
ξ2i . Show that

ϕξptq “
nÿ

k“0

ik

k!
Ept, ξqk ` εnptq}t}n,

where t “ pt1, . . . , tnq˚ and εnptq Ñ 0, t Ñ 0.
3. Prove Theorem 2 for n-dimensional distribution functions F “ Fnpx1, . . . , xnq

and G “ Gnpx1, . . . , xnq.
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4. Let F “ Fpx1, . . . , xnq be an n-dimensional distribution function and ϕ “
ϕpt1, . . . , tnq its characteristic function. Using the notation (12) of Sect. 3, es-
tablish the inversion formula

Ppa, bs “ lim
cÑ8

1

p2πqn

ż c

´c
¨ ¨ ¨

ż c

´c

nź
k“1

e´itkak ´ e´itkbk

itk
ϕpt1, . . . , tnq dt1 ¨ ¨ ¨ dtn.

(We are to suppose that pa, bs is an interval of continuity of Ppa, bs, i.e., for
k “ 1, . . . , n the points ak, bk are points of continuity of the marginal distribu-
tion functions Fkpxkq which are obtained from Fpx1, . . . , xnq by taking all the
variables except xk equal to `8.q

5. Let ϕkptq, k ≥ 1, be characteristic functions, and let the nonnegative numbers
λk, k ≥ 1, satisfy

ř
λk “ 1. Show that

ř
λkϕkptq is a characteristic function.

6. If ϕptq is a characteristic function, are Reϕptq and Im ϕptq characteristic func-
tions?

7. Let ϕ1, ϕ2 and ϕ3 be characteristic functions, and ϕ1ϕ2 “ ϕ1ϕ3. Does it
follow that ϕ2 “ ϕ3?

8. Prove the formulas for characteristic functions given in Tables 2.4 and 2.5.
9. Let ξ be an integral-valued random variable and ϕξptq its characteristic func-

tion. Show that

Ppξ “ kq “ 1

2π

ż π

´π

e´iktϕξptq dt, k “ 0, ˘1, ˘2 . . . .

10. Show that the system of functions
!

1?
2π

eiλn, n “ 0,˘1, . . .
)

forms an or-

thonormal basis in the space L2 “ L2
`r´π, πs, Bpr´π, πsq˘

with Lebesgue
measure μ.

11. In the Bochner–Khinchin theorem the function ϕptq under consideration is
assumed to be continuous. Prove the following result (due to Riesz) showing
to what extent we can get rid of the continuity assumption.
Let ϕ “ ϕptq be a complex-valued Lebesgue measurable function such that
ϕp0q “ 1. Then ϕ “ ϕptq is positive semi-definite if and only if it equals
(Lebesgue almost everywhere on the real line) some characteristic function.

12. Which of the following functions

ϕptq “ e´|t|k

, 0 ≤ k ≤ 2, ϕptq “ e´|t|k

, k ą 2,

ϕptq “ p1 ` |t|q´1, ϕptq “ p1 ` t4q´1,

ϕptq “
#
1 ´ |t|3, |t| ≤ 1,

0, |t| ą 1,
ϕptq “

#
1 ´ |t|, |t| ≤ 1{2,
1{p4|t|q, |t| ą 1{2,

are characteristic functions?
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13. Let ϕptq be the characteristic function of a distribution F “ Fpxq. Let txnu be
the set of discontinuity points of F (ΔFpxnq ” Fpxnq ´ Fpxn´q ą 0). Show
that

lim
TÑ8

1

T

ż T

´T
|ϕptq|2 dt “

ÿ
n≥1

pΔFpxnqq2.

14. The concentration function of a random variable X is

QpX; lq “ sup
xPR

Ptx ≤ X ≤ x ` lu.

Show that:
(a) If X and Y are independent random variables, then

QpX ` Y; lq ≤ minpQpx; lq,QpY; lqq for all l ≥ 0;

(b) There exists x1
l such that QpX; lq “ Ptx1

l ≤ X ≤ x1
l ` lu and the

distribution function of X is continuous if and only if QpX; 0q “ 0.
15. Let pmnqn≥1 be the sequence of moments of a random variable X with distribu-

tion function F “ Fpxq `
mk “ ş8

´8 xk dFpxq˘
. Show that pmnqn≥1 determines

F “ Fpxq uniquely whenever the series
ř8

k“1
mk
k! sk absolutely converges for

some s ą 0.
16. Let ϕptq “ ş8

´8 eitx dFpxq be the characteristic function of F “ Fpxq. Show
that

lim
cÑ8

1

2c

ż c

´c
e´itxϕptq dt “ Fpxq ´ Fpx´q,

lim
cÑ8

1

2c

ż c

´c
|ϕptq|2 dt “

ÿ
xPR

rFpxq ´ Fpx´qs2.

17. Show that every characteristic function ϕptq satisfies the inequaltiy 1´Reϕp2tq
≤ 4r1 ´ Reϕptqs.

18. Suppose a characteristic function ϕptq is such that ϕptq “ 1 ` f ptq ` opt2q,
t Ñ 0, where f ptq “ ´f p´tq. Show that then ϕptq ” 1.

19. Show that the functions

ϕnptq “
eit ´

n´1ř
k“0

pitqk{k!

pitqn{n!

are characteristic functions for any n ≥ 1.
20. Prove that

2

π

ż 8

´8
1 ´ Reϕptq

t2
dt “

ż 8

´8
|x| dFpxq.
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21. Let a characteristic function ϕptq be such that ϕptq “ 1 ` Op|t|αq, t Ñ 0,
where α P p0, 2s. Show that the random variable ξ with characteristic function
ϕptq has then the following property:

Pt|ξ| ą xu “ Opx´αq, x Ñ 8.

22. If ϕptq is a characteristic function, then |ϕptq|2 is also a characteristic function.
23. Let X and Y be independent identically distributed random variables with zero

mean and unit variance. Prove using characteristic functions that if the distri-
bution F of pX ` Yq{?

2 is the same as that of X and Y , then F is the normal
distribution.

24. If ϕ is a characteristic function, then so is eλpϕ´1q for any λ ≥ 0.
25. The Laplace transform of a nonnegative random variable X with distribution

function F is the function pF “ pFpλq defined by

pFpλq “ E e´λX “
ż

r0,8q
e´λx dFpxq, λ ≥ 0.

Prove the following criterion (S. N. Bernstein): a function f “ f pλq on p0,8q
is the Laplace transform of a distribution function F “ Fpxq on r0,8q if and
only if this function is completely monotone (i.e., the derivatives f pnqpλq of
any order n ≥ 0 exist and p´1qnf pnqpλq ≥ 0).

26. Let ϕptq be a characteristic function. Show that so are

ż 1

0

ϕputq du and
ż 8

0

e´uϕputq du.

13 Gaussian Systems

1. Gaussian, or normal, distributions, random variables, processes, and systems play
an extremely important role in probability theory and in mathematical statistics. This
is explained in the first instance by the central limit theorem (Sect. 4 of Chap. 3), of
which the De Moivre–Laplace limit theorem is a special case (Sect. 6 of Chap. 1).
According to this theorem, the normal distribution is universal in the sense that the
distribution of the sum of a large number of random variables or random vectors,
subject to some not very restrictive conditions, is closely approximated by this dis-
tribution.

This is what provides a theoretical explanation of the “law of errors” of applied
statistics, which says that errors of measurement that result from large numbers of
independent “elementary” errors obey the normal distribution.
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A multidimensional Gaussian distribution is specified by a small number of
parameters; this is a definite advantage in using it in the construction of simple
probabilistic models. Gaussian random variables have finite second moments, and
consequently they can be studied by Hilbert space methods. Here it is important
that in the Gaussian case “uncorrelated” is equivalent to “independent,” so that the
results of L2-theory can be significantly strengthened.

2. Let us recall that (see Sect. 8) a random variable ξ “ ξpωq is Gaussian, or nor-
mally distributed, with parameters m and σ2 pξ „ N pm, σ2qq, |m| ă 8, σ2 ą 0,
if its density fξpxq has the form

fξpxq “ 1?
2πσ

e´px´mq2{2σ2

, (1)

where σ “ `?
σ2. (This quantity σ is called the standard deviation of ξ from its

mean value E ξ, cf. Definition 5 in Sect. 4 of Chap. 1.)
As σ Ó 0, the density fξpxq “converges to the δ-function supported at x “ m.” It is

natural to say that ξ is normally distributed with mean m and σ2 “ 0 pξ „ N pm, 0qq
if ξ has the property that Ppξ “ mq “ 1.

We can, however, give a definition that applies both to the nondegenerate pσ2 ą 0q
and the degenerate pσ2 “ 0q cases. Let us consider the characteristic function
ϕξptq ” E eitξ, t P R.

If Ppξ “ mq “ 1, then evidently

ϕξptq “ eitm, (2)

whereas if ξ „ N pm, σ2q, σ2 ą 0,

ϕξptq “ eitm´p1{2qt2σ2

. (3)

It is obvious that when σ2 “ 0 the right-hand sides of (2) and (3) are the same.
It follows, by Theorem 1 of Sect. 12, that the Gaussian random variable with pa-
rameters m and σ2 p|m| ă 8, σ2 ≥ 0q must be the same as the random variable
whose characteristic function is given by (3). The approach based on characteristic
functions is especially useful in the multidimensional case.

Let ξ “ pξ1, . . . , ξnq˚ be a random vector and

ϕξptq “ E eipt,ξq, t “ pt1, . . . , tnq˚ P Rn, (4)

its characteristic function (see Definition 2, Sect. 12).

Definition 1. A random vector ξ “ pξ1, . . . , ξnq˚ is Gaussian, or normally dis-
tributed, if its characteristic function has the form

ϕξptq “ eipt,mq´p1{2qpRt,tq, (5)
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where m “ pm1, . . . ,mnq˚, |mk| ă 8, and R “ }rkl} is a symmetric positive semi-
definite n ˆ n matrix; we use the abbreviation ξ „ N pm,Rq.

This definition immediately makes us ask whether (5) is in fact a characteristic
function. Let us show that it is.

First suppose that R is nonsingular. Then we can define the inverse A “ R
´1 and

the function

f pxq “ |A|1{2

p2πqn{2 expt´ 1
2 pApx ´ mq, px ´ mqqu, (6)

where x “ px1, . . . , xnq˚ and |A| “ detA. This function is nonnegative. Let us show
that ż

Rn

eipt,xqf pxq dx “ eipt,mq´p1{2qpRt,tq,

or equivalently that

In ”
ż

Rn

eipt,x´mq |A|1{2

p2πqn{2 e´p1{2qpApx´mq,px´mqq dx “ e´p1{2qpRt,tq. (7)

Let us make the change of variable

x ´ m “ Ou, t “ Ov,

where O is an orthogonal matrix such that

O˚
RO “ D,

and

D “
¨
˚̋ d1 0

. . .
0 dn

˛
‹‚

is a diagonal matrix with di ≥ 0 (see the proof of the lemma in Sect. 8). Since
|R| “ detR ‰ 0, we have di ą 0, i “ 1, . . . , n. Therefore

|A| “ |R´1| “ d´1
1 ¨ ¨ ¨ d´1

n . (8)

Moreover (for notation, see Subsection 1, Sect. 12)

ipt, x ´ mq ´ 1
2 pApx ´ mq, x ´ mq “ ipOv,Ouq ´ 1

2 pAOu, Ouq
“ ipOvq˚Ou ´ 1

2 pOuq˚ApOuq
“ iv˚u ´ 1

2u˚O˚AOu

“ iv˚u ´ 1
2u˚D´1u.



360 2 Mathematical Foundations of Probability Theory

Together with (9) of Sect. 12 and (8), this yields

In “ p2πq´n{2pd1 ¨ ¨ ¨ dnq´1{2
ż

Rn

exppiv˚u ´ 1
2u˚D´1uq du

“
nź

k“1

p2πdkq´1{2
ż 8

´8
exp

ˆ
ivkuk ´ u2k

2dk

˙
duk “

nź
k“1

expp´ 1
2v2k dkq

“ expp´ 1
2v˚Dvq “ expp´ 1

2v˚O˚
ROvq “ expp´ 1

2 t˚
Rtq “ expp´ 1

2 pRt, tqq.
It also follows from (6) that ż

Rn

f pxq dx “ 1. (9)

Therefore (5) is the characteristic function of a nondegenerate n-dimensional
Gaussian distribution (see Subsection 3, Sect. 3).

Now let R be singular. Take ε ą 0 and consider the positive definite symmetric
matrix R

ε ” R` εE, where E is the identity matrix. Then by what has been proved,

ϕεptq “ exptipt, mq ´ 1
2 pRεt, tqu

is a characteristic function:

ϕεptq “
ż

Rn

eipt,xq dFεpxq,

where Fεpxq “ Fεpx1, . . . , xnq is an n-dimensional distribution function.
As ε Ñ 0,

ϕεptq Ñ ϕptq “ exptipt, mq ´ 1
2 pRt, tqu.

The limit function ϕptq is continuous at p0, . . . , 0q. Hence, by Theorem 1 and Prob-
lem 1 of Sect. 3, Chap. 3, it is a characteristic function.

Thus we have shown that Definition 1 is correct.

3. Let us now discuss the meaning of the vector m and the matrix R “ }rkl} that
appear in (5). Since

logϕξptq “ ipt, mq ´ 1
2 pRt, tq “ i

nÿ
k“1

tkmk ´ 1

2

nÿ
k,l“1

rkltktl, (10)

we find from (35) of Sect. 12 and the formulas that connect the moments and the
semi-invariants that

m1 “ sp1,0,...,0q
ξ “ E ξ1, . . . ,mn “ sp0,...,0,1q

ξ “ E ξn.

Similarly

r11 “ sp2,0,...,0q
ξ “ Var ξ1, r12 “ sp1,1,0,...q

ξ “ Covpξ1, ξ2q,
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and generally
rkl “ Covpξk, ξlq.

Consequently m is the mean-value vector of ξ and R is its covariance matrix.
If R is nonsingular, we can obtain this result in a different way. In fact, in this

case ξ has a density f pxq given by (6). A direct calculation then shows that

E ξk ”
ż

xkf pxq dx “ mk, (11)

Covpξk, ξlq “
ż

pxk ´ mkqpxl ´ mlqf pxq dx “ rkl.

4. Let us discuss some properties of Gaussian vectors.

Theorem 1

(a) The components of a Gaussian vector are uncorrelated if and only if they are
independent.

(b) A vector ξ “ pξ1, . . . , ξnq˚ is Gaussian if and only if, for every vector λ “
pλ1, . . . , λnq˚ P Rn the random variable pξ, λq “ λ1ξ1 ` ¨ ¨ ¨ ` λnξn has a
Gaussian distribution.

PROOF. (a) If the components of ξ “ pξ1, . . . , ξnq˚ are uncorrelated, it follows from
the form of the characteristic function ϕξptq that it is a product of characteristic
functions:

ϕξptq “
nź

k“1

ϕξk ptkq.

Therefore, by Theorem 4 of Sect. 12, the components are independent.
The converse is evident, since independence always implies lack of correlation.
(b) If ξ is a Gaussian vector, it follows from (5) that

E exptitpξ1λ1 ` ¨ ¨ ¨ ` ξnλnqu “ exp

"
it

´ ÿ
λkmk

¯
´ t2

2

´ ÿ
rklλkλl

¯*
, t P R,

and consequently

pξ, λq „ N
´ ÿ

λkmk,
ÿ

rklλkλl

¯
.

Conversely, to say that the random variable pξ, λq “ ξ1λ1`¨ ¨ ¨`ξnλn is Gaussian
means, in particular, that

E eipξ,λq “ exp
!

i Epξ, λq ´ 1
2
Varpξ, λq

)
“ exp

!
i
ř

λk E ξk ´ 1
2

ř
λkλl Covpξk, ξlq

)
.

Since λ1, . . . , λn are arbitrary it follows from Definition 1 that the vector ξ “
pξ1, . . . , ξnq is Gaussian.

This completes the proof of the theorem.
[\
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Remark. Let
`
θ
ξ

˘
be a Gaussian vector with θ “ pθ1, . . . , θkq˚ and ξ“pξ1, . . . , ξlq˚.

If θ and ξ are uncorrelated, i.e., Covpθi, ξjq “ 0, i “ 1, . . . , k; j “ 1, . . . , l, they are
independent.

The proof is the same as for conclusion (a) of the theorem.

Let ξ “ pξ1, . . . , ξnq˚ be a Gaussian vector; let us suppose, for simplicity, that
its mean-value vector is zero. If rankR “ r ă n, then (as was shown in Sect. 11),
there are n ´ r linear relations connecting ξ1, . . . , ξn. We may then suppose that,
say, ξ1, . . . , ξr are linearly independent, and the others can be expressed linearly
in terms of them. Hence all the basic properties of the vector ξ “ pξ1, . . . , ξnq˚
are determined by the first r components pξ1, . . . , ξrq for which the corresponding
covariance matrix is already known to be nonsingular.

Thus we may suppose that the original vector ξ “ pξ1, . . . , ξnq˚ had linearly
independent components and therefore that |R| ą 0.

Let O be an orthogonal matrix that diagonalizes R,

O˚
RO “ D.

As was pointed out in Subsection 3, the diagonal elements of D are positive and
therefore determine the inverse matrix. Put B2 “ D and

β “ B´1O˚ξ.

Then it is easily verified that

E eipt,βq “ E eiβ˚t “ e´p1{2qpEt,tq,

i.e., the vector β “ pβ1, . . . , βnq˚ is a Gaussian vector with components that are
uncorrelated and therefore (by Theorem 1) independent. Then if we write A “ OB
we find that the original Gaussian vector ξ “ pξ1, . . . , ξnq˚ can be represented as

ξ “ Aβ, (12)

where β “ pβ1, . . . , βnq˚ is a Gaussian vector with independent components,
βk „ N p0, 1q. Hence we have the following result. Let ξ “ pξ1, . . . , ξnq˚ be a
vector with linearly independent components such that E ξk “ 0, k “ 1, . . . , n. This
vector is Gaussian if and only if there is a Gaussian vector β “ pβ1, . . . , βnq˚ with
independent components β1, . . . , βn, βk „ N p0, 1q, and a nonsingular matrix A of
order n such that ξ “ Aβ. Here R “ AA˚ is the covariance matrix of ξ.

If |R| ‰ 0, then by the Gram–Schmidt method (see Sect. 11)

ξk “ ξ̂k ` bkεk, k “ 1, . . . , n, (13)
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where, since ε “ pε1, . . . , εkq˚ „ N p0,Eq is a Gaussian vector,

ξ̂k “
k´1ÿ
l“1

pξk, εlqεl, (14)

bk “ }ξk ´ ξ̂k} (15)

and
L tξ1, . . . , ξku “ L tε1, . . . , εku. (16)

We see immediately from the orthogonal decomposition (13) that

ξ̂k “ Epξk | ξk´1, . . . , ξ1q. (17)

From this, with (16) and (14), it follows that in the Gaussian case the conditional
expectation Epξk | ξk´1, . . . , ξ1q is a linear function of pξ1, . . . , ξk´1q:

Epξk | ξk´1, . . . , ξ1q “
k´1ÿ
i“1

aiξi. (18)

(This was proved in Sect. 8 for the case k “ 2.)
Since, according to a remark to Theorem 1 of Sect. 8, Epξk | ξk´1, . . . , ξ1q is an

optimal estimator (in the mean-square sense) for ξk in terms of ξ1, . . . , ξk´1, it
follows from (18) that in the Gaussian case the optimal estimator is linear.

We shall use these results in looking for optimal estimators of θ “ pθ1, . . . , θkq˚
in terms of ξ “ pξ1, . . . , ξlq˚ under the hypothesis that pθ˚, ξ˚q˚ is Gaussian. Let

mθ “ E θ, mξ “ E ξ

be the column-vectors of mean values and

Rθθ ” Covpθ, θq ” }Covpθi, θjq}, 1 ≤ i, j ≤ k,

Rθξ ” Covpθ, ξq ” }Covpθi, ξjq}, 1 ≤ i ≤ k, 1 ≤ j ≤ l,

Rξξ ” Covpξ, ξq ” }Covpξi, ξjq}, 1 ≤ i, j ≤ l,

the covariance matrices. Let us suppose that Rξξ has an inverse. Then we have the
following theorem (cf. Theorem 2 in Sect. 8).

Theorem 2 (Theorem on Normal Correlation). For a Gaussian vector pθ˚, ξ˚q˚,
the optimal estimator Epθ | ξq of θ in terms of ξ, and its error matrix

Δ “ Erθ ´ Epθ | ξqsrθ ´ Epθ | ξqs˚

are given by the formulas

Epθ | ξq “ mθ ` RθξR
´1
ξξ pξ ´ mξq, (19)

Δ “ Rθθ ´ RθξR
´1
ξξ pRθξq˚. (20)
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PROOF. Form the vector

η “ pθ ´ mθq ´ RθξR
´1
ξξ pξ ´ mξq. (21)

We can verify at once that E ηpξ ´ mξq˚ “ 0, i.e., η is not correlated with pξ ´ mξq.
But since pθ˚, ξ˚q˚ is Gaussian, the vector pη˚, ξ˚q˚ is also Gaussian. Hence by
the remark on Theorem 1, η and ξ ´ mξ are independent. Therefore η and ξ are
independent, and consequently Epη | ξq “ E η “ 0. Therefore

Erθ ´ mθ | ξs ´ RθξR
´1
ξξ pξ ´ mξq “ 0,

which establishes (19).
To establish (20) we consider the conditional covariance

Covpθ, θ | ξq ” Erpθ ´ Epθ | ξqqpθ ´ Epθ | ξqq˚ | ξs. (22)

Since θ ´ Epθ | ξq “ η, and η and ξ are independent, we find that

Covpθ, θ | ξq “ Epηη˚ | ξq “ E ηη˚

“ Rθθ ` RθξR
´1
ξξ RξξR

´1
ξξ R

˚
θξ ´ 2RθξR

´1
ξξ RξξR

´1
ξξ R

˚
θξ

“ Rθθ ´ RθξR
´1
ξξ R

˚
θξ.

Since Covpθ, θ | ξq does not depend on “chance,” we have

Δ “ ECovpθ, θ | ξq “ Covpθ, θ | ξq,
and this establishes (20).

[\
Corollary. Let pθ, ξ1, . . . , ξnq˚ be an pn ` 1q-dimensional Gaussian vector, with
ξ1, . . . , ξn independent. Then

Epθ | ξ1, . . . , ξnq “ E θ `
nÿ

i“1

Covpθ, ξiq
Var ξi

pξi ´ E ξiq,

Δ “ Var θ ´
nÿ

i“1

Cov2pθ, ξiq
Var ξi

(cf. (12) and (13) in Sect. 8).

5. Let ξ1, ξ2, . . . be a sequence of Gaussian random vectors that converge in proba-
bility to ξ. Let us show that ξ is also Gaussian.

In accordance with (a) of Theorem 1, it is enough to establish this only for ran-
dom variables.

Let mn “ E ξn, σ
2
n “ Var ξn. Then by Lebesgue’s dominated convergence theo-

rem
lim

nÑ8 eitmn´p1{2qσ2
n t2 “ lim

nÑ8 E eitξn “ E eitξ.
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It follows from the existence of the limit on the left-hand side that there are numbers
m and σ2 such that

m “ lim
nÑ8 mn, σ2 “ lim

nÑ8σ2
n .

Consequently
E eitξ “ eitm´p1{2qσ2t2

i.e., ξ „ N pm, σ2q.
It follows, in particular, that the closed linear manifold L pξ1, ξ2, . . .u generated

by the Gaussian variables ξ1, ξ2, . . . (see Subsection 5, Sect. 11) consists of Gaussian
variables.

6. We now turn to the concept of Gaussian systems in general.

Definition 2. A collection of random variables ξ “ pξαq, where α belongs to some
index set A, is a Gaussian system if the random vector pξα1

, . . . , ξαn q˚ is Gaussian
for every n ≥ 1 and all indices α1, . . . , αn chosen from A.

Let us notice some properties of Gaussian systems.

(a) If ξ “ pξαq, α P A, is a Gaussian system, then every subsystem ξ1 “ pξα1 q,
α1 P A1 Ď A, is also Gaussian.

(b) If ξα, α P A, are independent Gaussian variables, then the system ξ “
pξαq, α P A, is Gaussian.

(c) If ξ “ pξαq, α P A, is a Gaussian system, the closed linear manifold L pξq,
consisting of all variables of the form

řn
i“1 cαiξαi , together with their mean-

square limits, forms a Gaussian system.

Let us observe that the converse of (a) is false in general. For example, let ξ1 and
η1 be independent and ξ1 „ N p0, 1q, η1 „ N p0, 1q. Define the system

pξ, ηq “
" pξ1, |η1|q if ξ1 ≥ 0,

pξ1,´|η1|q if ξ1 ă 0.
(23)

Then it is easily verified that ξ and η are both Gaussian, but pξ, ηq is not.
Let ξ “ pξαqαPA be a Gaussian system with mean-value “vector” m “ pmαq, α P

A, and covariance “matrix” R “ prαβqα,βPA, where mα “ E ξα. Then R is evidently
symmetric prαβ “ rβαq and positive semi-definite in the sense that for every vector
c “ pcαqαPA with values in RA, and only a finite number of nonzero coordinates cα

pRc, cq ”
ÿ
α,β

rαβcαcβ ≥ 0. (24)

We now ask the converse question. Suppose that we are given a parameter set
A “ tαu, a “vector” m “ pmαqαPA and a symmetric positive semi-definite “ma-
trix” R “ prαβqα,βPA. Do there exist a probability space pΩ,F ,Pq and a Gaussian
system of random variables ξ “ pξαqαPA on it, such that
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E ξα “ mα,

Covpξα, ξβq “ rα,β , α, β P A?

If we take a finite set α1, . . . , αn, then for the vector m “ pmα1
, . . . ,mαn q˚ and

the matrix R “ prαβq, α, β “ α1, . . . , αn, we can construct in Rn the Gaussian
distribution Fα1,...,αn px1, . . . , xnq with characteristic function

ϕptq “ exptipt,mq ´ 1

2
pRt, tqu, t “ ptα1,

, . . . , tαn q˚.

It is easily verified that the family

tFα1...,αn px1, . . . , xnq;αi P Au
is consistent. Consequently by Kolmogorov’s theorem (Theorem 1, Sect. 9, and Re-
mark 2 on this) the answer to our question is positive.
7. If A “ t1, 2, . . .u, then in accordance with the terminology of Sect. 5 the system
of random variables ξ “ pξαqαPA is a random sequence and is denoted by ξ “
pξ1, ξ2, . . .q. A Gaussian sequence is completely described by its mean-value vector
m “ pm1,m2, . . .q and covariance matrix R “ }rij}, rij “ Covpξi, ξjq. In particular,
if rij “ σ2

i δij, then ξ “ pξ1, ξ2, . . .q is a Gaussian sequence of independent random
variables with ξi „ N pmi, σ

2
i q, i ≥ 1.

When A “ r0, 1s, r0, 8q, p´8, 8q, . . . , the system ξ “ pξtq, t P A, is a
random process with continuous time.

Let us mention some examples of Gaussian random processes. If we take their
mean values to be zero, their probabilistic properties are completely described by
the covariance matrices }rst}. We write rps, tq instead of rst and call it the covariance
function.

Example 1. If A “ r0,8q and

rps, tq “ minps, tq, (25)

the Gaussian process B “ pBtqt≥0 with this covariance function (see Problem 2) and
B0 ” 0 is a Brownian motion or Wiener process.

Observe that this process has independent increments; that is, for arbitrary t1 ă
t2 ă ¨ ¨ ¨ ă tn the random variables

Bt2 ´ Bt1 , . . . ,Btn ´ Btn´1

are independent. In fact, because the process is Gaussian it is enough to verify only
that the increments are uncorrelated. But if s ă t ă u ă v then

ErBt ´ BssrBv ´ Bus “ rrpt, vq ´ rpt, uqs ´ rrps, vq ´ rps, uqs
“ pt ´ tq ´ ps ´ sq “ 0.
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Remark. The example of the renewal process built constructively (Subsection 4,
Sect. 9) based on a sequence of independent identically distributed random variables
σ1, σ2, . . . , suggests that it may be possible to construct a version of the Brownian
motion in a similar manner.

In fact, there are such constructions using a sequence ξ1, ξ2, . . . of independent
identically distributed standard Gaussian random variables ξi „ N p0, 1q.

For example, form the variables

Bt “
?
2

π

8ÿ
n“1

ξn

n ` 1{2 sinppn ` 1{2qπtq, t P r0, 1s. (26)

The “two series” theorem stated below (Theorem 2 in Sect. 3, Chap. 4, Vol. 2)
implies that the series specifying Bt converges (P-a. s.) for each t P r0, 1s. A more
detailed analysis shows that this series converges (P-a. s.) uniformly and therefore
B “ pBtq0≤t≤1 has (P-a. s.) continuous paths. This process has Gaussian finite-
dimensional distributions, which follows from Theorem 1 (b) and the statement in
Subsection 5 on preserving the Gaussian distribution under taking the limit in proba-
bility for Gaussian random variables. It is not hard to see that the covariance function
of this process is rps, tq “ E BsBt “ minps, tq.

Thus the process B “ pBtq0≤t≤1 satisfies all the requirements specifying the
Brownian motion process, but, what is more, it has (P-a. s.) continuous paths. As a
rule continuity of paths (a desirable property justified by physical applications) is
included in the definition of the Brownian motion. As we see, the process with this
property does exist.

Let us describe one more well-known way of constructing the Brownian motion
based on the Haar functions Hnpxq, x P r0, 1s, n “ 1, 2, . . . , introduced in Subsec-
tion 5 of Sect. 11.

Using them, we construct the Schauder functions Snptq, t P r0, 1s, n “ 1, 2, . . . :

Snptq “
ż t

0

Hnpxq dx. (27)

Then if ξ0, ξ1, ξ2, . . . is a sequence of independent identically distributed random
variables with standard normal distribution, ξi „ N p0, 1q, then the series

Bt “
8ÿ

n“1

ξnSnptq (28)

converges uniformly in t P r0, 1s with probability one. The process B “ pBtq0≤t≤1

is the Brownian motion.

Example 2. The process B0 “ pB0
t q, t P A, with A “ r0, 1s, B0

0 ” 0 and

rps, tq “ minps, tq ´ st (29)

is a conditional Wiener process or a Brownian bridge (observe that since rp1, 1q “ 0
we have PpB0

1 “ 0q “ 1q.
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Example 3. The process X “ pXtq, t P A, with A “ p´8,8q and

rps, tq “ e´|t´s| (30)

is a Gauss–Markov process.

8. We state now another interesting property of the Brownian motion, whose proof
illustrates very well an application of the Borel–Cantelli lemma (Sect. 10), or rather
of Corollary 1 to it.

Theorem 3. Let B “ pBtqt≥0 be the standard Brownian motion. Then, with proba-
bility one,

lim
nÑ8

2nTÿ
k“1

rBk2´n ´ Bpk´1q2´n s2 “ T (31)

for any T ą 0.

PROOF. Without loss of generality we can take T “ 1. Let

Aε
n “

#
ω :

ˇ̌
ˇ̌
ˇ

2nÿ
k“1

pBk2´n ´ Bpk´1q2´n q2 ´ 1

ˇ̌
ˇ̌
ˇ ≥ ε

+
.

Since the random variables Bk2´n ´ Bpk´1q2´n are Gaussian with zero mean and
variance 2´n, we have

Var

˜
2nÿ

k“1

pBk2´n ´ Bpk´1q2´n q2
¸

“ 2´n`1.

Hence, by Chebyshev’s inequality, PpAε
nq ≤ ε´22´n`1, and therefore

8ÿ
n“1

PpAε
nq ≤ ε´2

8ÿ
n“1

2´n`1 “ 2ε´2 ă 8. (32)

The required statement (31) follows from this bound and Corollary 1 to the Borel–
Cantelli lemma (Sect. 10). [\
9. PROBLEMS

1. Let ξ1, ξ2, ξ3 be independent Gaussian random variables, ξi „ N p0, 1q. Show
that

ξ1 ` ξ2ξ3a
1 ` ξ23

„ N p0, 1q.

(In this case we encounter the interesting problem of describing the nonlinear
transformations of independent Gaussian variables ξ1, . . . , ξn whose distribu-
tions are still Gaussian.)

2. Show that the “matrices” R “ prps, tqqs,tPA specified by the functions rps, tq in
(25), (29), and (30) are positive semi-definite.
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3. Let A be an m ˆ n matrix. An n ˆ m matrix Ab is a pseudoinverse of A if there
are matrices U and V such that

AAbA “ A, Ab “ UA˚ “ A˚V.

Show that Ab exists and is unique.
4. Show that (19) and (20) in the theorem on normal correlation remain valid

when Rξξ is singular provided that R´1
ξξ is replaced by R

b
ξξ .

5. Let pθ, ξq “ pθ1, . . . , θk; ξ1, . . . , ξlq˚ be a Gaussian vector with nonsingular
matrix Δ ” Rθθ ´ R

b
ξξR

˚
θξ. Show that the distribution function

Ppθ ≤ a | ξq “ Ppθ1 ≤ a1, . . . , θk ≤ ak | ξq
has (P-a. s.) the density ppa1, . . . , ak | ξq defined by

|Δ´1{2|
p2πqk{2 exp

� ´ 1
2 pa ´ Epθ | ξqq˚Δ´1pa ´ Epθ | ξqq(

.

6. (S. N. Bernstein). Let ξ and η be independent identically distributed random
variables with finite variances. Show that if ξ ` η and ξ ´ η are independent,
then ξ and η are Gaussian.

7. Mercer’s theorem. Let r “ rps, tq be a continuous covariance function on
ra, bs ˆ ra, bs, where ´8 ă a ă b ă 8. Prove that the equation

λ

ż b

a
rps, tquptq dt “ upsq, a ≤ s ≤ b,

has infinitely many values λk ą 0 and the corresponding system of continuous
solutions tuk, k ≥ 1u, which form a complete orthonormal system in L2pa, bq,
such that

rps, tq “
8ÿ

k“1

ukpsqukptq
λk

,

where the series converges absolutely and uniformly on ra, bs ˆ ra, bs.
8. Let X “ tXt, t ≥ 0u be a Gaussian process with E Xt “ 0 and covariance func-

tion rps, tq “ e´|t´s|, s, t ≥ 0. Let 0 ă t1 ă ¨ ¨ ¨ ă tn and let ft1,...,tn px1, . . . , xnq
be the density of Xt1 , . . . ,Xtn . Prove that

ft1,...,tn px1, . . . , xnq “
«

p2πqn
nź

i“2

´
1 ´ e2pti´1´tiq

¯ff´1{2

ˆ exp

"
´x21

2
´ 1

2

nÿ
i“2

pxi ´ epti´1´tiqxi´1q2
1 ´ e2pti´1´tiq

*
.
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9. Let f “ tfn, n ≥ 1u Ă L2p0, 1q be a complete orthonormal system and pξnq
independent identically distributed N p0, 1q-random variables. Show that Bt “ř

n≥1 ξn
şt
0

fnpuq du is the Brownian motion process.
10. Prove that for Gaussian systems pξ, η1, . . . , ηnq the conditional expectations

Epξ | η1, . . . , ηnq are the same as the conditional expectations pEpξ | η1, . . . , ηnq
in the wide sense.

11. Let pξ, η1, . . . , ηkq be a Gaussian system. Determine the structure of the con-
ditional moments Epξn | η1, . . . , ηkq, n ≥ 1 (as functions of η1, . . . , ηk).

12. Let X “ pXkq1≤k≤n and Y “ pYkq1≤k≤n be Gaussian random sequences with
E Xk “ E Yk, VarXk “ Var Yk, 1 ≤ k ≤ n, and

CovpXk,Xlq ≤ CovpYk, Ylq, 1 ≤ k, l ≤ n.

Prove Slepyan’s inequality:

P
!

sup
1≤k≤n

Xk ă x
)
≤ P

!
sup

1≤k≤n
Yk ă x

)
, x P R.

13. Prove that if B˝ “ pBt̋ q0≤t≤1 is a Brownian bridge, then the process B “
pBtqt≥0 with Bt “ p1 ` tqB˝

t{p1`tq is a Brownian motion.
14. Verfy that if B “ pBtqt≥0 is a Brownian motion, then so are the following

processes:

Bp1q
t “ ´Bt;

Bp2q
t “ tB1{t, t ą 0, and Bp2q

0 “ 0;

Bp3q
t “ Bt`s ´ Bs, s ą 0;

Bp4q
t “ BT ´ BT´t for 0 ≤ t ≤ T, T ą 0;

Bp5q
t “ 1

a
Ba2t, a ą 0 (automodelling property).

15. For a Gaussian sequence X “ pXkq1≤k≤n denote m “ max1≤k≤n E Xk and
σ2 “ max1≤k≤n VarXk, and let

P
!
max
1≤k≤n

pXk ´ E Xkq ≥ a
)
≤ 1{2 for some a.

Then the following Borel’s inequality holds:

P
!
max
1≤k≤n

Xk ą x
)
≤ 2Ψ

´x ´ m ´ a
σ

¯
,

where Ψpxq “ p2πq´1{2 ş8
x e´y2{2 dy.
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16. Let pX, Yq be a two-variate Gaussian random variable with E X “ E Y “ 0,
E X2 ą 0, E Y2 ą 0 and correlation coefficient ρ “ E XY?

E X2 E Y2
. Show that

PtXY ă 0u “ 1 ´ 2PtX ą 0,Y ą 0u “ π´1 arccos ρ.

17. Let Z “ XY , where X „ N p0, 1q and PtY “ 1u “ PtY “ ´1u “ 1
2 . Find

the distributions of pairs pX, Zq and pY, Zq and the distribution of X ` Z. Show
that Z „ N p0, 1q and that X and Z are uncorrelated but dependent.

18. Give a detailed proof that the processes pBtq0≤t≤1 defined by (26) and (28) are
Brownian motions.

19. Let Bμ “ pBt ` μtqt≥0 be a Brownian motion with a drift.
(a) Find the distribution of Bμ

t1 ` Bμ
t2 , t1 ă t2.

(b) Find E Bμ
t0Bμ

t1 and E Bμ
t0Bμ

t1Bμ
t2 for t0 ă t1 ă t2.

20. For the process Bμ as in the previous problem, find the conditional distribu-
tions

PpBμ
t2 P ¨ | Bμ

t1q
for t1 ă t2 and t1 ą t2 and

PpBμ
t2 P ¨ | Bμ

t0 ,Bμ
t1q

for t0 ă t1 ă t2.



Chapter 3
Convergence of Probability Measures.
Central Limit Theorem

In the formal construction of a course in the theory of probability, limit theorems appear
as a kind of superstructure over elementary chapters, in which all problems have finite,
purely arithmetical character. In reality, however, the epistemological value of the theory
of probability is revealed only by limit theorems. Moreover, without limit theorems it is
impossible to understand the real content of the primary concept of all our sciences – the
concept of probability.

B. V. Gnedenko and A. N. Kolmogorov,

“Limit Distributions for Sums of Independent Random Variables” [34]

1 Weak Convergence of Probability Measures and Distributions

1. Many of the fundamental results in probability theory are formulated as limit
theorems. Bernoulli’s law of large numbers was formulated as a limit theorem; so
was the de Moivre–Laplace theorem, which can fairly be called the origin of a gen-
uine theory of probability and, in particular, which led the way to numerous inves-
tigations that clarified the conditions for the validity of the central limit theorem.
Poisson’s theorem on the approximation of the binomial distribution by the “Pois-
son” distribution in the case of rare events was formulated as a limit theorem. After
the example of these propositions, and of results on the rate of convergence in the
de Moivre–Laplace and Poisson theorems, it became clear that in probability it is
necessary to deal with various kinds of convergence of distributions, and to establish
the rate of convergence requires the introduction of various “natural” measures of
the distance between distributions.

In the present chapter we shall discuss some general features of the convergence
of probability distributions and of the distance between them. In this section we take
up questions in the general theory of weak convergence of probability measures in
metric spaces. (This is the area to which J. Bernoulli’s law of large numbers, as
well as the de Moivre–Laplace theorem, the progenitor of the central limit theorem,

© Springer Science+Business Media New York 2016
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in Mathematics 95, DOI 10.1007/978-0-387-72206-1 3
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belong.) From Sect. 3, it will become clear that the method of characteristic func-
tions is one of the most powerful means for proving limit theorems on the weak
convergence of probability distributions in Rn. In Sect. 7, we consider questions of
metrizability of weak convergence. Then, in Sect. 9, we turn our attention to a differ-
ent kind of convergence of distributions (stronger than weak convergence), namely
convergence in variation. Proofs of the simplest results on the rate of convergence
in the central limit theorem and Poisson’s theorem will be given in Sects. 11 and 12.
In Sect. 13 the results on weak convergence of Sects. 1 and 2 are applied to certain
(conceptually important) problems of mathematical statistics.

2. We begin by recalling the statement of the law of large numbers (Sect. 5 of
Chap. 1) for the Bernoulli scheme.

Let ξ1, ξ2, . . . be a sequence of independent identically distributed random vari-
ables with Ppξi “ 1q “ p, Ppξi “ 0q “ q, p ` q “ 1. In terms of the concept of
convergence in probability (Sect. 10, Chap. 2), Bernoulli’s law of large numbers can
be stated as follows:

Sn

n
PÑ p, n Ñ 8, (1)

where Sn “ ξ1 ` ¨ ¨ ¨ ` ξn. (It will be shown in Chapter 4, Vol. 2 that in fact we have
convergence with probability 1.)

We put

Fnpxq “ P
"

Sn

n
≤ x

*
,

Fpxq “
"
1, x ≥ p,
0, x ă p,

(2)

where Fpxq is the distribution function of the degenerate random variable ξ ” p.
Also let Pn and P be the probability measures on pR,BpRqq corresponding to the
distributions Fn and F.

In accordance with Theorem 2 of Sect. 10, Chap. 2, convergence in probability,

Sn{n PÑ p, implies convergence in distribution, Sn{n dÑ p, which means that

E f

ˆ
Sn

n

˙
Ñ E f ppq, n Ñ 8, (3)

for every function f “ f pxq belonging to the class C of bounded continuous func-
tions on R.

Since

E f

ˆ
Sn

n

˙
“

ż
R

f pxq Pnpdxq, E f ppq “
ż

R
f pxq Ppdxq,

(3) can be written in the form
ż

R
f pxq Pnpdxq Ñ

ż
R

f pxq Ppdxq, f P CpRq, (4)
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or (in accordance with Sect. 6 of Chap. 2) in the form
ż

R
f pxq dFnpxq Ñ

ż
R

f pxq dFpxq, f P C. (5)

In analysis, (4) is called weak convergence (of Pn to P, n Ñ 8) and written
Pn

wÑ P (cf. Definition 2 below). It is also natural to call (5) weak convergence of
Fn to F and denote it by Fn

wÑ F.
Thus we may say that in a Bernoulli scheme

Sn

n
PÑ p ñ Fn

wÑ F. (6)

It is also easy to see from (1) that, for the distribution functions defined in (2),

Fnpxq Ñ Fpxq, n Ñ 8,

for all points x P R except for the single point x “ p, where Fpxq has a discontinuity.
This shows that weak convergence Fn Ñ F does not imply pointwise conver-

gence of Fnpxq to Fpxq as n Ñ 8, for all points x P R. However, it turns out that,
both for Bernoulli schemes and for arbitrary distribution functions, weak conver-
gence is equivalent (see Theorem 2 below) to “convergence in general” in the sense
of the following definition.

Definition 1. A sequence of distribution functions tFnu, defined on the real line,
converges in general to the distribution function F (notation: Fn ñ F) if, as n Ñ 8,

Fnpxq Ñ Fpxq, x P CpFq,
where CpFq is the set of points of continuity of F “ Fpxq.

For Bernoulli schemes, F “ Fpxq is degenerate, and it is easy to see (see Prob-
lem 7 of Sect. 10, Chap. 2) that

pFn ñ Fq ñ
ˆ

Sn

n
PÑ p

˙
.

Therefore, taking account of Theorem 2 below,
ˆ

Sn

n
PÑ p

˙
ñ pFn

wÑ Fq ô pFn ñ Fq ñ
ˆ

Sn

n
PÑ p

˙
(7)

and consequently the law of large numbers can be considered as a theorem on the
weak convergence of the distribution functions defined in (2).
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Let us write

Fnpxq “ P
"

Sn ´ np?
npq

≤ x

*
,

Fpxq “ 1?
2π

ż x

´8
e´u2{2du.

(8)

The de Moivre–Laplace theorem (Sect. 6, Chap. 1) states that Fnpxq Ñ Fpxq for all
x P R, and consequently Fn ñ F. Since, as we have observed, weak convergence
Fn

wÑ F and convergence in general, Fn ñ F, are equivalent, we may therefore say
that the de Moivre–Laplace theorem is also a theorem on the weak convergence of
the distribution functions defined by (8).

These examples justify the concept of weak convergence of probability measures
that will be introduced below in Definition 2. Although, on the real line, weak con-
vergence is equivalent to convergence in general of the corresponding distribution
functions, it is preferable to use weak convergence from the beginning. This is be-
cause in the first place it is easier to work with, and in the second place it remains
useful in more general spaces than the real line, and in particular for metric spaces,
including the especially important spaces Rn, R8, C, and D (see Sect. 3 of Chap-
ter 2).

3. Let pE,E , ρq be a metric space with metric ρ “ ρpx, yq and σ-algebra E of Borel
subsets generated by the open sets, and let P, P1,P2, . . . be probability measures
on pE,E , ρq.

Definition 2. A sequence of probability measures tPnu converges weakly to the
probability measure P (notation: Pn

wÑ P) if
ż

E
f pxq Pnpdxq Ñ

ż
E

f pxq Ppdxq (9)

for every function f “ f pxq in the class CpEq of continuous bounded functions
on E.

Definition 3. A sequence of probability measures tPnu converges in general to the
probability measure P (notation: Pn ñ P) if

PnpAq Ñ PpAq (10)

for every set A of E for which
PpBAq “ 0. (11)

(Here BA denotes the boundary of A:

BA “ rAs X rAs,
where rAs is the closure of A.)
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The following fundamental theorem shows the equivalence of the concepts of
weak convergence and convergence in general for probability measures, and con-
tains still other equivalent statements.

Theorem 1. The following statements are equivalent.

(I) Pn
wÑ P,

(II) lim sup PnpAq ≤ PpAq, A closed,
(III) lim inf PnpAq ≥ PpAq, A open,
(IV) Pn ñ P.

PROOF. (I)ñ(II). Let A be closed and

f εA pxq “
„
1 ´ ρpx,Aq

ε

j`
, ε ą 0,

where
ρpx,Aq “ inftρpx, yq : y P Au, rxs` “ maxr0, xs.

Let us also put
Aε “ tx : ρpx,Aq ă εu

and observe that Aε Ó A as ε Ó 0.
Since f εA pxq is bounded, continuous, and satisfies

PnpAq “
ż

E
IApxq Pnpdxq ≤

ż
E

f εA pxq Pnpdxq,

we have

lim sup
n

PnpAq ≤ lim sup
n

ż
E

f εA pxq Pnpdxq

“
ż

E
f εA pxq Ppdxq ≤ PpAεq Ó PpAq, ε Ó 0,

which establishes the required implication.
The implications (II) ñ pIIIq and (III) ñ pIIq become obvious if we take the

complements of the sets concerned.
(III) ñ pIVq. Let A0 “ AzBA be the interior, and rAs the closure, of A. Then

from (II), (III), and the hypothesis PpBAq “ 0, we have

lim sup
n

PnpAq ≤ lim sup
n

PnprAsq ≤ PprAsq “ PpAq,
lim inf

n
PnpAq ≥ lim inf

n
PnpA0q ≥ PpA0q “ PpAq,

and therefore PnpAq Ñ PpAq for every A such that PpBAq “ 0.
pIVq Ñ pIq. Let f “ f pxq be a bounded continuous function with |f pxq| ≤ M.

We put
D “ tt P R : Ptx : f pxq “ tu ‰ 0u
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and consider a decomposition Tk “ pt0, t1, . . . , tkq of r´M, Ms:
´M “ t0 ă t1 ă ¨ ¨ ¨ ă tk “ M, k ≥ 1,

with ti R D, i “ 0, 1, . . ., k. (Observe that D is at most countable since the sets
f ´1ttu are disjoint and P is finite.)

Let Bi “ tx : ti ≤ f pxq ă ti`1u. Since f pxq is continuous and therefore the set
f ´1pti, ti`1q is open, we have BBi Ď f ´1ttiu Y f ´1tti`1u. The points ti, ti`1 R D;
therefore PpBBiq “ 0 and, by (IV),

k´1ÿ
i“0

ti PnpBiq Ñ
k´1ÿ
t“0

ti PpBiq. (12)

But

ˇ̌
ˇ̌ż

E
f pxq Pnpdxq ´

ż
E

f pxq Ppdxq
ˇ̌
ˇ̌ ≤

ˇ̌
ˇ̌
ˇ
ż

E
f pxq Pnpdxq ´

k´1ÿ
i“0

ti PnpBiq
ˇ̌
ˇ̌
ˇ

`
ˇ̌
ˇ̌
ˇ
k´1ÿ
i“0

ti PnpBiq ´
k´1ÿ
i“0

ti PpBiq
ˇ̌
ˇ̌
ˇ

`
ˇ̌
ˇ̌
ˇ
k´1ÿ
i“0

ti PpBiq ´
ż

E
f pxq Ppdxq

ˇ̌
ˇ̌
ˇ

≤ 2 max
0≤i≤k´1

pti`1 ´ tiq

`
ˇ̌
ˇ̌
ˇ
k´1ÿ
i“0

ti PnpBiq ´
k´1ÿ
i“0

ti PpBiq
ˇ̌
ˇ̌
ˇ ,

whence, by (12), since the Tk pk ≥ 1q are arbitrary,

lim
n

ż
E

f pxq Pnpdxq “
ż

E
f pxq Ppdxq.

This completes the proof of the theorem. [\
Remark 1. The functions f pxq “ IApxq and f εA pxq that appear in the proof that pIq ñ
pIIq are respectively upper semicontinuous and uniformly continuous. Hence it is
easy to show that each of the conditions of the theorem is equivalent to one of the
following:

(V)
ş

E f pxq Pnpdxq Ñ ş
E f pxq Ppdxq for all bounded uniformly continuous f pxq;

(VI)
ş

E f pxq Pnpdxq Ñ ş
E f pxq Ppdxq for all bounded functions satisfying the Lip-

schitz condition (see Lemma 2 in Sect. 7);
(VII) lim sup

ş
E f pxq Pnpdxq ≤ ş

E f pxq Ppdxq for all bounded f pxq that are upper
semicontinuous plim sup f pxnq ≤ f pxq, xn Ñ xq;

(VIII) lim inf
ş

E f pxq Pnpdxq ≥ ş
E f pxq Ppdxq for all bounded f pxq that are lower

semicontinuous plim infn f pxnq ≥ f pxq, xn Ñ xq.
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Remark 2. Theorem 1 admits a natural generalization to the case when the proba-
bility measures P and Pn defined on pE,E , ρq are replaced by arbitrary (not nec-
essarily probability) finite measures μ and μn. For such measures we can introduce
weak convergence μn

wÑ μ and convergence in general μn ñ μ and, just as in
Theorem 1, we can establish the equivalence of the following conditions:

(I˚) μn
wÑ μ;

(II˚) lim supμnpAq ≤ μpAq, where A is closed and μnpEq Ñ μpEq;
(III˚) lim inf μnpAq ≥ μpAq, where A is open and μnpEq Ñ μpEq;
(IV˚) μn ñ μ.

Each of these is equivalent to any of (V˚)–(VIII˚), which are (V)–(VIII) with Pn

and P replaced by μn and μ.

4. Let pR,BpRqq be the real line with the system BpRq of Borel sets generated by
the Euclidean metric ρpx, yq “ |x´y| (compare Remark 2 in Sect. 2, Chapter 2). Let
P and Pn, n ≥ 1, be probability measures on pR,BpRqq and let F and Fn, n ≥ 1,
be the corresponding distribution functions.

Theorem 2. The following conditions are equivalent:

(1) Pn
wÑ P,

(2) Pn ñ P,
(3) Fn

wÑ F,
(4) Fn ñ F.

PROOF. Since (2) ô(1)ô(3), it is enough to show that (2) ô(4).
If Pn ñ P, then in particular

Pnp´8, xs Ñ Pp´8, xs
for all x P R such that Ptxu “ 0. But this means that Fn ñ F.

Now let Fn ñ F. To prove that Pn ñ P it is enough (by Theorem 1) to show that
lim infn PnpAq ≥ PpAq for every open set A.

If A is open, there is a countable collection of disjoint open intervals I1, I2, . . .
(of the form (a, b)) such that A “ ř8

k“1 Ik. Choose ε ą 0 and in each interval
Ik “ pak, bkq select a subinterval I1

k “ pa1
k, b1

ks such that a1
k, b1

k P CpFq and PpIkq ≤
PpI1

kq`ε¨2´k. (Since Fpxq has at most countably many discontinuities, such intervals
I1
k, k ≥ 1, certainly exist.) By Fatou’s lemma,

lim inf
n

PnpAq “ lim inf
n

8ÿ
k“1

PnpIkq

≥
8ÿ

k“1

lim inf
n

PnpIkq ≥
8ÿ

k“1

lim inf
n

PnpI1
kq.

But
PnpI1

kq “ Fnpb1
kq ´ Fnpa1

kq Ñ Fpb1
kq ´ Fpa1

kq “ PpI1
kq.



380 3 Convergence of Probability Measures. Central Limit Theorem

Therefore

lim inf
n

PnpAq ≥
8ÿ

k“1

PpI1
kq ≥

8ÿ
k“1

pPpIkq ´ ε ¨ 2´kq “ PpAq ´ ε.

Since ε ą 0 is arbitrary, this shows that lim infn PnpAq ≥ PpAq if A is open.
This completes the proof of the theorem. [\

5. Let pE,E q be a measurable space. A collection K0pEq Ď E of subsets is a deter-
mining class if whenever two probability measures P and Q on pE,E q satisfy

PpAq “ QpAq for all A P K0pEq
it follows that the measures are identical, i.e.,

PpAq “ QpAq for all A P E .

If pE,E , ρq is a metric space, a collection K1pEq Ď E is a convergence-
determining class if whenever probability measures P,P1,P2, . . . satisfy

PnpAq Ñ PpAq for all A P K1pEq with PpBAq “ 0

it follows that

PnpAq Ñ PpAq for all A P E with PpBAq “ 0.

When pE,E q “ pR,BpRqq, we can take a determining class K0pRq to be the
class of “elementary” sets K “ tp´8, xs, x P Ru (Theorem 1 in Sect. 3, Chap. 2).
It follows from the equivalence of (2) and (4) of Theorem 2 that this class K is also
a convergence-determining class.

It is natural to ask about such determining classes in more general spaces.
For Rn, n ≥ 2, the class K of “elementary” sets of the form p´8, xs “

p´8, x1s ˆ ¨ ¨ ¨ ˆ p´8, xns, where x “ px1, . . . , xnq P Rn, is both a determining
class (Theorem 2 in Sect. 3, Chap. 2) and a convergence-determining class (Prob-
lem 2).

For R8 the cylindrical sets are the “elementary” sets whose probabilities uniquely
determine the probabilities of the Borel sets (Theorem 3 in Sect. 3, Chap. 2). It turns
out that in this case the class of cylindrical sets is also the class of convergence-
determining sets (Problem 3).

We might expect that the cylindrical sets would still constitute determining
classes in more general spaces. However, this is, in general, not the case.

For example, consider the space pC,BpCq, ρq with the uniform metric ρ (see
Subsection 6 in Sect. 2, Chap. 2). Let P be the probability measure concentrated on
the element x “ xptq ” 0, 0 ≤ t ≤ 1, and let Pn, n ≥ 1, be the probability measures
each of which is concentrated on the element x “ xnptq shown in Fig. 35. It is easy
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Fig. 35

to see that PnpAq Ñ PpAq for all cylindrical sets A with PpBAq “ 0. But if we
consider, for example, the set

A “ tα P C : |αptq| ≤ 1
2 , 0 ≤ t ≤ 1u P B0pCq,

then PpBAq “ 0, PnpAq “ 0, PpAq “ 1 and consequently Pn œ P. (B0pCq is the
σ-algebra generated by open sets, see Subsection 6 in Sect. 2 of Chap. 2.)

Therefore the class of cylindrical sets in this case is a determining, but not a
convergence-determining class.

6. PROBLEMS

1. Let us say that a function F “ Fpxq, defined on Rm, is continuous at x P Rm

provided that, for every ε ą 0, there is a δ ą 0 such that |Fpxq ´ Fpyq| ă ε for
all y P Rm that satisfy

x ´ δe ă y ă x ` δe,

where e “ p1, . . . , 1q P Rm. Let us say that a sequence of distribution functions
tFnu converges in general to the distribution function F pFn ñ Fq if Fnpxq Ñ
Fpxq for all points x P Rm, where F “ Fpxq is continuous.

Show that the conclusion of Theorem 2 remains valid for Rm, m ą 1. (See
the Remark 1 on Theorem 1.)

2. Show that the class K of “elementary” sets in Rn is a convergence-determining
class.

3. Let E be one of the spaces R8, C, or D. Let us say that a sequence tPnu of
probability measures (defined on the σ-algebra E of Borel sets generated by
the open sets) converges in general in the sense of finite-dimensional distribu-

tions to the probability measure P (notation: Pn
fñ P) if PnpAq Ñ PpAq, n Ñ

8, for all cylindrical sets A with PpBAq “ 0.



382 3 Convergence of Probability Measures. Central Limit Theorem

For R8, show that

pPn
fñ Pq ô pPn ñ Pq.

Does this conclusion hold for C and D?
4. Let F and G be distribution functions on the real line and let

LpF,Gq “ inf th ą 0: Fpx ´ hq ´ h ≤ Gpxq ≤ Fpx ` hq ` hu
be the Lévy distance (between F and G). Show that convergence in general is
equivalent to convergence in the Lévy metric:

pFn ñ Fq ô pLpFn,Fq Ñ 0q.
5. Let Fn ñ F and let F be continuous. Show that in this case Fnpxq converges

uniformly to Fpxq:

sup
x

|Fnpxq ´ Fpxq| Ñ 0, n Ñ 8.

6. Prove the statement in Remark 1 on Theorem 1.
7. Establish the equivalence of (I˚)–(IV˚) as stated in Remark 2 on Theorem 1.
8. Show that Pn

wÑ P if and only if every subsequence tPn1 u of tPnu contains a
subsequence tPn2 u such that Pn2

wÑ P.
9. Give an example of probability measures P, Pn on pR,BpRqq, n ≥ 1, such

that Pn
wÑ P, but convergence PnpBq Ñ PpBq need not hold for all Borel sets

B P BpRq.
10. Give an example of distribution functions F “ Fpxq, Fn “ Fnpxq, n ≥ 1, such

that Fn
wÑ F, but supx |Fnpxq ´ Fpxq| Û 0, n Ñ 8.

11. In many handbooks on probability theory the statement (4) ñ (3) of Theo-
rem 2 on convergence of distribution functions Fn, n ≥ 1, to a distribution
function F is related to the names of Helly and Bray. In this connection we
propose to prove the following statements:

(a) Helly–Bray Lemma. If Fn ñ F (see Definition 1), then

lim
n

ż b

a
gpxq dFnpxq “

ż b

a
gpxq dFpxq,

where a and b are continuity points of the distribution function F “
Fpxq and g “ gpxq is a continuous function on ra, bs.

(b) Helly–Bray Theorem. If Fn ñ F and g “ gpxq is a continuous function
on R, then

lim
n

ż 8

´8
gpxq dFnpxq “

ż 8

´8
gpxq dFpxq.
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12. Show that if Fn ñ F and the sequence
´ş |x|b dFnpxq

¯
n≥1

is bounded for some

b ą 0, then

lim
n

ż
|x|a dFnpxq “

ż
|x|a dFpxq, 0 ≤ a ≤ b,

lim
n

ż
xk dFnpxq “

ż
xk dFpxq for any k “ 1, 2, . . . , rbs, k ‰ b.

13. Let Fn ñ F and m “ medpFq, mn “ medpFnq be the medians of F and Fn

respectively (see Problem 5 in Sect. 4, Chap. 1). Suppose that m and mn are
uniquely defined for all n ≥ 1. Prove that mn Ñ m.

14. Let F be a distribution function that is uniquely determined by its moments
ak “ ş8

´8 xk dFpxq, k “ 1, 2, . . . Let pFnqn≥1 be a sequence of distribution
functions whose moments converge to those of F,

an,k “
ż 8

´8
xk dFnpxq Ñ ak “

ż 8

´8
xk dFpxq, k “ 1, 2, . . .

Show that then Fn ñ F.
15. Prove the following version of the law of large numbers (due to Khinchin): Let

X1,X2, . . . be pairwise independent identically distributed random variables

with a finite expectation E X1 “ m, and let Sn “ X1`¨ ¨ ¨`Xn. Then Sn{n PÑ m.

2 Relative Compactness and Tightness of Families
of Probability Distributions

1. If we are given a sequence of probability measures, then before we can consider
the question of its (weak) convergence to some probability measure, we have of
course to establish whether the sequence converges at all to some measure, or has at
least one convergent subsequence.

For example, the sequence tPnu, where P2n “ P, P2n`1 “ Q, and P and Q are
different probability measures, is evidently not convergent, but has the two conver-
gent subsequences tP2nu and tP2n`1u.

It is easy to construct a sequence tPnu of probability measures Pn, n ≥ 1, that
not only fails to converge, but contains no convergent subsequences at all. All that
we have to do is to take Pn, n ≥ 1, to be concentrated at tnu (that is, Pntnu “ 1q.
In fact, since lim

n
Pnpa, bs “ 0 whenever a ă b, a limit measure would have to be

identically zero, contradicting the fact that 1 “ PnpRq Û 0, n Ñ 8. It is interesting
to observe that in this example the corresponding sequence tFnu of distribution
functions,

Fnpxq “
"
1, x ≥ n,
0, x ă n,
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is evidently convergent: for every x P R,

Fnpxq Ñ Gpxq ” 0.

However, the limit function G “ Gpxq is not a distribution function (in the sense of
Definition 1 of Sect. 3, Chap. 2).

This instructive example shows that the space of distribution functions is not
compact. It also shows that if a sequence of distribution functions is to converge
to a limit that is also a distribution function, we must have some conditions that
will prevent mass from “escaping to infinity.” (See in this connection Problem 3 in
Sect. 3.)

After these introductory remarks, which illustrate the kinds of difficulty that can
arise, we turn to the basic definitions.

2. Let us suppose that all measures are defined on the metric space pE,E , ρq.

Definition 1. A family of probability measures P “ tPα;α P Au is relatively
compact if every sequence of measures from P contains a subsequence which
converges weakly to a probability measure.

We emphasize that in this definition the limit measure is to be a probability mea-
sure, although it need not belong to the original class P . (This is why the word
“relatively” appears in the definition.)

It is often far from simple to verify that a given family of probability measures is
relatively compact. Consequently it is desirable to have simple and useable tests for
this property. We need the following definitions.

Definition 2. A family of probability measures P “ tPα;α P Au is tight if, for
every ε ą 0, there is a compact set K Ď E such that

sup
αPA

PαpEzKq ≤ ε. (1)

Definition 3. A family of distribution functions F “ tFα;α P Au defined on
Rn, n ≥ 1, is relatively compact (or tight) if the same property is possessed by
the family P “ tPα;α P Au of probability measures, where Pα is the measure
constructed from Fα.

3. The following result is fundamental for the study of weak convergence of proba-
bility measures.

Theorem 1 (Prokhorov’s Theorem). Let P “ tPα;α P Au be a family of proba-
bility measures defined on a complete separable metric space pE,E , ρq. Then P is
relatively compact if and only if it is tight.
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PROOF. We shall give the proof only when the space is the real line. (The proof
can be carried over (see [9], [76]), almost unchanged, to arbitrary Euclidean spaces
Rn, n ≥ 2. Then the theorem can be extended successively to R8, to σ-compact
spaces; and finally to general complete separable metric spaces, by reducing each
case to the preceding one.)

Necessity. Let the family P “ tPα;α P Au of probability measures defined on
pR,BpRqq be relatively compact but not tight. Then there is an ε ą 0 such that for
every compact set K Ď R

sup
α

PαpRzKq ą ε,

and therefore, for each interval I “ pa, bq,

sup
α

PαpRzIq ą ε.

It follows that for every interval In “ p´n, nq, n ≥ 1, there is a measure Pαn such
that

Pαn pRzInq ą ε.

Since the original family P is relatively compact, we can select from tPαn un≥1 a

subsequence tPαnk
u such that Pαnk

wÑ Q, where Q is a probability measure.
Then, by the equivalence of conditions (I) and (II) in Theorem 1 of Sect. 1, we

have
lim sup

kÑ8
Pαnk

pRzInq ≤ QpRzInq (2)

for every n ≥ 1. But QpRzInq Ó 0, n Ñ 8, and the left side of (2) exceeds ε ą 0.
This contradiction shows that relatively compact families are tight.

To prove the sufficiency we need a general result (Helly’s theorem) on the sequen-
tial compactness of families of generalized distribution functions (Subsection 2 of
Sect. 3, Chap. 2).

Let I “ tGu be the collection of generalized distribution functions G “ Gpxq
that satisfy:

(1) Gpxq is nondecreosing;
(2) 0 ≤ Gp´8q, Gp`8q ≤ 1;
(3) Gpxq is continuous on the right.

Then I clearly contains the class of distribution functions F “ tFu for which
Fp´8q “ 0 and Fp`8q “ 1.

Theorem 2 (Helly’s Theorem). The class I “ tGu of generalized distribution
functions is sequentially compact, i.e., for every sequence tGnu of functions from
I we can find a function G P I and a subsequence tnku Ď tnu such that

Gnk pxq Ñ Gpxq, k Ñ 8,

for every point x of the set CpGq of points of continuity of G “ Gpxq.
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PROOF. Let T “ tx1, x2, . . .u be a countable dense subset of R. Since the sequence

of numbers tGnpx1qu is bounded, there is a subsequence N1 “ tnp1q
1 , np1q

2 , . . .u such
that G

np1q
i

px1q approaches a limit g1 as i Ñ 8. Then we extract from N1 a subse-

quence N2 “ tnp2q
1 , np2q

2 , . . .u such that G
np2q

i
px2q approaches a limit g2 as i Ñ 8;

and so on.
Define a function GTpxq on the set T Ď R by

GTpxiq “ gi, xi P T,

and consider the “Cantor” diagonal sequence N “ tnp1q
1 , np2q

2 , . . .u. Then, for each
xi P T , as m Ñ 8, we have

G
npmq

m
pxiq Ñ GTpxiq.

Finally, let us define G “ Gpxq for all x P R by putting

Gpxq “ inftGTpyq : y P T, y ą xu. (3)

We claim that G “ Gpxq is the required function and G
npmq

m
pxq Ñ Gpxq at all points

x of continuity of G.
Since all the functions Gn under consideration are nondecreasing, we have

G
npmq

m
pxq ≤ G

npmq
m

pyq for all x and y that belong to T and satisfy the inequality x ≤ y.
Hence GTpxq ≤ GTpyq for such x and y. It follows from this and (3) that G “ Gpxq
is nondecreasing.

Now let us show that it is continuous on the right. Let xk Ó x and d “ limk Gpxkq.
Clearly Gpxq ≤ d, and we have to show that actually Gpxq “ d. Suppose the con-
trary, that is, let Gpxq ă d. It follows from (3) that there is a y P T, x ă y,
such that GTpyq ă d. But x ă xk ă y for sufficiently large k, and therefore
Gpxkq ≤ GTpyq ă d and limGpxkq ă d, which contradicts d “ limk Gpxkq. Thus
we have constructed a function G that belongs to I .

We now establish that G
npmq

m
px0q Ñ Gpx0q for every x0 P CpGq.

If x0 ă y P T , then

lim sup
m

G
npmq

m
px0q ≤ lim sup

m
G

npmq
m

pyq “ GTpyq,

whence

lim sup
m

G
npmq

m
px0q ≤ inftGTpyq : y ą x0, y P Tu “ Gpx0q. (4)

On the other hand, let x1 ă y ă x0, y P T . Then

Gpx1q ≤ GTpyq “ lim
m

G
npmq

m
pyq “ lim inf

m
G

npmq
m

pyq ≤ lim inf
m

G
npmq

m
px0q.
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Hence if we let x1 Ò x0 we find that

Gpx0´q ≤ lim inf
m

G
npmq

m
px0q. (5)

But if Gpx0´q “ Gpx0q then (4) and (5) imply that G
npmq

m
px0q Ñ Gpx0q,

m Ñ 8.
This completes the proof of the theorem.
[\
We can now complete the proof of Theorem 1.

Sufficiency. Let the family P be tight and let tPnu be a sequence of probability
measures from P . Let tFnu be the corresponding sequence of distribution functions.

By Helly’s theorem, there are a subsequence tFnk u Ď tFnu and a generalized
distribution function G P I such that Fnk pxq Ñ Gpxq for x P CpGq. Let us show
that because P was assumed tight, the function G “ Gpxq is in fact a genuine
distribution function pGp´8q “ 0, Gp`8q “ 1q.

Take ε ą 0, and let I “ pa, bs be the interval for which

sup
n

PnpRzIq ă ε,

or, equivalently,
1 ´ ε ≤ Pnpa, bs, n ≥ 1.

Choose points a1, b1 P CpGq such that a1 ă a, b1 ą b. Then 1 ´ ε ≤ Pnk pa, bs ≤
Pnk pa1, b1s “ Fnk pb1q ´ Fnk pa1q Ñ Gpb1q ´ Gpa1q. It follows that Gp`8q ´
Gp´8q “ 1, and since 0 ≤ Gp´8q ≤ Gp`8q ≤ 1, we have Gp´8q “ 0
and Gp`8q “ 1.

Therefore the limit function G “ Gpxq is a distribution function and Fnk ñ
G. Together with Theorem 2 of Sect. 1 this shows that Pnk

wÑ Q, where Q is the
probability measure corresponding to the distribution function G.

This completes the proof of Theorem 1. [\
4. PROBLEMS

1. Carry out the proofs of Theorems 1 and 2 for Rn, n ≥ 2.
2. Let Pα be a Gaussian measure on the real line, with parameters mα and

σ2
α, α P A. Show that the family P “ tPα;α P Au is tight if and only if

|mα| ≤ a, σ2
α ≤ b, α P A.

3. Construct examples of tight and nontight families P “ tPα;α P Au of prob-
ability measures defined on pR8,BpR8qq.

4. Let P be a probability measure on a metric space pE,E , ρq. The measure P is
said to be tight (cf. Definition 2), if for any ε ą 0 there is a compact set K Ď E
such that PpKq ≥ 1 ´ ε. Prove the following assertion (“Ulam’s theorem”):
Each probability measure on a Polish space (i.e., complete separable metric
space) is tight.
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5. Let X “ tXα;α P Au be a family of random vectors (Xα P Rd, α P A) such
that supα E }Xα}r ă 8 for some r ą 0. Show that the family P “ tPα;α P
Au of distributions Pα “ Law pXαq is tight.

3 Proof of Limit Theorems by the Method of Characteristic
Functions

1. The proofs of the first limit theorems of probability theory—the law of large
numbers, and the de Moivre-Laplace and Poisson theorems for Bernoulli schemes—
were based on direct analysis of the distribution functions Fn, which are expressed
rather simply in terms of binomial probabilities. (In the Bernoulli scheme, we are
adding random variables that take only two values, so that in principle we can find
Fn explicitly.) However, it is practically impossible to apply a similar direct method
to the study of more complicated random variables.

The first step in proving limit theorems for sums of arbitrarily distributed random
variables was taken by Chebyshev. The inequality that he discovered, and which is
now known as Chebyshev’s inequality, not only makes it possible to give an ele-
mentary proof of James Bernoulli’s law of large numbers, but also lets us establish
very general conditions for this law to hold, when stated in the form

P
"ˇ̌

ˇ̌Sn

n
´ E Sn

n

ˇ̌
ˇ̌ ≥ ε

*
Ñ 0, n Ñ 8, every ε ą 0, (1)

for sums Sn “ ξ1 ` ¨ ¨ ¨ ` ξn, n ≥ 1, of independent random variables. (See Prob-
lem 2.)

Furthermore, Chebyshev created (and Markov perfected) the “method of mo-
ments” which made it possible to show that the conclusion of the de Moivre-Laplace
theorem, written in the form

P
"

Sn ´ E Sn?
Var Sn

≤ x

*
Ñ 1?

2π

ż x

´8
e´u2{2du p“ Φpxqq, (2)

is “universal,” in the sense that it is valid under very general hypotheses concerning
the nature of the random variables. For this reason it is known as the Central Limit
Theorem of probability theory.

Somewhat later Lyapunov proposed a different method for proving the central
limit theorem, based on the idea (which goes back to Laplace) of the characteristic
function of a probability distribution. Subsequent developments have shown that
Lyapunov’s method of characteristic functions is extremely effective for proving
the most diverse limit theorems. Consequently it has been extensively developed
and widely applied.

In essence, the method is as follows.
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2. We already know (Chap. 2, Sect. 12) that there is a one-to-one correspondence
between distribution functions and characteristic functions. Hence we can study the
properties of distribution functions by using the corresponding characteristic func-
tions. It is a fortunate circumstance that weak convergence Fn

wÑ F of distributions
is equivalent to pointwise convergence ϕn Ñ ϕ of the corresponding characteristic
functions. Namely, we have the following result, which provides the basic method
of proving theorems on weak convergence for distributions on the real line.

Theorem 1 (Continuity Theorem). Let tFnu be a sequence of distribution functions
Fn “ Fnpxq, x P R, and let tϕnu be the corresponding sequence of characteristic
functions,

ϕnptq “
ż 8

´8
eitx dFnpxq, t P R.

(1) If Fn
wÑ F, where F “ Fpxq is a distribution function, then ϕnptq Ñ ϕptq, t P R,

where ϕptq is the characteristic function of F “ Fpxq.
(2) If limn ϕnptq exists for each t P R and ϕptq “ limn ϕnptq is continuous at t “ 0,

then ϕptq is the characteristic function of a probability distribution F “ Fpxq,
and

Fn
wÑ F.

The proof of conclusion (1) is an immediate consequence of the definition of
weak convergence, applied to the functions Re eitX and Im eitx.

The proof of (2) requires some preliminary propositions.

Lemma 1. Let tPnu be a tight family of probability measures. Suppose that every
weakly convergent subsequence tPn1 u of tPnu converges to the same probability
measure P. Then the whole sequence tPnu converges to P.

PROOF. Suppose that Pn Û P. Then there is a bounded continuous function f “
f pxq such that ż

R
f pxq Pnpdxq Û

ż
R

f pxq Ppdxq.

It follows that there exist ε ą 0 and an infinite sequence tn1u Ď tnu such that
ˇ̌
ˇ̌ż

R
f pxq Pn1 pdxq ´

ż
R

f pxq Ppdxq
ˇ̌
ˇ̌ ≥ ε ą 0. (3)

By Prokhorov’s theorem (Sect. 2) we can select a subsequence tPn2 u of tPn1 u such
that Pn2

wÑ Q, where Q is a probability measure.
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By the hypotheses of the lemma, Q “ P, and therefore
ż

R
f pxq Pn2 pdxq Ñ

ż
R

f pxq Ppdxq,

which leads to a contradiction with (3). This completes the proof of the lemma.
[\

Lemma 2. Let tPnu be a tight family of probability measures on pR,BpRqq. A nec-
essary and sufficient condition for the sequence tPnu to converge weakly to a prob-
ability measure is that for each t P R the limit limn ϕnptq exists, where ϕnptq is the
characteristic function of Pn:

ϕnptq “
ż

R
eitx Pnpdxq.

PROOF. If tPnu is tight, by Prohorov’s theorem there is a subsequence tPn1 u and
a probability measure P such that Pn1

wÑ P. Suppose that the whole sequence tPnu
does not converge to P pPn

wÛ Pq. Then, by Lemma 1, there is a subsequence tPn2 u
and a probability measure Q such that Pn2

wÑ Q, and P ‰ Q.
Now we use the existence of limn ϕnptq for each t P R. Then

lim
n1

ż
R

eitx Pn1 pdxq “ lim
n2

ż
R

eitx Pn2 pdxq

and therefore ż
R

eitx Ppdxq “
ż

R
eitx Qpdxq, t P R.

But the characteristic function determines the distribution uniquely (Theorem 2,
Sect. 12, Chap. 2). Hence P “ Q, which contradicts the assumption that Pn

wÛ P.
The converse part of the lemma follows immediately from the definition of weak

convergence.
[\
The following lemma estimates the “tails” of a distribution function in terms of

the behavior of its characteristic function in a neighborhood of zero.

Lemma 3. Let F “ Fpxq be a distribution function on the real line and let ϕ “ ϕptq
be its characteristic function. Then there is a constant K ą 0 such that for every
a ą 0 ż

|x|≥1{a
dFpxq ≤ K

a

ż a

0

r1 ´ Reϕptqs dt. (4)
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PROOF. Since Reϕptq “ ş8
´8 cos tx dFpxq, we find by Fubini’s theorem that

1

a

ż a

0

r1 ´ Reϕptqs dt “ 1

a

ż a

0

„ż 8

´8
p1 ´ cos txq dFpxq

j
dt

“
ż 8

´8

„
1

a

ż a

0

p1 ´ cos txq dt

j
dFpxq

“
ż 8

´8

ˆ
1 ´ sin ax

ax

˙
dFpxq

≥ inf
|y|≥1

ˆ
1 ´ sin y

y

˙
¨

ż
|ax|≥1

dFpxq

“ 1

K

ż
|x|≥1{a

dFpxq,

where
1

K
“ inf

|y|≥1

ˆ
1 ´ sin y

y

˙
“ 1 ´ sin 1 ≥ 1

7 ,

so that (4) holds with K “ 7. This establishes the lemma.
[\
PROOF OF CONCLUSION (2) OF THEOREM 1. Let ϕnptq Ñ ϕptq, n Ñ 8, where

ϕptq is continuous at 0. Let us show that it follows that the family of probability
measures tPnu is tight, where Pn is the measure corresponding to Fn.

By (4) and the dominated convergence theorem,

Pn

"
Rz

ˆ
´1

a
,
1

a

˙*
“

ż
|x|≥1{a

dFnpxq ≤ K
a

ż a

0

r1 ´ Reϕnptqs dt

Ñ K
a

ż a

0

r1 ´ Reϕptqs dt

as n Ñ 8.
Since, by hypothesis, ϕptq is continuous at 0 and ϕp0q “ 1, for every ε ą 0 there

is an a ą 0 such that

Pn

"
Rz

ˆ
´1

a
,
1

a

˙*
≤ ε

for all n ≥ 1. Consequently tPnu is tight, and by Lemma 2 there is a probability
measure P such that

Pn
wÑ P .

Hence

ϕnptq “
ż 8

´8
eitx Pnpdxq Ñ

ż 8

´8
eitx Ppdxq,

but also ϕnptq Ñ ϕptq. Therefore ϕptq is the characteristic function of P.
This completes the proof of the theorem. [\
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Corollary 1. Let tFnu be a sequence of distribution functions and tϕnu the corre-
sponding sequence of characteristic functions. Also let F be a distribution function
and ϕ its characteristic function. Then Fn

wÑ F if and only if ϕnptq Ñ ϕptq for all
t P R.

Remark 1. Let η, η1, η2, . . . be random variables and Fηn

wÑ Fη . In accordance with
the definition 4 of Sect. 10, Chap. 2, we then say that the random variables η1, η2, . . .

converge to η in distribution, and write ηn
dÑ η.

Since this notation is self-explanatory, we shall frequently use it instead of
Fηn

wÑ Fη when stating limit theorems.

3. In the next section, Theorem 1 will be applied to prove the central limit theorem
for independent but not identically distributed random variables. We will prove it as-
suming the condition known as Lindeberg’s condition. Then we will show that Lya-
pounov’s condition implies Lindeberg’s condition. In the present section we shall
merely apply the method of characteristic functions to prove some simple limit the-
orems.

Theorem 2 (Khinchin’s Law of Large Numbers). Let ξ1, ξ2, . . . be a sequence of
independent identically distributed random variables with E |ξ1| ă 8, Sn “ ξ1 `
¨ ¨ ¨ ` ξn and E ξ1 “ m. Then Sn{n

PÑ m, that is, for every ε ą 0

P
"ˇ̌

ˇ̌Sn

n
´ m

ˇ̌
ˇ̌ ≥ ε

*
Ñ 0, n Ñ 8.

PROOF. Let ϕptq “ E eitξ1 and ϕSn{nptq “ E eitSn{n. Since the random variables are
independent, we have

ϕSn{nptq “
”
ϕ

´ t
n

¯ın

by (6) of Sect. 12, Chap. 2. But according to (14) of Sect. 12, Chap. 2

ϕptq “ 1 ` itm ` optq, t Ñ 0.

Therefore for each given t P R

ϕ
´ t

n

¯
“ 1 ` i

t
n

m ` o

ˆ
1

n

˙
, n Ñ 8,

and therefore

ϕSn{nptq “
„
1 ` i

t
n

m ` o

ˆ
1

n

˙jn

Ñ eitm.

The function ϕptq “ eitm is continuous at 0 and is the characteristic function of the
degenerate probability distribution that is concentrated at m. Therefore

Sn

n
dÑ m,
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and consequently (see Problem 7 in Sect. 10, Chap. 2)

Sn

n
PÑ m.

This completes the proof of the theorem.
[\

Theorem 3 (Central Limit Theorem for Independent Identically Distributed
Random Variables). Let ξ1, ξ2, . . . be a sequence of independent identically dis-
tributed (nondegenerate) random variables with E ξ21 ă 8 and Sn “ ξ1 ` ¨ ¨ ¨ ` ξn.
Then as n Ñ 8

P
"

Sn ´ E Sn?
Var Sn

≤ x

*
Ñ Φpxq, x P R, (5)

where

Φpxq “ 1?
2π

ż x

´8
e´u2{2 du.

PROOF. Let E ξ1 “ m, Var ξ1 “ σ2 and

ϕptq “ E eitpξ1´mq.

Then if we put

ϕnptq “ E exp

"
it

Sn ´ E Sn?
Var Sn

*
,

we find that

ϕnptq “
„
ϕ

ˆ
t

σ
?

n

˙jn

.

But by (14) of Sect. 12, Chap. 2

ϕptq “ 1 ´ σ2t2

2
` opt2q, t Ñ 0.

Therefore

ϕnptq “
„
1 ´ σ2t2

2σ2n
` o

ˆ
1

n

˙jn

Ñ e´t2{2,

as n Ñ 8 for fixed t.
The function e´t2{2 is the characteristic function of a normally distributed ran-

dom variable with mean zero and unit variance (denoted by N p0, 1q). This, by
Theorem 1, establishes (5). In accordance with Remark 1 this can also be written in
the form

Sn ´ E Sn?
Var Sn

dÑN p0, 1q. (6)

This completes the proof of the theorem.
[\
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The preceding two theorems have dealt with the behavior of the probabilities of
(normalized and centered) sums of independent and identically distributed random
variables. However, in order to state Poisson’s theorem (Sect. 6, Chap. 1) we have
to use a more general model.

Let us suppose that for each n ≥ 1 we are given independent random variables
ξn1, . . . , ξnn. In other words, let there be given a triangular array

¨
˚̊
˝

ξ11
ξ21, ξ22
ξ31, ξ32, ξ33
. . . . . . . . . . .

˛
‹‹‚

of random variables, those in each row being independent. Put Sn “ ξn1 ` ¨ ¨ ¨ ` ξnn.

Theorem 4 (Poisson’s Theorem). For each n ≥ 1 let the independent random vari-
ables ξn1, . . . , ξnn be such that

Ppξnk “ 1q “ pnk, Ppξnk “ 0q “ qnk

with pnk ` qnk “ 1. Suppose that

max
1≤k≤n

pnk Ñ 0,
nÿ

k“1

pnk Ñ λ ą 0, n Ñ 8.

Then, for each m “ 0, 1, . . . ,

PpSn “ mq Ñ e´λλm

m!
, n Ñ 8. (7)

PROOF. Since
E eitξnk “ pnkeit ` qnk

for 1 ≤ k ≤ n, we have

ϕSn ptq “ E eitSn “
nź

k“1

ppnkeit ` qnkq

“
nź

k“1

p1 ` pnkpeit ´ 1qq Ñ exptλpeit ´ 1qu, n Ñ 8.

The function ϕptq “ exptλpeit ´1qu is the characteristic function of the Poisson dis-
tribution (Example 3 in Sect. 12, Chap. 2), so that (7) is established. This completes
the proof of the theorem.

[\
If πpλq denotes a Poisson random variable with parameter λ, then (7) can be

written like (6), in the form

Sn
dÑπpλq.
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4. PROBLEMS

1. Prove Theorem 1 for Rn, n ≥ 2.
2. Let ξ1, ξ2, . . . be a sequence of independent random variables with finite means

E |ξn| and variances Var ξn such that Var ξn ≤ K ă 8, where K is a constant.
Use Chebyshev’s inequality to prove the law of large numbers (1).

3. In Corollary 1, show that the family tϕnu is uniformly continuous and that
ϕn Ñ ϕ uniformly on every finite interval.

4. Let ξn, n ≥ 1, be random variables with characteristic functions ϕξn ptq, n ≥ 1.

Show that ξn
dÑ 0 if and only if ϕξn ptq Ñ 1, n Ñ 8, in some neighborhood of

t “ 0.
5. Let X1,X2, . . . be a sequence of independent identically distributed random

vectors (with values in Rk) with mean zero and (finite) covariance matrix Γ.
Show that

X1 ` ¨ ¨ ¨ ` Xn?
n

dÑN p0,Γq.
(Compare with Theorem 3.)

6. Let ξ1, ξ2, . . . and η1, η2, . . . be sequences of random variables such that ξn

and ηn are independent for each n. Suppose that ξn
dÝÑ ξ, ηn

dÝÑ η as n Ñ 8,
where ξ and η are independent. Prove that the sequence of two-dimensional
random variables pξn, ηnq converges in distribution to pξ, ηq.

Let f “ f px, yq be a continuous function. Verify that the sequence
f pξn, ηnq converges in distribution to f pξ, ηq.

7. Show by an example that in the statement (2) of Theorem 1 the condition of
continuity at zero of the “limiting” characteristic function ϕptq “ lim

n
ϕnptq

cannot be, in general, relaxed. (In other words, if the characteristic function
ϕptq of F is not continuous at zero, then it is possible that ϕnptq Ñ ϕptq, but
Fn

wÛ F.) Establish by an example that without continuity of ϕptq at zero the
tightness property of the family of distributions Pn with characteristic func-
tions ϕnptq, n ≥ 1, may fail.

4 Central Limit Theorem for Sums of Independent Random
Variables: I—Lindeberg’s Condition

In this section we prove the Central Limit Theorem for (normalized and centered)
sums Sn of independent random variables ξ1, ξ2, . . . , ξn, n ≥ 1, under the classical
Lindeberg condition. In the next section we will consider a more general set-up: first,
the Central Limit Theorem will be stated for a “triangle array” of random variables,
and, secondly, it will be proved under the so-called non-classical conditions.

Theorem 1. Let ξ1, ξ2, . . . be a sequence of independent random variables with fi-
nite second moments. Let mk “ E ξk, σ2

k “ Var ξk ą 0, Sn “ ξ1 ` ¨ ¨ ¨ ` ξn,
D2

n “ řn
k“1 σ

2
k and let Fk “ Fkpxq be the distribution function of ξk.

Suppose that the following “Lindeberg’s condition” holds: for any ε ą 0
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pLq 1

D2
n

nÿ
k“1

ż
tx : |x´mk|≥εDnu

px ´ mkq2 dFkpxq Ñ 0, n Ñ 8. (1)

Then
Sn ´ E Sn?

Var Sn

dÑ N p0, 1q. (2)

PROOF. Without loss of generality we may assume that mk “ 0, k ≥ 1. Denote
ϕkptq “ E eitξk , Tn “ Sn?

Var Sn
“ Sn

Dn
, ϕSn ptq “ E eitSn , ϕTn ptq “ E eitTn .

Then

ϕTn ptq “ E eitTn “ E eitSn{Dn “ ϕSn

´ t
Dn

¯
“

nź
k“1

ϕk

´ t
Dn

¯
(3)

and by Theorem 1 of Sect. 3 for the proof of (2) it suffices to show that for any t P R

ϕTn ptq Ñ e´t2{2, n Ñ 8. (4)

Take some t P R, which will be fixed throughout the proof. Using the expansions

eiy “ 1 ` iy ` θ1y2

2
,

eiy “ 1 ` iy ´ y2

2
` θ2|y|3

3!
,

which hold for any real y with some θ1 “ θ1pyq, θ2 “ θ2pyq such that |θ1| ≤ 1,
|θ2| ≤ 1, we find that

ϕkptq “ E eitξk “
ż 8

´8
eitx dFkpxq “

ż
|x|≥εDn

´
1 ` itx ` θ1ptxq2

2

¯
dFkpxq

`
ż

|x|ăεDn

´
1 ` itx ´ t2x2

2
` θ2|tx|3

6

¯
dFkpxq

“ 1` t2

2

ż
|x|≥εDn

θ1x2 dFkpxq´ t2

2

ż
|x|ăεDn

x2 dFkpxq` |t|3
6

ż
|x|ăεDn

θ2|x|3 dFkpxq

(we have used here that mk “ ş8
´8 x dFkpxq “ 0 by assumption).

Therefore

ϕk

´ t
Dn

¯
“ 1 ´ t2

2D2
n

ż
|x|ăεDn

x2 dFkpxq ` t2

2D2
n

ż
|x|≥εDn

θ1x2 dFkpxq

` |t|3
6D3

n

ż
|x|ăεDn

θ2|x|3 dFkpxq. (5)
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Since ˇ̌̌1
2

ż
|x|≥εDn

θ1x2 dFkpxq
ˇ̌̌
≤ 1

2

ż
|x|≥εDn

x2 dFkpxq,

we have
1

2

ż
|x|≥εDn

θ1x2 dFkpxq “ θ̃1

ż
|x|≥εDn

x2dFkpxq, (6)

where θ̃1 “ θ̃1pt, k, nq and |θ̃1| ≤ 1{2.
In the same way

ˇ̌
ˇ1
6

ż
|x|ăεDn

θ2|x|3 dFkpxq
ˇ̌
ˇ ≤ 1

6

ż
|x|ăεDn

εDn

|x| |x|3 dFkpxq ≤ 1

6

ż
|x|ăεDn

εDnx2 dFkpxq

and therefore

1

6

ż
|x|ăεDn

θ2|x|3 dFkpxq “ θ̃2

ż
|x|ăεDn

εDnx2 dFkpxq, (7)

where θ̃2 “ θ̃2pt, k, nq and |θ̃2| ≤ 1{6.
Now let

Akn “ 1

D2
n

ż
|x|ăεDn

x2 dFkpxq, Bkn “ 1

D2
n

ż
|x|≥εDn

x2 dFkpxq.

Then by (5)–(7)

ϕk

´ t
Dn

¯
“ 1 ´ t2Akn

2
` t2θ̃1Bkn ` |t|3εθ̃2Akn p“ 1 ` Cknq. (8)

Note that
nÿ

k“1

pAkn ` Bknq “ 1 (9)

and according to Condition (1)

nÿ
k“1

Bkn Ñ 0, n Ñ 8. (10)

Therefore for all sufficiently large n

max
1≤k≤n

|Ckn| ≤ t2ε2 ` ε|t|3 (11)

and
nÿ

k“1

|Ckn| ≤ t2 ` ε|t|3. (12)
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Now we use that for any complex number z with |z| ≤ 1{2
logp1 ` zq “ z ` θ|z|2,

where θ “ θpzq with |θ| ≤ 1 and log is the principal value of the logarithm (log z “
log |z| ` i arg z, ´π ă arg z ≤ π). Then (8) and (11) imply that for small enough
ε ą 0 and sufficiently large n

logϕk

´ t
Dn

¯
“ logp1 ` Cknq “ Ckn ` θkn|Ckn|2,

where |θkn| ≤ 1. Therefore we obtain from (3) that

t2

2
` logϕTn ptq “ t2

2
`

nÿ
k“1

logϕk

´ t
Dn

¯
“ t2

2
`

nÿ
k“1

Ckn `
nÿ

k“1

θkn|Ckn|2.

But

t2

2
`

nÿ
k“1

Ckn “ t2

2

˜
1 ´

nÿ
k“1

Akn

¸
` t2

nÿ
k“1

θ̃1pt, k, nqBkn `

` ε|t|3
nÿ

k“1

θ̃2pt, k, nqAkn,

and in view of (9), (10) for any δ ą 0 we can find a large enough n0 and an ε ą 0
such that for all n ≥ n0 ˇ̌

ˇ t2

2
`

nÿ
k“1

Ckn

ˇ̌
ˇ ≤ δ

2
.

Next, by (11) and (12)

ˇ̌
ˇ

nÿ
k“1

θkn|Ckn|2
ˇ̌
ˇ ≤ max

1≤k≤n
|Ckn| ¨

nÿ
k“1

|Ckn| ≤ pt2ε2 ` ε|t|3q pt2 ` ε|t|3q.

Therefore for sufficiently large n we can choose ε ą 0 to satisfy the inequality

ˇ̌̌ nÿ
k“1

θkn|Ckn|2
ˇ̌̌
≤ δ

2
,

so that ˇ̌̌ t2

2
` logϕTn ptq

ˇ̌ˇ ≤ δ.
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Thus for any real t
ϕTn ptqet2{2 Ñ 1, n Ñ 8,

hence
ϕTn ptq Ñ e´t2{2, n Ñ 8.

[\
2. Consider some particular cases where Lindeberg’s condition (1) is fulfilled, so
that the Central Limit Theorem is valid.

(a) Suppose that Lyapunov’s condition holds, i.e., for some δ ą 0

1

D2`δ
n

nÿ
k“1

E |ξk ´ mk|2`δ Ñ 0, n Ñ 8. (13)

Take an ε ą 0, then

E |ξk ´ mk|2`δ “
ż 8

´8
|x ´ mk|2`δ dFkpxq

≥
ż

tx : |x´mk|≥εDnu
|x ´ mk|2`δ dFkpxq

≥ εδDδ
n

ż
tx : |x´mk|≥εDnu

px ´ mkq2 dFkpxq,

consequently

1

D2
n

nÿ
k“1

ż
tx : |x´mk|≥εDnu

px ´ mkq2 dFkpxq ≤ 1

εδ
¨ 1

D2`δ
n

nÿ
k“1

E |ξk ´ mk|2`δ.

Therefore Lyapunov’s condition implies Lindeberg’s condition.
(b) Let ξ1, ξ2, . . . be independent identically distributed random variables with m “

E ξ1 and variance 0 ă σ2 “ Var ξ1 ă 8. Then

1

D2
n

nÿ
k“1

ż
tx : |x´m|≥εDnu

|x´m|2 dFkpxq“ n
nσ2

ż
tx : |x´m|≥εσ2

?
nu
|x´m|2 dF1pxqÑ0,

since tx : |x ´ m| ≥ εσ2
?

nu Ó H, n Ñ 8 and σ2 “ E |ξ1 ´ m|2 ă 8.
Thus Lindeberg’s condition is fulfilled and hence Theorem 3 of Sect. 3

follows from Theorem 1 just proved.
(c) Let ξ1, ξ2, . . . be independent random variables such that for all n ≥ 1

|ξn| ≤ K ă 8,

where K is a constant and Dn Ñ 8 as n Ñ 8.
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Then by Chebyshev’s inequality

ż
tx : |x´mk|≥εDnu

|x ´ mk|2 dFkpxq “ Erpξk ´ mkq2 Ip|ξk ´ mk| ≥ εDnqs

≤ p2Kq2 Pt|ξk ´ mk| ≥ εDnu ≤ p2Kq2 σ2
k

ε2D2
n
.

Hence

1

D2
n

nÿ
k“1

ż
tx : |x´mk|≥εDnu

|x ´ mk|2dFkpxq ≤ p2Kq2
ε2D2

n
Ñ 0, n Ñ 8.

Therefore Lindeberg’s condition is again fulfilled, so that the Central Limit Theorem
holds.

3. Remark 1. Let Tn “ Sn´E Sn
Dn

and FTn pxq “ PpTn ≤ xq. Then the statement (2)
means that for any x P R

FTn pxq Ñ Φpxq, n Ñ 8.

Since Φpxq is continuous, convergence here is uniform (Problem 5 in Sect. 1), i.e.,

sup
xPR

|FTn pxq ´ Φpxq| Ñ 0, n Ñ 8. (14)

In particular, this implies that

PtSn ≤ xu ´ Φ
´x ´ E Sn

Dn

¯
Ñ 0, n Ñ 8.

This fact is often stated by saying that Sn for sufficiently large n is approximately
normally distributed with mean E Sn and variance D2

n “ Var Sn.

Remark 2. Since by the above remark convergence FTn pxq Ñ Φpxq, n Ñ 8, is uni-
form in x, it is natural to ask about the rate of convergence in (14). When ξ1, ξ2, . . .
are independent identically distributed random variables with E |ξ1|3 ă 8, the an-
swer to this question is given by the Berry–Esseen theorem (inequality):

sup
x

|FTn pxq ´ Φpxq| ≤ C
E |ξ1 ´ E ξ1|3

σ3
?

n
, (15)

where C is a universal constant whose exact value is unknown so far. At present the
following inequalities for this constant are known:

0.4097 “
?
10 ` 3

6
?
2π

≤ C ≤ 0.469

(the lower bound was obtained by Esseen [29], for the upper bound see [87]).
The proof of (15) is given in Sect. 11 below.
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Remark 3. Now we state Lindeberg’s condition in a somewhat different (and even
more compact) form, which is especially appropriate in the case of a “triangle array”
of random variables.

Let ξ1, ξ2, . . . be a sequence of independent random variables, let mk “ E ξk,
σ2

k “ Var ξk, D2
n “ řn

k“1 σ
2
k ą 0, n ≥ 1, and ξnk “ ξk´mk

Dn
. With this notation

Condition (1) takes the form

(L)
nÿ

k“1

Erξ2nkIp|ξnk| ≥ εqs Ñ 0, n Ñ 8. (16)

If Sn “ ξn1`¨ ¨ ¨`ξnn, then Var Sn “ 1 and Theorem 1 says that under Condition (16)

Sn
dÑ N p0, 1q.

In this form the Central Limit Theorem is true without assuming that ξnk’s have
the special form ξk´mk

Dn
. In fact, the following result holds, which can be proved by

repeating word by word the proof of Theorem 1.

Theorem 2. Let for each n ≥ 1

ξn1, ξn2, . . . , ξnn

be independent random variables such that E ξnk “ 0 and Var Sn “ 1, where Sn “
ξn1 ` ¨ ¨ ¨ ` ξnn.

Then Lindeberg’s condition (16) is sufficient for convergence Sn
dÑ N p0, 1q.

4. Since

max
1≤k≤n

E ξ2nk ≤ ε2 `
nÿ

k“1

Erξ2nkIp|ξnk| ≥ εqs,

it is clear that Lindeberg’s condition (16) implies that

max
1≤k≤n

E ξ2kn Ñ 0, n Ñ 8. (17)

Remarkably, subject to this condition the validity of the Central Limit Theorem
automatically implies Lindeberg’s condition.

Theorem 3. Let for each n ≥ 1

ξn1, ξn2, . . . , ξnn

be independent random variables such that E ξnk “ 0 and Var Sn “ 1, where Sn “
ξn1`¨ ¨ ¨`ξnn. Suppose that (17) is fulfilled. Then Lindeberg’s condition is necessary

and sufficient for the Central Limit Theorem, Sn
dÑ N p0, 1q, to hold.

Sufficiency follows from Theorem 2. For the proof of the necessity part we will
need the following lemma (cf. Lemma 3 in Sect. 3).
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Lemma. Let ξ be a random variable with distribution function F “ Fpxq, E ξ “ 0,
Var ξ “ γ ą 0. Then for any a ą 0

ż
|x|≥1{a

x2 dFpxq ≤ 1

a2
rRe f p?

6aq ´ 1 ` 3γa2s, (18)

where f ptq “ E eitξ is the characteristic function of ξ.

PROOF. We have

Re f ptq ´ 1 ` 1

2
γt2 “ 1

2
γt2 ´

ż 8

´8
r1 ´ cos txs dFpxq

“ 1

2
γt2 ´

ż
|x|ă1{a

r1 ´ cos txs dFpxq ´
ż

|x|≥1{a
r1 ´ cos txs dFpxq

≥ 1

2
γt2 ´ 1

2
t2

ż
|x|ă1{a

x2 dFpxq ´ 2a2
ż

|x|≥1{a
x2dFpxq

“
´1

2
t2 ´ 2a2

¯ ż
|x|≥1{a

x2 dFpxq.

Letting t “ ?
6a we obtain (18).

[\
Now we turn to the proof of necessity in Theorem 3. Let

Fnkpxq “ Ptξnk ≤ xu, fnkptq “ E eitξnk ,

E ξnk “ 0, Var ξnk “ γnk ą 0,
nÿ

k“1

γnk “ 1, max
1≤k≤n

γnk Ñ 0, n Ñ 8.

(19)

Let log z denote the principal value of the logarithm of a complex number z (i.e.,
log z “ log |z| ` i arg z, ´π ă arg z ≤ π). Then

log
nź

k“1

fnkptq “
nÿ

k“1

log fnkptq ` 2πim,

where m “ mpn, tq is an integer. Hence

Re log
nź

k“1

fnkptq “ Re
nÿ

k“1

log fnkptq. (20)

Since
nź

k“1

fnkptq Ñ e´ 1
2 t2 ,

we have
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ˇ̌̌ nź
k“1

fnkptq
ˇ̌̌

Ñ e´ 1
2 t2 .

Hence

Re log
nź

k“1

fnkptq “ Re log
ˇ̌̌ nź

k“1

fnkptq
ˇ̌̌

Ñ ´1

2
t2. (21)

For |z| ă 1

logp1 ` zq “ z ´ z2

2
` z3

3
´ . . . , (22)

and for |z| ă 1{2
| logp1 ` zq ´ z| ≤ |z|2. (23)

By (19), for any fixed t and all sufficiently large n we have

|fnkptq ´ 1| ≤ 1

2
γnkt2 ≤ 1

2
, k “ 1, 2, . . . , n. (24)

Hence we obtain from (23), (24)

ˇ̌
ˇ

nÿ
k“1

tlogr1 ` pfnkptq ´ 1qs ´ pfnkptq ´ 1qu
ˇ̌
ˇ ≤

nÿ
k“1

|fnkptq ´ 1|2

≤ t4

4
max
1≤k≤n

γnk ¨
nÿ

k“1

γnk “ t4

4
max
1≤k≤n

γnk Ñ 0, n Ñ 8,

therefore

ˇ̌
ˇRe

nÿ
k“1

log fnkptq ´ Re
nÿ

k“1

pfnkptq ´ 1q
ˇ̌
ˇ Ñ 0, n Ñ 8. (25)

Now (20), (21) and (25) imply that

Re
nÿ

k“1

pfnkptq ´ 1q ` 1

2
t2 “

nÿ
k“1

”
Re fnkptq ´ 1 ` 1

2
t2γnk

ı
Ñ 0, n Ñ 8.

Letting t “ ?
6a we find that for any a ą 0

nÿ
k“1

rRe fnkp?
6aq ´ 1 ` 3a2γnks Ñ 0, n Ñ 8. (26)
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Finally, we obtain from (26) and (18) with a “ 1{ε that

nÿ
k“1

ErξnkIp|ξnk| ≥ εqs “
nÿ

k“1

ż
|x|≥ε

x2 dFnkpxq

≤ ε2
nÿ

k“1

rRe fnkp?
6aq ´ 1 ` 3a2γnks Ñ 0, n Ñ 8,

which proves Lindeberg’s condition.
[\

5. PROBLEMS

1. Let ξ1, ξ2, . . . be a sequence of independent identically distributed random
variables with E ξ2 ă 8. Show that

max
´ |ξ1|?

n
, . . . ,

|ξn|?
n

¯
dÑ 0, n Ñ 8.

2. Give a direct proof of the fact that in the Bernoulli scheme supx |FTn pxq´Φpxq|
is of order 1{?

n as n Ñ 8.
3. Let X1,X2, . . . be a sequence of exchangeable random variables (see Prob-

lem 4 in Sect. 5 of Chap. 2) with E X1 “ 0, E X2
1 “ 1 and

CovpX1,X2q “ CovpX2
1 ,X2

2q. (27)

Prove that they obey the Central Limit Theorem,

1?
n

nÿ
i“1

Xi
dÑ N p0, 1q. (28)

Conversely, if E X2
n ă 8 and (28) holds, then (27) is fulfilled.

4. Local Central Limit Theorem. Let X1,X2, . . . be independent identically dis-
tributed random variables with E X1 “ 0, E X2

1 “ 1. Assume that their charac-
teristic function ϕptq “ E eitX1 satisfies the condition

ż 8

´8
|ϕptq|r dt ă 8 for some r ≥ 1.

Show that the random variables Sn{?
n have densities fnpxq such that

fnpxq Ñ p2πq´1{2e´x2{2, n Ñ 8, uniformly in x P R.

What is the corresponding result for lattice random variables?
5. Let X1,X2, . . . be independent identically distributed random variables with

E X1 “ 0, E X2
1 “ 1. Let d2

1, d2
2, . . . be nonnegative constants such that
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dn “ opDnq, where D2
n “ řn

k“1 d2
k . Show that the sequence of the weighted

random variables d1X1, d2X2, . . . fulfills the Central Limit Theorem:

1

Dn

nÿ
k“1

dkXk
dÑ N p0, 1q.

6. Let ξ1, ξ2, . . . be independent identically distributed random variables with
E ξ1 “ 0, E ξ21 “ 1. Let pτnqn≥1 be a sequence of random variables taking

values 1, 2, . . . such that τn{n PÑ c, where c ą 0 is a constant. Show that

Lawpτ´1{2
n Sτn q Ñ Φ, where Sn “ ξ1 ` ¨ ¨ ¨ ` ξn

(i.e., τ´1{2
n Sτn

dÑ N p0, 1q). (Note that it is not assumed that the sequences
pτnqn≥1 and pξnqn≥1 are independent.)

7. Let ξ1, ξ2, . . . be independent identically distributed random variables with
E ξ1 “ 0, E ξ21 “ 1. Prove that

Law
´

n´1{2 max
1≤m≤n

Sm

¯
Ñ Lawp|ξ|q, where ξ „ N p0, 1q.

In other words, for x ą 0,

P
!

n´1{2 max
1≤m≤n

Sm ≤ x
)

Ñ
c

2

π

ż x

0

e´y2{2 dy
´

“ 1?
2
erfpxq

¯
.

Hint: Establish first that this statement holds for symmetric Bernoulli random
variables ξ1, ξ2, . . . , i.e., such that Ppξn “ ˘1q “ 1{2, and then prove that the
limiting distribution will be the same for any sequence ξ1, ξ2, . . . satisfying the
conditions of the problem. (The property that the limiting distribution does not
depend on the specific choice of independent identically distributed random
variables ξ1, ξ2, . . . with E ξ1 “ 0, E ξ21 “ 1 is known as the “invariance
principle,” cf. Sect. 7.)

8. Under the conditions of the previous problem prove that

P
!

n´1{2 max
1≤m≤n

|Sm| ≤ x
)

Ñ Hpxq, x ą 0,

where

Hpxq “ 4

π

8ÿ
k“0

p´1qk

2k ` 1
exp

!
´p2k ` 1q2π2

8x2

)
.

9. Let X1,X2, . . . be a sequence of independent random variables with

PtXn “ ˘nαu “ 1

2nβ
, PtXn “ 0u “ 1 ´ 1

nβ
, where 2α ą β ´ 1.

Show that Lindeberg’s condition is fulfilled if and only if 0 ≤ β ă 1.
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10. Let X1,X2, . . . be a sequence of independent random variables such that
|Xn| ≤ Cn (P-a.s.) and Cn “ opDnq, where

D2
n “

nÿ
k“1

EpXk ´ E Xkq2 Ñ 8.

Show that

Sn ´ E Sn

Dn
Ñ N p0, 1q, where Sn “ X1 ` ¨ ¨ ¨ ` Xn.

11. Let X1,X2, . . . be a sequence of independent random variables with E Xn “ 0,
E X2

n “ σ2
n . Assume that they obey the Central Limit Theorem and

E

˜
D´1{2

n

nÿ
i“1

Xi

¸k

Ñ p2kq!
2kk!

for some k ≥ 1.

Show that in this case Lindeberg’s condition of order k holds, i.e.,

nÿ
j“1

ż
t|x|ąεu

|x|k dFjpxq “ opDk
nq, ε ą 0.

(The ordinary Lindeberg’s condition corresponds to k “ 2, see (1).)
12. Let X “ Xpλq and Y “ Ypμq be independent random variables having the

Poisson distributions with parameters λ and μ respectively. Show that

pXpλq ´ λq ´ pYpμq ´ μqa
Xpλq ` Ypμq Ñ N p0, 1q as λ Ñ 8, μ Ñ 8.

13. Let Xpnq
1 , . . . ,Xpnq

n`1 for any n ≥ 1 be an pn ` 1q-dimensional random vec-
tor uniformly distributed on the unit sphere. Prove the following “Poincaré’s
theorem”:

lim
nÑ8 Pt?

n Xpnq
n`1 ≤ xu “ 1?

2π

ż x

´8
e´u2{2 du.

5 Central Limit Theorem for Sums of Independent Random
Variables: II—Nonclassical Conditions

1. It was shown in Sect. 4 that the Lindeberg condition (16) of Sect. 4 implies that
the condition

max
1≤k≤n

E ξ2nk Ñ 0
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is satisfied. In turn, this implies the so-called condition of asymptotic negligibility,
that is, the condition that for every ε ą 0,

max
1≤k≤n

Pt|ξnk| ≥ εu Ñ 0, n Ñ 8.

Consequently, we may say that Theorems 1 and 2 of Sect. 4 provide a condition of
validity of the central limit theorem for sums of independent random variables under
the condition of asymptotic negligibility. Limit theorems in which the condition of
asymptotic negligibility is imposed on individual terms are usually called theorems
with a classical formulation. It is easy, however, to give examples of nondegenerate
random variables for which neither the Lindeberg condition nor the asymptotic neg-
ligibility condition is satisfied, but nevertheless the central limit theorem is satisfied.
Here is the simplest example.

Let ξ1, ξ2, . . . be a sequence of independent normally distributed random vari-
ables with E ξn “ 0, Var ξ1 “ 1, Var ξk “ 2k´2, k ≥ 2. Let Sn “ ξn1 ` ¨ ¨ ¨ ` ξnn

with

ξnk “ ξk

Ogffe nÿ
k“1

Var ξi .

It is easily verified that here neither the Lindeberg condition nor the asymptotic
negligibility condition is satisfied, although the validity of the central limit theorem
is evident, since Sn is normally distributed with E Sn “ 0 and Var Sn “ 1.

Theorem 1 (below) provides a sufficient (and necessary) condition for the central
limit theorem without assuming the “classical” condition of asymptotic negligibil-
ity. In this sense, condition pΛq, presented below, is an example of “nonclassical”
conditions which reflect the title of this section.

2. We shall suppose that we are given a “triangle array” of random variables, i.e.,
for each n ≥ 1 we have n independent random variables

ξn1, ξn2, . . . , ξnn

with E ξnk “ 0, Var ξnk “ σ2
nk ą 0,

řn
k“1 σ

2
nk “ 1. Let Sn “ ξn1 ` ¨ ¨ ¨ ` ξnn,

Fnkpxq “ Ptξnk ≤ xu, Φpxq “ p2πq´1{2
ż x

´8
e´y2{2dy, Φnkpxq “ Φ

ˆ
x
σnk

˙
.

Theorem 1. To have
Sn

dÑN p0, 1q, (1)

it is sufficient (and necessary) that for every ε ą 0 the condition

pΛq
nÿ

k“1

ż
|x|ąε

|x||Fnkpxq ´ Φnkpxq| dx Ñ 0, n Ñ 8, (2)

is satisfied.
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The following theorem clarifies the connection between condition pΛq and the
classical Lindeberg condition

pLq
nÿ

k“1

ż
|x|ąε

x2 dFnkpxq Ñ 0, n Ñ 8. (3)

Theorem 2. 1. The Lindeberg condition implies that condition pΛq is satisfied:

pLq ñ pΛq.
2. If max1≤k≤n E ξ2nk Ñ 0 as n Ñ 8, the condition pΛq implies the Lindeberg

condition (L):
pΛq ñ pLq.

PROOF OF THEOREM 1. The proof of the necessity of condition pΛq is rather com-
plicated (see [63, 82, 99]). Here we only prove the sufficiency.

Let

fnkptq “ E eitξnk , fnptq “ E eitSn ,

ϕnkptq “
ż 8

´8
eitx dΦnkpxq, ϕptq “

ż 8

´8
eitx dΦpxq.

It follows from Sect. 12 of Chap. 2 that

ϕnkptq “ e´pt2σ2
nkq{2, ϕptq “ e´t2{2.

By the corollary of Theorem 1 of Sect. 3 , we have Sn
dÑN p0, 1q if and only if

fnptq Ñ ϕptq as n Ñ 8, for every real t.
We have

fnptq ´ ϕptq “
nź

k“1

fnkptq ´
nź

k“1

ϕnkptq.

Since |fnkptq| ≤ 1 and |ϕnkptq| ≤ 1, we have

|fnptq ´ ϕptq| “
ˇ̌̌
ˇ̌

nź
k“1

fnkptq ´
nź

k“1

ϕnkptq
ˇ̌̌
ˇ̌

≤
nÿ

k“1

|fnkptq ´ ϕnkptq| “
nÿ

k“1

ˇ̌̌
ˇ
ż 8

´8
eitxdpFnk ´ Φnkq

ˇ̌
ˇ̌

“
nÿ

k“1

ˇ̌
ˇ̌ż 8

´8

ˆ
eitx ´ itx ` t2x2

2

˙
dpFnk ´ Φnkq

ˇ̌
ˇ̌ , (4)
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where we have used the fact that
ż 8

´8
xkdFnk “

ż 8

´8
xkdΦnk for k “ 1, 2.

If we apply the formula for integration by parts (Theorem 11 in Sect. 6, Chap. 2)
to the integral ż b

a

ˆ
eitx ´ itx ` t2x2

2

˙
dpFnk ´ Φnkq,

we obtain (taking account of the limits x2r1 ´ Fnkpxq ` Fnkp´xqs Ñ 0, and x2r1 ´
Φnkpxq ` Φnkp´xqs Ñ 0, x Ñ 8q

ż 8

´8

ˆ
eitx ´ itx ` t2x2

2

˙
dpFnk ´ Φnkq

“ it
ż 8

´8
peitx ´ 1 ´ itxqpFnkpxq ´ Φnkpxqq dx. (5)

From (4) and (5), we obtain

|fnptq ´ ϕptq| ≤
nÿ

k“1

ˇ̌
ˇ̌t

ż 8

´8
peitx ´ 1 ´ itxqpFnkpxq ´ Φnkpxqq

ˇ̌
ˇ̌ dx

≤ |t|3
2

ε
nÿ

k“1

ż
|x|≤ε

|x| |Fnkpxq ´ Φnkpxq| dx

`2t2
nÿ

k“1

ż
|x|ąε

|x| |Fnkpxq ´ Φnkpxq| dx

≤ ε|t|3
nÿ

k“1

σ2
nk ` 2t2

nÿ
k“1

ż
|x|ąε

|x||Fnkpxq ´ Φnkpxq| dx, (6)

where we have used the inequality
ż

|x|≤ε

|x||Fnkpxq ´ Φnkpxq| dx ≤ 2σ2
nk, (7)

which is easily established by using the formula (71) in Sect. 6, Chap. 2.
It follows from (6) that fnptq Ñ ϕptq as n Ñ 8, because ε is an arbitrary positive

number and condition pΛq is satisfied.
This completes the proof of the theorem.
[\

PROOF OF THEOREM 2. 1. According to Sect. 4, Lindeberg’s condition (L) implies
that max1≤k≤n σ

2
nk Ñ 0. Hence, if we use the fact that

řn
k“1 σ

2
nk “ 1, we obtain

nÿ
k“1

ż
|x|ąε

x2 dΦnkpxq ≤
ż

|x|ąε{?max1≤k≤n σ
2
nk

x2 dΦpxq Ñ 0, n Ñ 8. (8)



410 3 Convergence of Probability Measures. Central Limit Theorem

Together with Condition (L), this shows that, for every ε ą 0,

nÿ
k“1

ż
|x|ąε

x2 drFnkpxq ` Φnkpxqs Ñ 0, n Ñ 8. (9)

Let us fix ε ą 0. Then there is a continuous differentiable even function h “ hpxq
for which |hpxq| ≤ x2, |h1pxq| ≤ 4x, and

h pxq “
"

x2, |x| ą 2ε,
0, |x| ≤ ε.

For hpxq, we have by (9)

nÿ
k“1

ż
|x|ąε

hpxq drFnkpxq ` Φnkpxqs Ñ 0, n Ñ 8. (10)

By integrating by parts in (10), we obtain

nÿ
k“1

ż
x≥ε

h1pxqrp1 ´ Fnkpxqq ` p1 ´ Φnkpxqqs dx

“
nÿ

k“1

ż
x≥ε

hpxq drFnk ` Φnks Ñ 0,

nÿ
k“1

ż
x≤´ε

h1pxqrFnkpxq ` Φnkpxqs dx “
nÿ

k“1

ż
x≤´ε

hpxq drFnk ` Φnks Ñ 0.

Since h1pxq “ 2x for |x| ≥ 2ε, we obtain

nÿ
k“1

ż
|x|≥2ε

|x| |Fnkpxq ´ Φnkpxq| dx Ñ 0, n Ñ 8.

Therefore, since ε is an arbitrary positive number, we find that pLq ñ pΛq.
2. For the function h “ hpxq introduced above, we find by (8) and the condition

max1≤k≤n σ
2
nk Ñ 0 that

nÿ
k“1

ż
|x|ąε

hpxq dΦnkpxq ≤
nÿ

k“1

ż
|x|ąε

x2 dΦnkpxq Ñ 0, n Ñ 8. (11)
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If we integrate by parts, we obtain
ˇ̌̌
ˇ̌

nÿ
k“1

ż
|x|≥ε

hpxq drFnk ´ Φnks
ˇ̌̌
ˇ̌ ≤

ˇ̌̌
ˇ̌

nÿ
k“1

ż
x≥ε

hpxq drp1 ´ Fnkq ´ p1 ´ Φnkqs
ˇ̌̌
ˇ̌

`
ˇ̌
ˇ̌̌ nÿ
k“1

ż
x≤´ε

hpxq drFnk ´ Φnks
ˇ̌
ˇ̌̌

≤
nÿ

k“1

ż
x≥ε

|h1pxq||rp1 ´ Fnkq ´ p1 ´ Φnkqs| dx

`
nÿ

k“1

ż
x≤´ε

|h1pxq||Fnk ´ Φnk| dx

≤ 4
nÿ

k“1

ż
|x|≥ε

|x||Fnkpxq ´ Φnkpxq| dx. (12)

It follows from (11) and (12) that

nÿ
k“1

ż
|x|≥2ε

x2 dFnkpxq ≤
nÿ

k“1

ż
|x|≥ε

hpxq dFnkpxq Ñ 0, n Ñ 8,

i.e., the Lindeberg condition (L) is satisfied.
This completes the proof of the theorem. [\

3. PROBLEMS

1. Establish formula (5).
2. Verify relations (10) and (12).
3. Let N “ pNtqt≥0 be a renewal process introduced in Subsection 4 of Sect. 9,

Chap. 2 (Nt “ ř8
n“1 IpTn ≤ tq, Tn “ σ1 ` ¨ ¨ ¨ ` σn, where σ1, σ2, . . . is a

sequence of independent identically distributed random variables). Assuming
that μ “ Eσ1 ă 8, 0 ă Varσ1 ă 8 prove the following central limit
theorem for N:

Nt ´ tμ´1a
tμ´3 Varσ1

dÝÑ N p0, 1q,

where N p0, 1q is a normal random variable with zero mean and unit variance.

6 Infinitely Divisible and Stable Distributions

1. In stating Poisson’s theorem in Sect. 3 we found it necessary to use a triangular
array, supposing that for each n ≥ 1 there was a sequence of independent random
variables tξn,ku, 1 ≤ k ≤ n.
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Put
Tn “ ξn,1 ` ¨ ¨ ¨ ` ξn,n, n ≥ 1. (1)

The idea of an infinitely divisible distribution arises in the following problem:
how can we determine all the distributions that can be expressed as limits of se-
quences of distributions of random variables Tn, n ≥ 1?

Generally speaking, the problem of limit distributions is indeterminate in such
great generality. Indeed, if ξ is a random variable and ξn,1 “ ξ, ξn,k “ 0, 1 ă k ≤ n,
then Tn ” ξ and consequently the limit distribution is the distribution of ξ, which
can be arbitrary.

In order to have a more meaningful problem, we shall suppose in the present
section that the variables ξn,1, . . . , ξn,n are, for each n ≥ 1, not only independent,
but also identically distributed.

Recall that this was the situation in Poisson’s theorem (Theorem 4 of Sect. 3).
The same framework also includes the central limit theorem (Theorem 3 of Sect. 3)
for sums Sk “ ξ1 ` ¨ ¨ ¨ ` ξn, n ≥ 1, of independent identically distributed random
variables ξ1, ξ2, . . . . In fact, if we put

ξn,k “ ξk ´ E ξk

Varn
, D2

n “ Var Sn,

then

Tn “
nÿ

k“1

ξn,k “ Sn ´ E Sn

Dn
.

Consequently both the normal and the Poisson distributions can be presented as

limits in a triangular array. If Tn
dÑ T , it is intuitively clear that since Tn is a sum of

independent identically distributed random variables, the limit variable T must also
be a sum of independent identically distributed random variables. With this in mind,
we introduce the following definition.

Definition 1. A random variable T , its distribution FT , and its characteristic function
ϕT are said to be infinitely divisible if, for each n ≥ 1, there are independent

identically distributed random variables η1, . . . , ηn such that˚ T
d“ η1 ` ¨ ¨ ¨ ` ηn (or,

equivalently, FT “ Fη1
˚ ¨ ¨ ¨ ˚ Fηn , or ϕT “ pϕη1

qn).

Remark 1. If the basic probability space on which T is defined is “poor” enough,
it may happen that the distribution function FT and its characteristic function ϕT

admit the representations FT “ Fpnq ˚ ¨ ¨ ¨ ˚ Fpnq (n times) and ϕT “ pϕpnqqn with
some distribution functions Fpnq and their characteristic functions ϕpnq, whereas the

representation T d“ η1`¨ ¨ ¨`ηn is impossible. J.L. Doob (see [34]) gave an example
of such a “poor” probability space on which a random variable T is defined having
the Poisson distribution with parameter λ “ 1 (which is infinitely divisible because
FT “ Fpnq ˚ ¨ ¨ ¨ ˚ Fpnq with distribution functions Fpnq of the Poisson distribution

˚ The notation ξ
d“ η means that the random variables ξ and η agree in distribution, i.e., Fξpxq “

Fηpxq, x P R.
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with parameter λ “ 1{n) but there are no random variables η1 and η2 having the
Poisson distribution with parameter λ “ 1{2.

Having all this in mind, we stress that the above Definition 1 actually tacitely as-
sumes that the probability space pΩ,F ,Pq is sufficiently “rich” to avoid the effects
pointed out by J.L. Doob (Problem 11).

Theorem 1. A random variable T can be a limit in distribution of sums Tn “řn
k“1 ξn,k if and only if T is infinitely divisible.

PROOF. If T is infinitely divisible, for each n ≥ 1 there are independent identically

distributed random variables ξn,1, . . . , ξn,k such that T
d“ ξn,1 ` ¨ ¨ ¨ ` ξn,k, and this

means that T
d“ Tn, n ≥ 1.

Conversely, let Tn
dÑ T . Let us show that T is infinitely divisible, i.e., for each k

there are independent identically distributed random variables η1, . . . , ηk such that

T
d“ η1 ` ¨ ¨ ¨ ` ηk.
Choose a k ≥ 1 and represent Tnk “ řnk

i“1 ξnk,i in the form ζ
p1q
n ` ¨ ¨ ¨ ` ζ

pkq
n ,

where

ζp1q
n “ ξnk,1 ` ¨ ¨ ¨ ` ξnk,n, . . . , ζ

pkq
n “ ξnk,npk´1q`1 ` ¨ ¨ ¨ ` ξnk,nk.

Since Tnk
dÑ T, n Ñ 8, the sequence of distribution functions corresponding to the

random variables Tnk, n ≥ 1, is relatively compact and therefore, by Prohorov’s
theorem, is tight (Sect. 2). Moreover,

rPpζp1q
n ą zqsk “ Ppζp1q

n ą z, . . . , ζpkq
n ą zq ≤ PpTnk ą kzq

and

rPpζp1q
n ă ´zqsk “ Ppζp1q

n ă ´z, . . . , ζpkq
n ă ´zq ≤ PpTnk ă ´kzq.

The family of distributions for ζp1q
n , n ≥ 1, is tight because of the preceding two in-

equalities and because the family of distributions for Tnk, n ≥ 1, is tight. Therefore
there is a subsequence tniu Ă tnu and a random vector pη1, . . . , ηkq, which without
loss of generality may be assumed to be defined on our “rich” probability space,
such that

pζp1q
nj

, . . . , ζpkq
nj

q dÑ pη1, . . . , ηkq,
or, equivalently, that

E e
ipλ1ζ

p1q
nj

`¨¨¨`λkζ
pkq
nj

q Ñ E eipλ1η1`¨¨¨`λkηkq

for any λ1, . . . , λk P R. Since the variables ζp1q
nj , . . . , ζ

pkq
nj are independent,

E e
ipλ1ζ

p1q
nj

`¨¨¨`λkζ
pkq
nj

q “ E e
iλ1ζ

p1q
nj ¨ ¨ ¨ E e

iλkζ
pkq
nj Ñ E eiλ1η1 ¨ ¨ ¨ E eiλkηk .

Therefore
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E eipλ1η1`¨¨¨`λkηkq “ E eiλ1η1 ¨ ¨ ¨ E eiλkηk

and by Theorem 4 of Sect. 12, Chap. 2, η1, . . . , ηk are independent. Clearly, they are
identically distributed.

Thus we have

Tnjk “ ζp1q
nj

` ¨ ¨ ¨ ` ζpkq
nj

dÑ η1 ` ¨ ¨ ¨ ` ηk

and moreover Tnjk
dÑ T . Consequently (Problem 1)

T d“ η1 ` ¨ ¨ ¨ ` ηk.

This completes the proof of the theorem.
[\

Remark 2. The conclusion of the theorem remains valid if we replace the hypoth-
esis that ξn,1, . . . , ξn,n are identically distributed for each n ≥ 1 by the condition of
their asymptotic negligibility max1≤k≤n Pt|ξnk| ≥ εu Ñ 0.

2. To test whether a given random variable T is infinitely divisible, it is simplest
to begin with its characteristic function ϕptq. If we can find characteristic functions
ϕnptq such that ϕptq “ rϕnptqsn for every n ≥ 1, then T is infinitely divisible.

In the Gaussian case,
ϕptq “ eitme´p1{2qt2σ2

,

and if we put
ϕnptq “ eitm{ne´p1{2qt2σ2{n,

we see at once that ϕptq “ rϕnptqsn.
In the Poisson case,

ϕptq “ exptλpeit ´ 1qu,
and if we put ϕnptq “ exptpλ{nqpeit ´ 1qu then ϕptq “ rϕnptqsn.

If a random variable T has a Γ-distribution with density

f pxq “

$’’&
’’%

xα´1e´x{β

Γpαqβα
, x ≥ 0,

0, x ă 0,

then (see Table 2.5, Sect. 12, Chap. 2) its characteristic function is

ϕptq “ 1

p1 ´ iβtqα .
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Consequently ϕptq “ rϕnptqsn where

ϕnptq “ 1

p1 ´ iβtqα{n
,

and therefore T is infinitely divisible.
We quote without proof the following result on the general form of the charac-

teristic functions of infinitely divisible distributions.

Theorem 2 (Kolmogorov–Lévy–Khinchin Representation). A random variable T
is infinitely divisible if and only if its characteristic function has the form ϕptq “
expψptq with

ψptq “ itβ ´ t2σ2

2
`

ż 8

´8

ˆ
eitx ´ 1 ´ itx

1 ` x2

˙
1 ` x2

x2
dλpxq, (2)

where β P R, σ2 ≥ 0 and λ is a measure on pR,BpRqq with λt0u “ 0.

3. Let ξ1, ξ2, . . . be a sequence of independent identically distributed random vari-
ables and Sn “ ξ1 ` ¨ ¨ ¨ ` ξn. Suppose that there are constants bn and an ą 0, and a
random variable T , such that

Sn ´ bn

an

dÑ T. (3)

We ask for a description of the distributions (random variables T) that can be ob-
tained as limit distributions in (3).

If the random variables ξ1, ξ2, . . . satisfy 0 ă σ2 ” Var ξ1 ă 8, then if we put
bn “ n E ξ1 and an “ σ

?
n, we find by Sect. 4 that T has the normal distribution

N p0, 1q.
If f pxq “ θ{πpx2 ` θ2q is the Cauchy density (with parameter θ ą 0) and

ξ1, ξ2, . . . are independent random variables with density f pxq, the characteristic
function ϕξ1ptq is equal to e´θ|t| and therefore ϕSn{nptq “ pe´θ|t|{nqn “ e´θ|t|, i.e.,
Sn{n also has the Cauchy distribution (with the same parameter θ).

Consequently there are other limit distributions besides the normal, for example
the Cauchy distribution.

If we put ξnk “ pξk{anq ´ pbn{nanq, 1 ≤ k ≤ n, we find that

Sn ´ bn

an
“

nÿ
k“1

ξn,k p“ Tnq.

Therefore all conceivable distributions for T that can appear as limits in (3) are
necessarily (in agreement with Theorem 1) infinitely divisible. However, the specific
characteristics of the variable Tn “ pSn ´ bnq{an may make it possible to obtain
further information on the structure of the limit distributions that arise.
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For this reason we introduce the following definition.

Definition 2. A random variable T , its distribution function Fpxq, and its character-
istic function ϕptq are stable if, for every n ≥ 1, there are constants an ą 0, bn, and
independent random variables ξ1, . . . , ξn, distributed like T , such that

anT ` bn
d“ ξ1 ` ¨ ¨ ¨ ` ξn (4)

or, equivalently, Fppx ´ bnq{anq “ F ˚ ¨ ¨ ¨ ˚ Fpxq, or

rϕptqsn “ rϕpantqseibnt. (5)

Theorem 3. A necessary and sufficient condition for the random variable T to be a
limit in distribution of random variables pSn ´ bnq{an, an ą 0, is that T is stable.

PROOF. If T is stable, then by (4)

T
d“ Sn ´ bn

an
,

where Sn “ ξ1 ` ¨ ¨ ¨ ` ξn, and consequently pSn ´ bnq{an
dÑ T .

Conversely, let ξ1, ξ2, . . . be a sequence of independent identically distributed

random variables, Sn “ ξ1 ` ¨ ¨ ¨ ` ξn and pSn ´ bnq{an
dÑ T, an ą 0. Let us show

that T is a stable random variable.
If T is degenerate, it is evidently stable. Let us suppose that T is nondegenerate.
Choose k ≥ 1 and write

Sp1q
n “ ξ1 ` ¨ ¨ ¨ ` ξn, . . . , Spkq

n “ ξpk´1qn`1 ` ¨ ¨ ¨ ` ξkn,

Tp1q
n “ Sp1q

n ´ bn

an
, . . . , Tpkq

n “ Spkq
n ´ bn

an
.

It is clear that all the variables Tp1q
n , . . . ,Tpkq

n have the same distribution and

Tpiq
n

dÑ T, n Ñ 8, i “ 1, . . . , k.

Write
Upkq

n “ Tp1q
n ` ¨ ¨ ¨ ` Tpkq

n .

Then we obtain as in the proof of Theorem 1 that

Upkq
n

dÑ Tp1q ` ¨ ¨ ¨ ` Tpkq,

where Tpiq, 1 ≤ i ≤ k, are independent and Tp1q d“ . . .
d“ Tpkq d“ T .
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On the other hand,

Upkq
n “ ξ1 ` ¨ ¨ ¨ ` ξkn ´ kbn

an

“ akn

an

ˆ
ξ1 ` ¨ ¨ ¨ ` ξkn ´ bkn

akn

˙
` bkn ´ kbn

an

“ αpkq
n Vkn ` βpkq

n , (6)

where

αpkq
n “ akn

an
, βpkq

n “ bkn ´ kbn

an

and

Vkn “ ξ1 ` ¨ ¨ ¨ ` ξkn ´ bkn

akn
.

It is clear from (6) that

Vkn “ Upkq
n ´ β

pkq
n

α
pkq
n

,

where Vkn
dÑ T, Upkq

n
dÑ Tp1q ` ¨ ¨ ¨ ` Tpkq, n Ñ 8.

It follows from the lemma established below that there are constants αpkq ą 0
and βtkq such that αpkq

n Ñ αtkq and β
pkq
n Ñ βpkq as n Ñ 8. Therefore

T
d“ Tp1q ` ¨ ¨ ¨ ` Tpkq ´ βpkq

αpkq ,

which shows that T is a stable random variable.
This completes the proof of the theorem.
[\
We now state and prove the lemma that we used above.

Lemma. Let ξn
dÑ ξ and let there be constants an ą 0 and bn such that

anξn ` bn
dÑ ξ̃,

where the random variables ξ and ξ̃ are not degenerate. Then there are constants
a ą 0 and b such that lim an “ a, lim bn “ b, and

ξ̃
d“ aξ ` b.

PROOF. Let ϕn, ϕ and ϕ̃ be the characteristic functions of ξn, ξ and ξ̃ respectively.
Then ϕanξn`bn ptq, the characteristic function of anξn ` bn, is equal to eitbnϕnpantq
and, by Corollary of Theorem 1 and Problem 3 of Sect. 3,

eitbnϕnpantq Ñ ϕ̃ptq, (7)

ϕnptq Ñ ϕptq (8)

uniformly in t on every finite interval.
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Let tniu be a subsequence of tnu such that ani Ñ a. Let us first show that a ă 8.
Suppose that a “ 8. By (7),

sup
|t|≤c

||ϕnpantq| ´ |ϕ̃ptq|| Ñ 0, n Ñ 8,

for every c ą 0. We replace t by t0{ani . Then, since ani Ñ 8, we have
ˇ̌̌
ˇϕni

ˆ
ani

t0
ani

˙ˇ̌̌
ˇ ´

ˇ̌̌
ˇϕ̃

ˆ
t0
ani

˙ˇ̌̌
ˇ Ñ 0

and therefore
|ϕni pt0q| Ñ |ϕ̃p0q| “ 1.

But |ϕni pt0q| Ñ |ϕpt0q|. Therefore |ϕpt0q| “ 1 for every t0 P R, and consequently,
by Theorem 5 of Sect. 12, Chap. 2, the random variable ξ must be degenerate, which
contradicts the hypotheses of the lemma.

Thus a ă 8. Now suppose that there are two subsequences tniu and tn1
iu such

that ani Ñ a, an1
i

Ñ a1, where a ‰ a1; suppose for definiteness that 0 ≤ a1 ă a.
Then by (7) and (8),

|ϕni pani tq| Ñ |ϕpatq|, |ϕni pani tq| Ñ |ϕ̃ptq|
and

|ϕn1
i
pan1

i
tq| Ñ |ϕpa1tq|, |ϕn1

i
pan1

i
tq| Ñ |ϕ̃ptq|.

Consequently
|ϕpatq| “ |ϕpa1tq|,

and therefore, for all t P R,

|ϕptq| “
ˇ̌
ˇ̌ϕ

ˆ
a1

a
t

˙ˇ̌
ˇ̌ “ ¨ ¨ ¨ “

ˇ̌
ˇ̌ϕ

ˆˆ
a1

a

˙n

t

˙ˇ̌
ˇ̌ Ñ 1, n Ñ 8.

Therefore |ϕptq| ” 1 and, by Theorem 5 of Sect. 12, Chap. 2, it follows that ξ is a
degenerate random variable. This contradiction shows that a “ a1 and therefore that
there is a finite limit lim an “ a, with a ≥ 0.

Let us now show that there is a limit lim bn “ b, and that a ą 0. Since (8) is
satisfied uniformly on each finite interval, we have

ϕnpantq Ñ ϕpatq,
and therefore, by (7), the limit limnÑ8 eitbn exists for all t such that ϕpatq ‰ 0. Let
δ ą 0 be such that ϕpatq ‰ 0 for all |t| ă δ. For such t, lim eitbn exists. Hence we
can deduce (Problem 9) that lim sup |bn| ă 8.

Let there be two sequences tniu and tn1
iu such that lim bni “ b and lim bn1

i
“ b1.

Then
eitb “ eitb1

,
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for |t| ă δ, and consequently b “ b1. Thus there is a finite limit b “ lim bn and,
by (7),

ϕ̃ptq “ eitbϕpatq,
which means that ξ̃

d“ aξ ` b. Since ξ̃ is not degenerate, we have a ą 0.
This completes the proof of the lemma.
[\

4. We quote without proof a theorem on the general form of the characteristic func-
tions of stable distributions.

Theorem 4 (Lévy–Khinchin Representation). A random variable T is stable if and
only if its characteristic function ϕptq has the form ϕptq “ expψptq,

ψptq “ itβ ´ d|t|α
ˆ
1 ` iθ

t
|t|Gpt, αq

˙
, (9)

where 0 ă α ă 2, β P R, d ≥ 0, |θ| ≤ 1, t{|t| “ 0 for t “ 0, and

Gpt, αq “
$&
%

tan 1
2πα if α ‰ 1,

p2{πq log |t| if α “ 1.
(10)

Observe that it is easy to exhibit characteristic functions of symmetric stable
distributions:

ϕptq “ e´d|t|α , (11)

where 0 ă α ≤ 2, d ≥ 0.

5. PROBLEMS

1. Show that if ξn
dÑ ξ and ξn

dÑ η then ξ
d“ η.

2. Show that if ϕ1 and ϕ2 are infinitely divisible characteristic functions, then so
is ϕ1 ¨ ϕ2.

3. Let ϕn be infinitely divisible characteristic functions and let ϕnptq Ñ ϕptq for
every t P R, where ϕptq is a characteristic function. Show that ϕptq is infinitely
divisible.

4. Show that the characteristic function of an infinitely divisible distribution can-
not take the value 0.

5. Give an example of a random variable that is infinitely divisible but not stable.
6. Show that a stable random variable ξ satisfies the inequality E |ξ|r ă 8 for all

r P p0, αq, 0 ă α ă 2.
7. Show that if ξ is a stable random variable with parameter 0 ă α ≤ 1, then

ϕptq is not differentiable at t “ 0.
8. Prove that e´d|t|α is a characteristic function provided that d ≥ 0, 0 ă α ≤ 2.
9. Let pbnqn≥1 be a sequence of numbers such that limn eitbn exists for all |t| ă δ,

δ ą 0. Show that lim sup |bn| ă 8.
10. Show that the binomial and uniform distributions are not infinitely divisible.
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11. Let F and ϕ be a distribution function and its characteristic function that
are representable as F “ Fpnq ˚ ¨ ¨ ¨ ˚ Fpnq (n times) and ϕ “ rϕpnqsn with
some distribution functions Fpnq and their characteristic functions ϕpnq, n ≥ 1.
Show that there are (“rich” enough) probability space pΩ,F ,Pq and random

variables T and pηn
k qk≤n defined on it (such that T „ F and η

pnq
1 , . . . , η

pnq
n

are independent and identically distributed with distribution Fpnq) such that

T d“ η
pnq
1 ` ¨ ¨ ¨ ` η

pnq
n , n ≥ 1.

12. Give an example of a random variable which is not infinitely divisible, but
whose characteristic function nevertheless does not vanish.

7 Metrizability of Weak Convergence

1. Let pE,E , ρq be a metric space and PpEq “ tPu, a family of probability
measures on pE,E q. It is natural to raise the question of whether it is possible
to “metrize” the weak convergence Pn

wÑ P that was introduced in Sect. 1, that is,
whether it is possible to introduce a distance μpP, P̃q between any two measures P
and P̃ in PpEq in such a way that the limit μpPn, Pq Ñ 0 is equivalent to the limit
Pn

wÑ P.
In connection with this formulation of the problem, it is useful to recall that

convergence of random variables in probability, ξn
PÑ ξ, can be metrized by using,

for example, the distance dPpξ, ηq “ inftε ą 0: Pp|ξ ´ η| ≥ εq ≤ εu or the
distances dpξ, ηq “ Ep|ξ ´ η|{p1 ` |ξ ´ η|qq, dpξ, ηq “ Eminp1, |ξ ´ η|q. (More
generally, we can set dpξ, ηq “ E gp|ξ ´ η|q, where the function g “ gpxq, x ≥ 0,
can be chosen as any nonnegative increasing Borel function that is continuous at
zero and has the properties gpx ` yq ≤ gpxq ` gpyq for x ≥ 0, y ≥ 0, gp0q “ 0,
and gpxq ą 0 for x ą 0.) However, at the same time there is, in the space of random
variables over pΩ,F ,Pq, no distance dpξ, ηq such that dpξn, ξq Ñ 0 if and only
if ξn converges to ξ with probability one. (In this connection, it is easy to find a
sequence of random variables ξn, n ≥ 1, that converges to ξ in probability but does
not converge with probability one.) In other words, convergence with probability
one is not metrizable. (See Problems 11 and 12 in Sect. 10, Chap. 2.)

The aim of this section is to obtain concrete instances of two metrics, LpP, P̃q
and }P ´ P̃}B̊L in the space PpEq of measures, that metrize weak convergence:

Pn
wÑ P ô LpPn, Pq Ñ 0 ô }Pn ´ P}B̊L Ñ 0. (1)

2. The Lévy–Prokhorov metric L(P, P̃q. Let

ρpx,Aq “ inftρpx, yq : y P Au,
Aε “ tx P E : ρpx,Aq ă εu, A P E .
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For any two measures P and P̃ P PpEq, we set

σpP, P̃q “ inftε ą 0: PpFq ≤ P̃pFεq ` ε for all closed sets F P E u (2)

and
LpP, P̃q “ maxrσpP, P̃q, σpP̃,Pqs. (3)

The following lemma shows that the function LpP, rPq, P, rP P PpE q, which
is defined in this way, and is called the Lévy-Prokhorov metric, actually defines a
metric.

Lemma 1. The function LpP, P̃q has the following properties:

(a) LpP, P̃q “ LpP̃,Pqp“ σpP, P̃q “ σpP̃,Pqq,
(b) LpP, P̃q ≤ LpP, P̂q ` LpP̂, P̃q,
(c) LpP, P̃q “ 0 if and only if P̃ “ P.

PROOF. (a) It is sufficient to show that (with α ą 0 and β ą 0)

“PpFq ≤ P̃pFαq ` β for all closed sets F P E ” (4)

if and only if

“P̃pFq ≤ PpFαq ` β for all closed sets F P E .” (5)

Let T be a closed set in E . Then the set Tα is open and it is easy to verify that
T Ď EzpEzTαqα. If (4) is satisfied, then, in particular,

PpEzTαq ≤ P̃ppEzTαqαq ` β

and therefore,
P̃pTq ≤ P̃pEzpEzTαqαq ≤ PpTαq ` β,

which establishes the equivalence of (4) and (5). Hence, it follows that

σpP, P̃q “ σpP̃,Pq (6)

and therefore,
LpP, P̃q “ σpP, P̃q “ σpP̃,Pq “ LpP̃,Pq. (7)

(b) Let LpP, P̂q ă δ1 and LpP̂, P̃q ă δ2. Then for each closed set F P E

P̃pFq ≤ P̂pFδ2q ` δ2 ≤ PppFδ2qδ1q ` δ1 ` δ2 ≤ PpFδI`δ2q ` δ1 ` δ2

and therefore, LpP, P̃q ≤ δ1 ` δ2. Hence, it follows that

LpP, P̃q ≤ LpP, P̂q ` LpP̂, P̃q.
(c) If LpP, P̃q “ 0, then for every closed set F P E and every α ą 0

PpFq ≤ P̃pFαq ` α. (8)
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Since Fα Ó F, α Ó 0, we find, by taking the limit in (8) as α Ó 0, that PpFq ≤
P̃pFq and by symmetry P̃pFq ≤ PpFq. Hence, PpFq “ P̃pFq for all closed sets
F P E . For each Borel set A P E and every ε ą 0, there is an open set Gε Ě A and a
closed set Fε Ď A such that PpGεzFεq ≤ ε. Hence, it follows that every probability
measure P on a metric space pE,E , ρq is completely determined by its values on
closed sets. Consequently, it follows from the condition P̃pFq “ PpFq for all closed
sets F P E that P̃pAq “ PpAq for all Borel sets A P E .

[\
Theorem 1. The Lévy-Prokhorov metric LpP, P̃q metrizes weak convergence:

LpPn, Pq Ñ 0 ô Pn
wÑ P. (9)

PROOF. pñq Let LpPn, Pq Ñ 0, n Ñ 8. Then for every specified closed set F P E
and every ε ą 0, we have, by (2) and equation (a) of Lemma 1,

lim sup
n

PnpFq ≤ PpFεq ` ε. (10)

If we then let ε Ó 0, we find that

lim sup
n

PnpFq ≤ PpFq.

According to Theorem 1 of Sect. 1, it follows that

Pn
wÑ P. (11)

The proof of the implication pðq will be based on a series of deep and powerful
facts that illuminate the content of the concept of weak convergence and the method
of establishing it, as well as methods of studying rates of convergence.

Thus, let Pn
wÑ P. This means that for every bounded continuous function f “

f pxq ż
E

f pxq Pnpdxq Ñ
ż

E
f pxq Ppdxq. (12)

Now suppose that G is a class of equicontinuous functions g “ gpxq (for every
ε ą 0 there is a δ ą 0 such that |gpyq ´ gpxq| ă ε if ρpx, yq ă δ for all g P G q and
|gpxq| ≤ C for the same constant C ą 0 (for all x P E and g P G ). By Theorem 3 of
Sect. 8, the following condition, stronger than (12), is valid for G :

Pn
wÑ P ñ sup

gPG

ˇ̌
ˇ̌ż

E
gpxq Pnpdxq ´

ż
E

gpxq Ppdxq
ˇ̌
ˇ̌ Ñ 0. (13)

For each A P E and ε ą 0, we set (as in Theorem 1, Sect. 1)

f εA pxq “
„
1 ´ ρpx,Aq

ε

j`
. (14)
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It is clear that
IApxq ≤ f εA pxq ≤ IAεpxq (15)

and
|f εA pxq ´ f εA pyq| ≤ ε´1|ρpx, Aq ´ ρpy, Aq| ≤ ε´1ρpx, yq.

Therefore, we have (13) for the class G ε “ tf εA pxq, A P E u, i.e.,

Δn ” sup
APE

ˇ̌
ˇ̌ż

E
f εA pxq Pnpdxq ´

ż
E

f εA pxq Ppdxq
ˇ̌
ˇ̌ Ñ 0, n Ñ 8. (16)

From this and (15) we conclude that, for every closed set A P E and ε ą 0,

PpAεq ≥
ż

E
f εA pxq dP ≥

ż
E

f εA pxq dPn ´ Δn ≥ PnpAq ´ Δn. (17)

We choose npεq so that Δn ≤ ε for n ≥ npεq. Then, by (17), for n ≥ npεq
PpAεq ≥ PnpAq ´ ε. (18)

Hence, it follows from definitions (2) and (3) that LpPn,Pq ≤ ε as soon as n ≥ npεq.
Consequently,

Pn
wÑ P ñ Δn Ñ 0 ñ LpPn,Pq Ñ 0.

The theorem is now proved (up to (13)).
[\

3. The metric }P ´ P̃}B̊L. We denote by BL the set of bounded continuous functions
f “ f pxq, x P E (with }f }8 “ supx |f pxq| ă 8q that also satisfy the Lipschitz
condition

}f }L “ sup
x‰y

|f pxq ´ f pyq|
ρpx, yq ă 8.

We set }f }BL “ }f }8 ` }f }L. The space BL with the norm } ¨ }BL is a Banach
space.

We define the metric }P ´ P̃}B̊L by setting

}P ´ P̃}B̊L “ sup
f PBL

"ˇ̌
ˇ̌ż f dpP ´ P̃q

ˇ̌
ˇ̌ : }f }BL ≤ 1

*
. (19)

(We can verify that }P ´ P̃}B̊L actually satisfies the conditions for a metric; Prob-
lem 2.)

Theorem 2. The metric }P ´ P̃}B̊L metrizes weak convergence:

}Pn ´ P}B̊L Ñ 0 ô Pn
wÑ P.
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PROOF. The implication pðq follows directly from (13). To prove pñq, it is enough
to show that in the definition of weak convergence Pn

wÑ P as given by (12) for every
continuous bounded function f “ f pxq, it is enough to restrict consideration to the
class of bounded functions that satisfy a Lipschitz condition. In other words, the
implication pñq will be proved if we establish the following result.

Lemma 2. Weak convergence Pn
wÑ P occurs if and only if property (12) is satisfied

for every function f “ f pxq of class BL.

PROOF. The proof is obvious in one direction. Let us now consider the functions
f εA “ f εA pxq defined in (14). As was established above in the proof of Theorem 1, for
each ε ą 0 the class G ε “ tf εA pxq, A P G u Ď BL. If we now analyze the proof of the
implication pIq ñ pIIq in Theorem 1 of Sect. 1, we can observe that it actually uses
property (12) not for all bounded continuous functions but only for functions of class
G ε, ε ą 0. Since G ε Ď BL, ε ą 0, it is evidently true that the satisfaction of (12)
for functions of class BL implies proposition (II) of Theorem 1, Sect. 1, which is
equivalent (by the same Theorem 1, Sect. 1) to the weak convergence Pn

wÑ P.
[\

Remark. The conclusion of Theorem 2 can be derived from Theorem 1 (and
conversely) if we use the following inequalities between the metrics LpP, P̃q and
}P ´ P̃}B̊L, which are valid for the separable metric spaces pE,E , ρq:

}P ´ P̃}B̊L ≤ 2LpP, P̃q, (20)

ϕpLpP, P̃qq ≤ }P ´ P̃}B̊L, (21)

where ϕpxq “ 2x2{p2 ` xq.
Taking into account that, for x ≥ 0, we have 0 ≤ ϕ ≤ 2{3 if and only if x ≤ 1,

and p2{3qx2 ≤ ϕpxq for 0 ≤ x ≤ 1, we deduce from (20) and (21) that if LpP, P̃q ≤ 1
or }P ´ P̃}B̊L ≤ 2{3, then

2
3L2pP, P̃q ≤ }P ´ P̃}B̊L ≤ 2LpP, P̃q. (22)

4. PROBLEMS

1. Show that in case E “ R the Lévy–Prokhorov distance between the probability
distributions P and P̃ is no less than the Lévy distance LpF, F̃q between the
distribution functions F and F̃ that correspond to P and P̃ (see Problem 4 in
Sect. 1). Give an example of a strict inequality between these distances.

2. Show that formula (19) defines a metric on the space BL.
3. Establish the inequalities (20), (21), and (22).
4. Let F “ Fpxq and G “ Gpxq be two distribution functions and Pc and Qc

be the points of their intersection of the line x ` y “ c. Show that the Lévy
distance between F and G (see Problem 4 in Sect. 1) equals
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LpF,Gq “ sup
c

PcQc?
2
,

where PcQc is the length of the interval between the points Pc and Qc.
5. Show that the set of all distribution functions endowed with Lévy distance is a

complete space.

8 On the Connection of Weak Convergence of Measures
with Almost Sure Convergence of Random Elements
(“Method of a Single Probability Space”)

1. Let us suppose that on the probability space pΩ, F , Pq there are given random el-
ements X “ Xpωq, Xn “ Xnpωq, n ≥ 1, taking values in the metric space pE, E , ρq;
see Sect. 5, Chap. 2. We denote by P and Pn the probability distributions of X and
Xn, i.e., let

PpAq “ Ptω : Xpωq P Au, PnpAq “ Ptω : Xnpωq P Au, A P E .

Generalizing the concept of convergence in distribution of random variables (see
Sect. 10, Chap. 2), we introduce the following definition.

Definition 1. A sequence of random elements Xn, n ≥ 1, is said to converge in

distribution, or in law (notation: Xn
DÑ X, or Xn

LÑ X), if Pn
wÑ P.

By analogy with the definitions of convergence of random variables in probabil-
ity or with probability one (Sect. 10, Chap. 2), it is natural to introduce the following
definitions.

Definition 2. A sequence of random elements Xn, n ≥ 1, is said to converge in
probability to X if

Ptω : ρpXnpωq, Xpωqq ≥ εu Ñ 0, n Ñ 8. (1)

Definition 3. A sequence of random elements Xn, n ≥ 1, is said to converge to X
with probability one (almost surely, almost everywhere) if ρpXnpωq, Xpωqq a.s.Ñ 0 as
n Ñ 8.

Remark 1. Both of the preceding definitions make sense, of course, provided that
ρpXnpωq, Xpωqq are, as functions of ω P Ω, random variables, i.e., F -measurable
functions. This will certainly be the case if the space pE, E , ρq is separable
(Problem 1).

Remark 2. In connection with Definition 2 note that convergence in probability
introduced therein is metrized by the following Ky Fan distance (see [55]) between
random elements X and Y (defined on pΩ,F ,Pq and ranging in E; Problem 2):
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dPpX, Yq “ inftε ą 0: PtρpXpωq, Ypωqq ≥ εu ≤ εu. (2)

Remark 3. Whereas the definitions of convergence in probability and with prob-
ability one presume that all the random elements are defined on the same prob-

ability space, the definition Xn
DÑ X of convergence in distribution is connected

only with the convergence of distributions, and consequently, we may suppose that
Xpωq, X1pωq, X2pωq, . . . have values in the same space E, but may be defined
on “their own” probability spaces pΩ, F , Pq, pΩ1, F1, P1q, pΩ2, F2, P2q, . . . .
However, without loss of generality we may always suppose that they are defined on
the same probability space, taken as the direct product of the underlying spaces and
with the definitions Xpω, ω1, ω2, . . .q “ Xpωq, X1pω, ω1, ω2, . . .q “ X1pω1q, . . . .

2. By Definition 1 and the theorem on change of variables under the Lebesgue inte-
gral sign (Theorem 7 of Sect. 6, Chap. 2)

Xn
DÑ X ô E f pXnq Ñ E f pXq (3)

for every bounded continuous function f “ f pxq, x P E.
From (3) it is clear that, by Lebesgue’s theorem on dominated convergence (The-

orem 3 of Sect. 6, Chap. 2), the limit Xn
a.s.Ñ X immediately implies the limit Xn

DÑ X,
which is hardly surprising if we think of the situation when X and Xn are ran-
dom variables (Theorem 2 of Sect. 10, Chap. 2). More unexpectedly, in a certain
sense there is a converse result, the precise formulation and application we now
turn to.

Preliminarily, we introduce a definition.

Definition 4. Random elements X “ Xpω1q and Y “ Ypω2q, defined on probabil-
ity spaces pΩ1, F 1, P1q and pΩ2, F 2, P2q and with values in the same space E,

are said to be equivalent in distribution (notation: X
D“ Y), if they have the same

probability distribution.

Theorem 1. Let pE, E , ρq be a separable metric space.
1. Let random elements X, Xn, n ≥ 1, defined on a probability space pΩ,F , Pq,

and with values in E, have the property that Xn
DÑ X. Then we can find a probability

space pΩ˚,F˚,P˚q and random elements X˚, Xn̊ , n ≥ 1, defined on it, with values
in E, such that

Xn̊
a.s.Ñ X˚

and
X˚D“ X, Xn̊

D“ Xn, n ≥ 1.

2. Let P, Pn, n ≥ 1, be probability measures on pE, E , ρq such that Pn
wÑ P.

Then there is a probability space pΩ˚,F˚,P˚q and random elements X˚, Xn̊ , n ≥
1, defined on it, with values in E, such that
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Xn̊
a.s.Ñ X˚

and
P˚ “ P, Pn̊ “ Pn, n ≥ 1,

where P˚ and Pn̊ are the probability distributions of X˚ and Xn̊ .

Before turning to the proof, we first notice that it is enough to prove only the
second conclusion, since the first follows from it if we take P and Pn to be the
distributions of X and Xn. Similarly, the second conclusion follows from the first.
Second, we notice that the proof of the theorem in full generality is technically
rather complicated. For this reason, here we give a proof only of the case E “ R.
This proof is rather transparent and moreover, provides a simple, clear construction
of the required objectives. (Unfortunately, this construction does not work in the
general case, even for E “ R2.)

PROOF OF THE THEOREM IN THE CASE E “ R. Let F “ Fpxq and Fn “ Fnpxq be
the distribution functions corresponding to the measures P and Pn on pR, BpRqq. We
associate with a function F “ Fpxq its corresponding quantile function Q “ Qpuq,
uniquely defined by the formula

Qpuq “ inftx : Fpxq ≥ uu, 0 ă u ă 1. (4)

It is easily verified that
Fpxq ≥ u ô Qpuq ≤ x. (5)

We now take Ω˚ “ p0, 1q, F˚ “ Bp0, 1q, P˚ to be Lebesgue measure,
P˚pdω˚q “ dω˚. We also take X˚pω˚q “ Qpω˚q for ω˚ P Ω˚. Then

P˚tω˚ : X˚pω˚q ≤ xu “ P˚tω˚ : Qpω˚q ≤ xu “ P˚tω˚ : ω˚ ≤ Fpxqu “ Fpxq,
i.e., the distribution of the random variable X˚pω˚q “ Qpω˚q coincides exactly with
P. Similarly, the distribution of Xn̊ pω˚q “ Qnpω˚q coincides with Pn.

In addition, it is not difficult to show that the convergence of Fnpxq to Fpxq at
each point of continuity of the limit function F “ Fpxq (equivalent, if E “ R, to
the convergence Pn

wÑ P; see Theorem 1 in Sect. 1) implies that the sequence of
quantiles Qnpuq, n ≥ 1, also converges to Qpuq at every point of continuity of the
limit Q “ Qpuq. Since the set of points of discontinuity of Q “ Qpuq, u P p0, 1q, is
at most countable, its Lebesgue measure P˚ is zero and therefore,

Xn̊ pω˚q “ Qnpω˚q a.s.Ñ X˚pω˚q “ Qpω˚q.
The theorem is established in the case of E “ R.

[\
This construction in Theorem 1 of a passage from given random elements X and

Xn to new elements X˚ and Xn̊ , defined on the same probability space, explains the
announcement in the heading of this section of the method of a single probability
space.
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We now turn to a number of propositions that are established very simply by
using this method.

3. Let us assume that the random elements X and Xn, n ≥ 1, are defined, for ex-
ample, on a probability space pΩ,F ,Pq with values in a separable metric space

pE,E , ρq, so that Xn
DÑ X. Also let h “ hpxq, x P E, be a measurable mapping of

pE,E , ρq into another separable metric space pE1,E 1, ρ1q. In probability and math-
ematical statistics it is often necessary to deal with the search for conditions under

which we can say of h “ hpxq that the limit Xn
DÑ X implies the limit hpXnq DÑ hpXq.

For example, let ξ1, ξ2, . . . be independent identically distributed random vari-
ables with E ξ1 “ m, Var ξ1 “ σ2 ą 0. Let Xn “ pξ1 ` ¨ ¨ ¨ ` ξnq{n. The central
limit theorem shows that

?
npXn ´ mq

σ

dÑN p0, 1q.
Let us ask, for what functions h “ hpxq can we guarantee that

h

ˆ?
npXn ´ mq

σ

˙
dÑ hpN p0, 1qq?

(The well-known Mann–Wald theorem states with respect to this question that this
is certainly true for continuous functions h “ hpxq, hence it immediately follows,

e.g., that npX ´ mq2{σ2 dÑχ2
1, where χ2

1 is a random variable with a chi-squared
distribution with one degree of freedom; see Table 2.3 in Sect. 3, Chap. 2.)

A second example. If X “ Xpt, ωq,Xn “ Xnpt, ωq, t P T , are random processes
(see Sect. 5, Chap. 2) and hpXq “ suptPT |Xpt, ωq|, hpXnq “ suptPT |Xnpt, ωq|, our
problem amounts to asking under what conditions the convergence in distribution

of the processes Xn
DÑ X will imply the convergence in distribution of their suprema,

hpXnq DÑ hpXq.
A simple condition that guarantees the validity of the implication

Xn
DÑ X ñ hpXnq DÑ hpXq,

is that the mapping h “ hpxq is continuous. In fact, if f “ f px1q is a bounded
continuous function on E1, the function f phpxqq will also be a bounded continuous
function on E. Consequently,

Xn
DÑ X ñ E f phpXnqq Ñ E f phpXqq.

The theorem given below shows that in fact the requirement of continuity of the
function h “ hpxq can be somewhat weakened by using the properties of the limit
random element X.
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We denote by Δh the set {x P E : hpxq is not ρ-continuous at x}; i.e., let Δh be
the set of points of discontinuity of the function h “ hpxq. We note that Δh P E
(Problem 4).

Theorem 2. 1. Let pE,E , ρq and pE1,E 1, ρ1q be separable metric spaces, and let

Xn
DÑ X. Let the mapping h “ hpxq, x P E, have the property that

Ptω : Xpωq P Δhu “ 0. (6)

Then hpXnq DÑ hpXq.
2. Let P, Pn, n ≥ 1, be probability distributions on the separable metric space

pE,E , ρq and h “ hpxq a measurable mapping of pE,E , ρq on a separable metric
space pE1,E 1, ρ1q. Let

Ptx : x P Δhu “ 0.

Then Ph
n

wÑ Ph, where Ph
npAq “ Pnthpxq P Au, PhpAq “ Pthpxq P Au, A P E 1.

PROOF. As in Theorem 1, it is enough to prove the validity of, for example, the first
proposition.

Let X˚ and Xn̊ , n ≥ 1, be random elements constructed by the “method of a

single probability space,” so that X˚ D“ X, Xn̊
D“ Xn, n ≥ 1, and Xn̊

a. s.Ñ X˚. Let A˚ “
tω˚ : ρpXn̊ , X˚q Û 0u, B˚ “ tω˚ : X˚pω˚q P Δnu. Then P˚pA˚ Y B˚q “ 0, and
for ω˚ R A˚ Y B˚

hpXn̊ pω˚qq Ñ hpX˚pω˚qq,
which implies that hpXn̊ q a.s.Ñ hpX˚q. As we noticed in Subsection 1, it follows that

hpXn̊ q DÑ hpX˚q. But hpXn̊ q D“ hpXnq and hpX˚q D“ hpXq. Therefore, hpXn̊ q DÑ hpXq.
This completes the proof of the theorem.
[\

4. In Sect. 7, in the proof of the implication pðq in Theorem 1, we used (13). We
now give a proof that again relies on the “method of a single probability space.”

Let pE,E , ρq be a separable metric space, and G a class of equicontinuous func-
tions g “ gpxq for which also |gpxq| ≤ C, C ą 0 for all x P E and g P G .

Theorem 3. Let P and Pn, n ≥ 1, be probability measures on pE,E , ρq for which

Pn
wÑ P. Then

sup
gPG

ˇ̌
ˇ̌ż

E
gpxq Pnpdxq ´

ż
E

gpxq Ppdxq
ˇ̌̌
ˇ Ñ 0, n Ñ 8. (7)

PROOF. Let (7) not occur. Then there are an a ą 0 and functions g1, g2, . . . from G
such that ˇ̌̌

ˇ
ż

E
gnpxq Pnpdxq ´

ż
E

gnpxq Ppdxq
ˇ̌̌
ˇ ≥ a ą 0 (8)
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for infinitely many values of n. Turning by the “method of a single probability space”
to random elements X˚ and Xn̊ (see Theorem 1), we transform (8) to the form

| E˚ gnpXn̊ q ´ E˚ gnpX˚q| ≥ a ą 0 (9)

for infinitely many values of n. But, by the properties of G , for every ε ą 0 there
is a δ ą 0 for which |gpyq ´ gpxq| ă ε for all g P G , if ρpx, yq ă δ. In addition,
|gpxq| ≤ C for all x P E and g P G . Therefore,

| E˚ gnpXn̊ q ´ E˚ gnpX˚q| ≤ E˚t|gnpXn̊ q ´ gnpX˚q|; ρpXn̊ , X˚q ą δu
` E˚t|gnpXn̊ q ´ gnpX˚q|; ρpXn̊ , X˚q ≤ δu

≤ 2C P˚tρpXn̊ , X˚q ą δu ` ε.

Since Xn̊
a.s.ÑX˚, we have P˚tρpXn̊ , X˚q ą δu Ñ 0 as n Ñ 8. Consequently, since

ε ą 0 is arbitrary,

lim sup
n

| E˚ gnpXn̊ q ´ E˚ gnpX˚q| “ 0,

which contradicts (9).
This completes the proof of the theorem. [\

5. In this subsection the idea of the “method of a single probability space” used
in Theorem 1 will be applied to estimating upper bounds of the Lévy–Prokhorov
metric LpP, P̃q between two probability distributions on a separable space pE,E , ρq.

Theorem 4. For each pair P, P̃ of measures we can find a probability space
pΩ˚,F˚,P˚q and random elements X and X̃ on it with values in E such that their
distributions coincide respectively with P and P̃ and

LpP, P̃q ≤ dP˚ pX, X̃q “ inftε ą 0: P˚pρpX, X̃q ≥ εq ≤ εu. (10)

PROOF. By Theorem 1, we can find a probability space pΩ˚,F˚,P˚q and random
elements X and X̃ such that P˚pX P Aq “ PpAq and P˚pX̃ P Aq “ P̃pAq, A P E .

Let ε ą 0 have the property that

P˚pρpX, X̃q ≥ εq ≤ ε. (11)

Then for every A P E we have, denoting Aε “ tx P E : ρpx,Aq ă εu,

P̃pAq “ P˚pX̃ P Aq “ P˚pX̃ P A, X P Aεq ` P˚pX̃ P A, X R Aεq
≤ P˚pX P Aεq ` P˚pρpX, X̃q ≥ εq ≤ PpAεq ` ε.

Hence, by the definition of the Lévy–Prokhorov metric (Subsection 2, Sect. 7)

LpP, P̃q ≤ ε. (12)

From (11) and (12), if we take the infimum for ε ą 0 we obtain the required asser-
tion (10). [\



9 The Distance in Variation Between Probability Measures. . . 431

Corollary. Let X and X̃ be random elements defined on a probability space
pΩ,F ,Pq with values in E. Let PX and PX̃ be their probability distributions. Then

LpPX, PX̃q ≤ dPpX, X̃q.
Remark 4. The preceding proof shows that in fact (10) is valid whenever we can
exhibit on any probability space pΩ˚,F˚,P˚q random elements X and X̃ with
values in E whose distributions coincide with P and P̃ and for which the set
tω˚ : ρpXpω˚q, X̃pω˚qq ≥ εu P F˚, ε ą 0. Hence, the property of (10) de-
pends in an essential way on how well, with respect to the measures P and P̃, the
objects pΩ˚,F˚,P˚q and X, X̃ are constructed. (The procedure for constructing
Ω˚,F˚,P˚ and X, X̃ for given P, P̃, is called coupling.) We could, for example,
choose P˚ equal to the direct product of the measures P and P̃, but this choice
would, as a rule, not lead to a good estimate (10).

Remark 5. It is natural to raise the question of when there is equality in (10). In this
connection we state the following result without proof: Let P and P̃ be two proba-
bility measures on a separable metric space pE,E , ρq; then there are pΩ˚,F˚,P˚q
and X, X̃ such that

LpP, P̃q “ dP˚ pX, X̃q “ inftε ą 0: P˚pρpX, X̃q ≥ εq ≤ εu.
5. PROBLEMS

1. Prove that in the case of separable metric spaces the real-valued function
ρpXpωq, Ypωqq is a random variable for all random elements Xpωq and Ypωq
defined on a probability space pΩ,F ,Pq.

2. Prove that the function dPpX, Yq defined in (2) is a metric in the space of
random elements with values in E.

3. Establish (5).
4. Prove that the set Δh “{x P E : hpxq is not ρ-continuous at x} P E .

9 The Distance in Variation Between Probability Measures:
Kakutani–Hellinger Distance and Hellinger
Integrals—Application to Absolute Continuity and Singularity
of Measures

1. Let pΩ,F q be a measurable space and P “ tPu a family of probability measures
on it.

Definition 1. The distance in variation between measures P and P̃ in P (notation:
}P ´ P̃}q is the total variation of P ´ P̃, i.e.,

}P ´ P̃} “ var pP ´ P̃q ” sup

ˇ̌ˇ̌ż
Ω

ϕpωq dpP ´ P̃q
ˇ̌ˇ̌ , (1)
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where the sup is over the class of all F -measurable functions that satisfy the con-
dition that |ϕpωq| ≤ 1.

Lemma 1. The distance in variation is given by

}P ´ P̃} “ 2 sup
APF

|PpAq ´ P̃pAq|. (2)

PROOF. Since, for all A P F ,

PpAq ´ P̃pAq “ P̃pAq ´ PpAq,
we have

2|PpAq ´ P̃pAq| “ |PpAq ´ P̃pAq| ` |PpAq ´ P̃pAq| ≤ }P ´ P̃},
where the last inequality follows from (1).

For the proof of the converse inequality we turn to the Hahn decomposition (see,
for example, [52], § 5, Chapter VI, or [39], p. 121) of the signed measure μ ” P´P̃.
In this decomposition the measure μ is represented in the form μ “ μ` ´μ´, where
the nonnegative measures μ` and μ´ (the upper and lower variations of μq are of
the form

μ`pAq “
ż

AXM
dμ, μ´pAq “ ´

ż
AXM

dμ, A P F ,

where M is a set in F . Here

varμ “ varμ` ` varμ´ “ μ`pΩq ` μ´pΩq.
Since

μ`pΩq “ PpMq ´ P̃pMq, μ´pΩq “ P̃pMq ´ PpMq,
we have

}P ´ P̃} “ pPpMq ´ P̃pMqq ` pP̃pMq ´ PpMqq ≤ 2 sup
APF

|PpAq ´ P̃pAq|.

This completes the proof of the lemma.
[\

Definition 2. A sequence of probability measures Pn, n ≥ 1, is said to be conver-
gent in variation to the measure P (denoted Pn

varÝÝÑ P), if

}Pn ´ P} Ñ 0, n Ñ 8. (3)

From this definition and Theorem 1 of Sect. 1 it is easily seen that convergence in
variation of probability measures defined on a metric space pΩ,F , ρq implies their
weak convergence.
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The proximity in variation of distributions is, perhaps, the strongest form of
closeness of probability distributions, since if two distributions are close in vari-
ation, then in practice, in specific situations, they can be considered indistinguish-
able. In this connection, the impression may be created that the study of distance in
variation is not of much probabilistic interest. However, for example, in Poisson’s
theorem (Sect. 6, Chap. 1) the convergence of the binomial to the Poisson distri-
bution takes place in the sense of convergence to zero of the distance in variation
between these distributions. (Later, in Sect. 12, we shall obtain an upper bound for
this distance.)

We also provide an example from the field of mathematical statistics, where the
necessity of determining the distance in variation between measures P and P̃ arises
in a natural way in connection with the problem of discrimination (based on ob-
served data) between two statistical hypotheses H (the true distribution is P) and rH
(the true distribution is rP) in order to decide which probabilistic model pΩ,F ,Pq or
pΩ,F , rPq better fits the statistical data. If ω P Ω is treated as the result of an obser-
vation, by a test (for discrimination between the hypotheses H and H̃) we understand
any F -measurable function ϕ “ ϕpωq with values in r0, 1s, the statistical meaning
of which is that ϕpωq is “the probability with which hypothesis H̃ is accepted if the
result of the observation is ω.”

We shall characterize the performance of this rule for discrimination between H
and H̃ by the probabilities of errors of the first and second kind:

αpϕq “ Eϕpωq p“ Prob paccepting H̃ | H is trueqq,
βpϕq “ Ẽp1 ´ ϕpωqq p“ Prob paccepting H | H̃ is trueqq.

In the case when hypotheses H and H̃ are equally significant to us, it is natural
to consider the test ϕ˚ “ ϕ˚pωq (if there is such a test) that minimizes the sum
αpϕq ` βpϕq of the errors as the optimal one.

We set
E rpP, P̃q “ inf

ϕ
rαpϕq ` βpϕqs. (4)

Let Q “ pP ` P̃q{2 and z “ dP{dQ, z̃ “ dP̃{dQ. Then

E rpP, P̃q “ inf
ϕ

rEϕ ` Ẽp1 ´ ϕqs
“ inf

ϕ
EQrzϕ ` z̃p1 ´ ϕqs “ 1 ` inf

ϕ
EQrϕpz ´ z̃qs,

where EQ is the expectation with respect to the measure Q.
It is easy to see that the inf is attained by the function

ϕ˚pωq “ Itz̃ ă zu
and, since EQpz ´ z̃q “ 0, that

E rpP, P̃q “ 1 ´ 1
2EQ|z ´ z̃| “ 1 ´ 1

2}P ´ P̃}, (5)
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where the last equation will follow from Lemma 2, below. Thus it is seen from (5)
that the performance ErpP, rPq of the optimal test for discrimination between the two
hypotheses depends on the total variation distance between P and rP.

Lemma 2. Let Q be a σ-finite measure such that P ! Q, rP ! Q and let z “ dP{dQ,
rz “ drP{dQ be the Radon–Nikodym derivatives of P and rP with respect to Q. Then

}P ´ P̃} “ EQ|z ´ z̃| (6)

and if Q “ pP ` P̃q{2, we have

}P ´ P̃} “ EQ|z ´ z̃| “ 2EQ|1 ´ z| “ 2EQ|1 ´ z̃|. (7)

PROOF. For all F -measurable functions ψ “ ψpωq with |ψpωq| ≤ 1, we see from
the definitions of z and z̃ that

|Eψ ´ Ẽψ| “ |EQψpz ´ z̃q| ≤ EQ|ψ||z ´ z̃| ≤ EQ|z ´ z̃|. (8)

Therefore,
}P ´ P̃} ≤ EQ|z ´ z̃|. (9)

However, for the function

ψ “ signpz̃ ´ zq “
"

1, z̃ ≥ z,
´1, z̃ ă z,

we have
|Eψ ´ Ẽψ| “ EQ|z ´ z̃|. (10)

We obtain the required equation (6) from (9) and (10). Then (7) follows from (6)
because z ` z̃ “ 2 (Q-a. s.).

[\
Corollary 1. Let P and P̃ be two probability distributions on pR, BpRqq with prob-
ability densities (with respect to Lebesgue measure dx) ppxq and p̃pxq, x P R.
Then

}P ´ P̃} “
ż 8

´8
|ppxq ´ p̃pxq| dx. (11)

(As the measure Q, we are to take Lebesgue measure on pR, BpRqq.)
Corollary 2. Let P and P̃ be two discrete measures, P “ pp1, p2, . . .q, P̃ “
pp̃1, p̃2, . . .q, concentrated on a countable set of points x1, x2, . . .. Then

}P ´ P̃} “
8ÿ

i“1

|pi ´ p̃i|. (12)

(As the measure Q, we are to take the counting measure, i.e., that with Qptxiuq “
1, i “ 1, 2, . . . . q
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2. We now turn to still another measure of the proximity of two probability mea-
sures, closely related (as will follow later) to the proximity measure in variation.

Let P and P̃ be probability measures on pΩ, F q and Q, the third probability
measure, dominating P and P̃, i.e., such that P ! Q and P̃ ! Q. We again use the
notation

z “ dP
dQ

, z̃ “ dP̃
dQ

.

Definition 3. The Kakutani–Hellinger distance between the measures P and P̃ is the
nonnegative number ρpP, P̃q such that

ρ2pP, P̃q “ 1
2EQr?z ´ ?

z̃s2. (13)

Since

EQr?z ´ ?
z̃s2 “

ż
Ω

»
–

d
dP
dQ

´
d

dP̃
dQ

fi
fl

2

dQ, (14)

it is natural to write ρ2pP, P̃q symbolically in the form

ρ2pP, P̃q “ 1
2

ż
Ω

r?dP ´
a

dP̃s2. (15)

If we set
HpP, P̃q “ EQ

?
zz̃, (16)

then, by analogy with (15), we may write symbolically

HpP, P̃q “
ż
Ω

a
dP dP̃. (17)

From (13) and (16), as well as from (15) and (17), it is clear that

ρ2pP, P̃q “ 1 ´ HpP, P̃q. (18)

The number HpP, P̃q is called the Hellinger integral of the measures P and P̃. It
turns out to be convenient, for many purposes, to consider the Hellinger integrals
Hpα;P, P̃q of order α P p0, 1q, defined by the formula

Hpα;P, P̃q “ EQzαz̃1´α, (19)

or, symbolically,

Hpα;P, P̃q “
ż
Ω

pdPqαpdP̃q1´α. (20)

It is clear that Hp1{2;P, P̃q “ HpP, P̃q.
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For Definition 3 to be reasonable, we need to show that the number ρ2pP, P̃q
is independent of the choice of the dominating measure and that in fact ρpP, P̃q
satisfies the requirements of the concept of “distance.”

Lemma 3. 1. The Hellinger integral of order α P p0, 1q (and consequently also
ρpP, P̃qq is independent of the choice of the dominating measure Q.

2. The function ρ defined in (13) is a metric on the set of probability measures.

PROOF. 1. If the measure Q1 dominates P and P̃, Q1 also dominates Q “ pP` P̃q{2.
Hence, it is enough to show that if Q ! Q1, we have

EQpzαz̃1´αq “ EQ1 pz1qαpz̃1q1´α,

where z1 “ dP{dQ1 and z̃1 “ dP̃{dQ1.
Let us set v “ dQ{dQ1. Then z1 “ zv, z̃1 “ z̃v, and

EQpzαz̃1´αq “ EQ1 pvzαz̃1´αq “ EQ1 pz1qαpz̃1q1´α,

which establishes the first assertion.
2. If ρpP, P̃q “ 0 we have z “ z̃ (Q-a.e.) and hence, P “ P̃. By symmetry,

we evidently have ρpP, P̃q “ ρpP̃,Pq. Finally, let P, P1, and P2 be three measures,
P ! Q, P1 ! Q, and P2 ! Q, with z “ dP{dQ, z1 “ dP1{dQ, and z2 “ dP2{dQ. By
using the validity of the triangle inequality for the norm in L2pΩ,F ,Qq, we obtain

rEQp?
z ´ ?

z2q2s1{2 ≤ rEQp?
z ´ ?

z1q2s1{2 ` rEQp?
z1 ´ ?

z2q2s1{2,

i.e.,
ρpP, P2q ≤ ρpP, P1q ` ρpP1, P2q.

This completes the proof of the lemma.
[\
By Definition (19) and Fubini’s theorem (Sect. 6, Chap. 2), it follows immedi-

ately that in the case when the measures P and P̃ are direct products of measures,
P “ P1 ˆ ¨ ¨ ¨ ˆ Pn, P̃ “ P̃1 ˆ ¨ ¨ ¨ ˆ P̃n (see Subsection 10 in Sect. 6, Chap. 2),
the Hellinger integral between the measures P and P̃ is equal to the product of the
corresponding Hellinger integrals:

Hpα;P, P̃q “
nź

i“1

Hpα;Pi, P̃iq.

The following theorem shows the connection between distance in variation and
Kakutani–Hellinger distance (or, equivalently, the Hellinger integral). In particular,
it shows that these distances define the same topology in the space of probability
measures on pΩ,F q.
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Theorem 1. We have the following inequalities:

2r1 ´ HpP, P̃qs ≤ }P ´ P̃} ≤
b

8r1 ´ HpP, P̃qs, (21)

}P ´ P̃} ≤ 2

b
1 ´ H2pP, P̃q. (22)

In particular,
2ρ2pP, P̃q ≤ }P ´ P̃} ≤

?
8ρpP, P̃q. (23)

PROOF. Since HpP, P̃q ≤ 1 and 1 ´ x2 ≤ 2p1 ´ xq for 0 ≤ x ≤ 1, the right-hand
inequality in (21) follows from (22), the proof of which is provided by the following
chain of inequalities pwhere Q “ p1{2qpP ` P̃qq:

1
2}P ´ P̃} “ EQ|1 ´ z| ≤

b
EQ|1 ´ z|2 “

b
1 ´ EQzp2 ´ zq

“ a
1 ´ EQzz̃ “

b
1 ´ EQp?

zz̃q2 ≤
b

1 ´ pEQ

?
zz̃q2

“
b
1 ´ H2pP, P̃q.

Finally, the first inequality in (21) follows from the fact that by the inequality

1
2 r?z ´ ?

2 ´ zs2 ≤ |z ´ 1|, z P r0, 2s,
we have pagain, Q “ p1{2qpP ` P̃qq

1 ´ HpP, P̃q “ ρ2pP, P̃q “ 1
2EQr?z ´ ?

2 ´ zs2 ≤ EQ|z ´ 1| “ 1
2}P ´ P̃}.

[\
Remark. It can be shown in a similar way that, for every α P p0, 1q,

2r1 ´ Hpα;P, P̃qs ≤ }P ´ P̃} ≤
b

cαp1 ´ Hpα;P, P̃qq, (24)

where cα is a constant.

Corollary 3. Let P and Pn, n ≥ 1, be probability measures on pΩ,F q. Then pas
n Ñ 8q

}Pn ´ P} Ñ 0 ô HpPn,Pq Ñ 1 ô ρpPn,Pq Ñ 0,

}Pn ´ P} Ñ 2 ô HpPn, Pq Ñ 0 ô ρpPn,Pq Ñ 1.

Corollary 4. Since by (5)

E rpP, P̃q “ 1 ´ 1
2}P ´ P̃},

we have, by (21) and (22),

1
2H2pP, P̃q ≤ 1 ´

b
1 ´ H2pP, P̃q ≤ E r pP, P̃q ≤ HpP, P̃q. (25)
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In particular, let

Pn “ P ˆ ¨ ¨ ¨ ˆ P,loooooomoooooon
n

P̃n “ P̃ ˆ ¨ ¨ ¨ ˆ P̃,loooooomoooooon
n

be direct products of measures. Then, since HpPn, P̃nq “ rHpP, P̃qsn “ e´λn with
λ “ ´ logHpP, P̃q ≥ ρ2pP, P̃q, we obtain from (25) the inequalities

1
2e´2λn ≤ E rpPn, P̃nq ≤ e´λn ≤ e´nρ2pP,P̃q. (26)

In connection with the problem, considered above, of discrimination between
two statistical hypotheses, from these inequalities we have the following result.

Let ξ1, ξ2, . . . be independent identically distributed random elements, that have
either the probability distribution P (Hypothesis H) or P̃ (Hypothesis H̃q, with P̃ ‰
P, and therefore, ρ2pP, P̃q ą 0. Then, when n Ñ 8, the function E rpPn, P̃nq, which
describes the quality of optimal discrimination between the hypotheses H and H̃
from observations of ξ1, ξ2, . . ., decreases exponentially to zero.

3. The Hellinger integrals of order α are well suited for stating conditions of abso-
lute continuity and singularity of probability measures.

Let P and P̃ be two probability measures defined on a measurable space pΩ, F q.
We say that P̃ is absolutely continuous with respect to P (notation: P̃ ! Pq if P̃pAq “
0 whenever PpAq “ 0 for A P F . If P̃ ! P and P ! P̃, we say that P and P̃
are equivalent pP̃ „ Pq. The measures P and P̃ are called singular or orthogonal
pP̃ K Pq, if there is an A P F for which PpAq “ 1 and P̃pAq “ 1 (i.e., P and P̃ “sit”
on different sets).

Let Q be a probability measure, with P ! Q, P̃ ! Q, z “ dP{dQ, z̃ “ dP̃{dQ.

Theorem 2. The following conditions are equivalent:

(a) P̃ ! P,
(b) P̃pz ą 0q “ 1,
(c) Hpα;P, P̃q Ñ 1, α Ó 0.

Theorem 3. The following conditions are equivalent:

(a) P̃ K P,
(b) P̃pz ą 0q “ 0,
(c) Hpα;P, P̃q Ñ 0, α Ó 0,
(d) Hpα;P, P̃q “ 0 for all α P p0, 1q,
(e) Hpα;P, P̃q “ 0 for some α P p0, 1q.

PROOF. The proofs of these theorems will be given simultaneously. By the defini-
tions of z and z̃,

Ppz “ 0q “ EQrzIpz “ 0qs “ 0, (27)
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P̃pA X tz ą 0uq “ EQr̃zIpA X tz ą 0uqs
“ EQ

„
z̃

z
z

IpA X tz ą 0uq
j

“ EP

„
z̃
z

IpA X tz ą 0uq
j

“ EP

„
z̃
z

IpAq
j
. (28)

Consequently, we have the Lebesgue decomposition

P̃pAq “ EP

„
z̃
z

IpAq
j

` P̃pA X tz “ 0uq, A P F , (29)

in which Z “ z̃{z is called the Lebesgue derivative of P̃ with respect to P and denoted
by dP̃{dP (compare the remark on the Radon–Nikodým theorem, Sect. 6, Chap. 2).

Hence, we immediately obtain the equivalence of (a) and (b) in both theorems.
Moreover, since

zαz̃1´α Ñ z̃Ipz ą 0q, α Ó 0,

and for α P p0, 1q
0 ≤ zαz̃1´α ≤ αz ` p1 ´ αqz̃ ≤ z ` z̃

with EQpz ` z̃q “ 2, we have, by Lebesgue’s dominated convergence theorem,

lim
αÓ0 Hpα;P, P̃q “ EQz̃Ipz ą 0q “ P̃pz ą 0q

and therefore, pbq ô pcq in both theorems.
Finally, let us show that in the second theorem pcq ô pdq ô peq. For this, we

need only note that Hpα;P, P̃q “ Ẽpz{z̃qαIpz̃ ą 0q and P̃pz̃ ą 0q “ 1. Hence, for
each α P p0, 1q we have P̃pz ą 0q “ 0 ô Hpα;P, P̃q “ 0, from which there follows
the implication pcq ô pdq ô peq.

[\
Example 1. Let P “ P1ˆP2ˆ . . . , P̃ “ P̃1ˆ P̃2 . . ., where Pk and P̃k are Gaussian
measures on pR, BpRqq with densities

pkpxq “ 1?
2π

epx´akq2{2, p̃kpxq “ 1?
2π

e´px´ãkq2{2.

Since

Hpα;P, P̃q “
8ź

k“1

Hpα;Pk, P̃kq,

where a simple calculation shows that

Hpα;Pk, P̃kq “
ż 8

´8
pαk pxqp̃1´α

k pxq dx “ e´pαp1´αq{2qpak´ãkq2,
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we have
Hpα;P, P̃q “ e´pαp1´αq{2q ř8

k“1pak´ãkq2 .

From Theorems 2 and 3, we find that

P̃ ! P ô P ! P̃ ô P̃ „ P ô
8ÿ

k“1

pak ´ ãkq2 ă 8,

P̃ K P ô
8ÿ

k“1

pak ´ ãkq2 “ 8.

Example 2. Again let P “ P1 ˆ P2 ˆ . . . , P̃ “ P̃1 ˆ P̃2 ˆ . . . , where Pk and P̃k

are Poisson distributions with respective parameters λk ą 0 and λ̃k ą 0. Then it is
easily shown that

P̃ ! P ô P ! P̃ ô P̃ „ P ô
8ÿ

k“1

pa
λk ´

b
λ̃kq2 ă 8,

P̃ K P ô
8ÿ

k“1

pa
λk ´

b
λ̃kq2 “ 8.

(30)

5. PROBLEMS

1. In the notation of Lemma 2, set

P ^ P̃ “ EQpz ^ z̃q,
where z ^ z̃ “ minpz, z̃q. Show that

}P ´ P̃} “ 2p1 ´ P ^ P̃q
(and consequently, E rpP, P̃q “ P ^ P̃).

2. Let P, Pn, n ≥ 1, be probability measures on pR, BpRqq with densities (with
respect to Lebesgue measure) ppxq, pnpxq, n ≥ 1. Let pnpxq Ñ ppxq for almost
all x (with respect to Lebesgue measure). Show that then

}P ´ Pn} “
ż 8

´8
|ppxq ´ pnpxq| dx Ñ 0, n Ñ 8

(compare Problem 17 in Sect. 6, Chap. 2).
3. Let P and P̃ be two probability measures. We define Kullback information

KpP, P̃q (in favor of P against rP) by the equation

KpP, P̃q “
"

E logpdP{dP̃q if P ! P̃,
8 otherwise.

Show that
KpP, P̃q ≥ ´2 logp1 ´ ρ2pP, P̃qq ≥ 2ρ2pP, P̃q.
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4. Establish formulas (11) and (12).
5. Prove inequalities (24).
6. Let P, P̃, and Q be probability measures on pR,BpRqq; P ˚ Q and P̃ ˚ Q, their

convolutions (see Subsection 4 in Sect. 8, Chap. 2). Then

}P ˚ Q ´ P̃ ˚ Q} ≤ }P ´ P̃}.
7. Prove (30).
8. Let ξ and η be random elements on pΩ,F ,Pq with values in a measurable

space pE,E q. Show that

| Ptξ P Au ´ Ptη P Au| ≤ Ppξ ‰ ηq, A P E .

10 Contiguity and Entire Asymptotic Separation of Probability
Measures

1. These concepts play a fundamental role in the asymptotic theory of mathemat-
ical statistics, being natural extensions of the concepts of absolute continuity and
singularity of two measures in the case of sequences of pairs of measures.

Let us begin with definitions.
Let pΩn,F nqn≥1 be a sequence of measurable spaces; let pPnqn≥1 and pP̃nqn≥1

be sequences of probability measures with Pn and P̃n defined on pΩn,F nq, n ≥ 1.

Definition 1. We say that a sequence pP̃nq of measures is contiguous to the sequence
pPnq (notation: pP̃nq � pPnq) if, for all An P F n such that PnpAnq Ñ 0 as n Ñ 8,
we have P̃npAnq Ñ 0, n Ñ 8.

Definition 2. We say that sequences pP̃nq and pPnq of measures are entirely (asymp-
totically) separated (or for short: pP̃nq � pPnq), if there is a subsequence nk Ò 8,
k Ñ 8, and sets Ank P F nk such that

Pnk pAnk q Ñ 1 and P̃nk pAnk q Ñ 0, k Ñ 8.

We notice immediately that entire separation is a symmetric concept in the sense
that pP̃nq � pPnq ô pPnq � pP̃nq. Contiguity does not possess this property. If
pP̃nq� pPnq and pPnq� pP̃nq, we write pP̃nq��pPnq and say that the sequences pPnq
and pP̃nq of measures are mutually contiguous.

We notice that in the case when pΩn,F nq “ pΩ,F q, Pn “ P, P̃n “ P̃ for all
n ≥ 1, we have

pP̃nq � pPnq ô P̃ ! P, (1)

pP̃nq ��pPnq ô P̃ „ P, (2)

pP̃nq � pPnq ô P̃ K P. (3)
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These properties and the definitions given above explain why contiguity and entire
asymptotic separation are often thought of as “asymptotic absolute continuity” and
“asymptotic singularity” for sequences pP̃nq and pPnq.
2. Theorems 1 and 2 presented below are natural extensions of Theorems 2 and 3 of
Sect. 9 to sequences of measures.

Let pΩn,F nqn≥1 be a sequence of measurable spaces; Qn, a probability measure
on pΩn,F nq; and ξn a random variable (generally speaking, extended; see Sect. 4,
Chap. 2) on pΩn,F nq, n ≥ 1.

Definition 3. A sequence pξnq of random variables is tight with respect to a se-
quence of measures pQnq (notation: pξn | Qnq is tight) if

lim
NÒ8 lim sup

n
Qnp|ξn| ą Nq “ 0. (4)

(Compare the corresponding definition of tightness of a family of probability mea-
sures in Sect. 2.)

We shall always set

Qn “ Pn ` P̃n

2
, zn “ dPn

dQn
, z̃n “ dP̃n

dQn
.

We shall also use the notation

Zn “ z̃n{zn (5)

for the Lebesgue derivative of P̃n with respect to Pn (see (29) in Sect. 9), taking
2{0 “ 8. We note that if P̃n ! Pn, Zn is precisely one of the versions of the density
dP̃n{dPn of the measure P̃n with respect to Pn (see Sect. 6, Chap. 2).

For later use it is convenient to note that since

Pn

ˆ
zn ≤ 1

N

˙
“ EQn

ˆ
znI

ˆ
zn ≤ 1

N

˙˙
≤ 1

N
(6)

and Zn ≤ 2{zn, we have

pp1{znq | Pnq is tight, pZn | Pnq is tight. (7)

Theorem 1. The following statements are equivalent:

(a) pP̃nq � pPnq,
(b) p1{zn | P̃nq is tight,

(b1) pZn | P̃nq is tight,
(c) limαÓ0 lim infn Hpα;Pn, P̃nq “ 1.

Theorem 2. The following statements are equivalent:

(a) pP̃nq � pPnq,
(b) lim infn P̃npzn ≥ εq “ 0 for every ε ą 0,
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(b1) lim supn P̃npZn ≤ Nq “ 0 for every N ą 0,
(c) limαÓ0 lim infn Hpα;Pn, P̃nq “ 0,
(d) lim infn Hpα;Pn, P̃nq “ 0 for all α P p0, 1q,
(e) lim infn Hpα;Pn, P̃nq “ 0 for some α P p0, 1q.

PROOF OF THEOREM 1.
paq ñ pbq. If (b) is not satisfied, there are an ε ą 0 and a sequence nk Ò 8

such that P̃nk pznk ă 1{nkq ≥ ε. But by (6), Pnk pznk ă 1{nkq ≤ 1{nk, k Ñ 8, which
contradicts the assumption that pP̃nq � pPnq.

pbq ô pb1q. We have only to note that Zn “ p2{znq ´ 1.
pbq ñ paq. Let An P F n and PnpAnq Ñ 0, n Ñ 8. We have

P̃npAnq ≤ P̃npzn ≤ εq ` EQn pz̃nIpAn X tzn ą εuqq
≤ P̃npzn ≤ εq ` 2

ε
EQn pznIpAnqq “ P̃npzn ≤ εq ` 2

ε
PnpAnq.

Therefore,
lim sup

n
P̃npAnq ≤ lim sup

n
P̃npzn ≤ εq, ε ą 0.

Proposition (b) is equivalent to saying that limεÓ0 lim supn P̃npzn ≤ εq “ 0. There-
fore, P̃npAnq Ñ 0, i.e., pbq ñ paq.

pbq ñ pcq. Let ε ą 0. Then

Hpα;Pn, rPnq “ EQn rpznqαpz̃nq1´αs ≥ EQn

”´ zn

z̃n

¯α

Ipzn ≥ εqIpz̃n ą 0qz̃n
ı

“ ErPn

”´ zn

z̃n

¯α

Ipzn ≥ εq
ı
≥

´ε

2

¯αrPnpzn ≥ εq, (8)

since zn ` z̃n “ 2. Therefore, for ε ą 0,

lim inf
αÓ0 lim inf

n
Hpα;Pn, rPnq

≥ lim inf
αÓ0

´ε

2

¯α

lim inf
n

rPnpzn ≥ εq “ lim inf
n

rPnpzn ≥ εq. (9)

By (b), lim infεÓ0 lim infn rPnpzn ≥ εq “ 1. Hence, (c) follows from (9) and the fact
that Hpα;Pn, P̃nq ≤ 1.

pcq ñ pbq. Let δ P p0, 1q. Then

Hpα;Pn, P̃nq “ EQn rpznqαpz̃nq1´αIpzn ă εqs
`EQn rpznqαpz̃nq1´αIpzn ≥ ε, z̃n ≤ δqs
`EQn rpznqαpz̃nq1´αIpzn ≥ ε, z̃n ą δqs
≤ 2εα ` 2δ1´α ` EQn

„
z̃n

ˆ
zn

z̃n

˙α

Ipzn ≥ ε, z̃n ą δq
j

≤ 2εα ` 2δ1´α `
ˆ
2

δ

˙α

P̃npzn ≥ εq. (10)
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Consequently,

lim inf
εÓ0 lim inf

n
P̃npzn ≥ εq ≥

ˆ
δ

2

˙α

lim inf
n

Hpα;Pn, P̃nq ´ 2

2α
δ

for all α P p0, 1q, δ P p0, 1q. If we first let α Ó 0, use (c), and then let δ Ó 0, we
obtain

lim inf
εÓ0 lim inf

n
P̃npzn ≥ εq ≥ 1,

from which (b) follows.
[\

PROOF OF THEOREM 2. paq ñ pbq. Let pP̃nq � pPnq, nk Ò 8, and let Ank P F nk

have the property that Pnk pAnk q Ñ 1 and P̃nk pAnk q Ñ 0. Then, since zn ` z̃n “ 2, we
have

rPnk pznk ≥ εq ≤ rPnk pAnk q ` EQnk

!
znk ¨ z̃nk

znk
IpAnk qIpznk ≥ εq

)

“ rPnk pAnk q ` EPnk

! z̃nk

znk
IpAnk qIpznk ≥ εq

)
≤ rPnk pAnk q ` 2

ε
Pnk pAnk q.

Consequently, P̃nk pznk ≥ εq Ñ 0 and therefore, (b) is satisfied.
pbq ñ paq. If (b) is satisfied, there is a sequence nk Ò 8 such that

P̃nk

ˆ
znk ≥ 1

k

˙
≤ 1

k
Ñ 0, k Ñ 8.

Hence, having observed (see (6)) that Pnk pznk ≥ 1{kq ≥ 1 ´ p1{kq, we obtain (a).
pbq ñ pb1q. We have only to observe that Zn “ p2{znq ´ 1.
pbq ñ pdq. By (10) and (b),

lim inf
n

Hpα;Pn, P̃nq ≤ 2εα ` 2δ1´α

for arbitrary ε and δ on the interval p0, 1q. Therefore, (d) is satisfied.
pdq ñ pcq and pdq ñ peq are evident.
Finally, from (8) we have

lim inf
n

P̃npzn ≥ εq ≤
ˆ
2

ε

˙α

lim inf
n

Hpα;Pn, P̃nq.

Therefore, pcq ñ pbq and peq ñ pbq, since p2{εqα Ñ 1, α Ó 0.
[\

3. We now consider a particular case of independent observations, where the
calculation of the integrals Hpα;Pn, P̃nq and application of Theorems 1 and 2 do
not present much difficulty.
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Let us suppose that the measures Pn and P̃n are direct products of measures:

Pn “ P1 ˆ ¨ ¨ ¨ ˆ Pn, P̃n “ P̃1 ˆ ¨ ¨ ¨ ˆ P̃n, n ≥ 1,

where Pk and P̃k are given on pΩk,Fkq, k ≥ 1.
Since in this case

Hpα;Pn, P̃nq “
nź

k“1

Hpα;Pk, P̃kq “ e
řn

k“1 logr1´p1´Hpα;Pk,P̃kqqs,

we obtain the following result from Theorems 1 and 2:

pP̃nq � pPnq ô lim
αÓ0 lim sup

n

nÿ
k“1

r1 ´ Hpα;Pk, P̃kqs “ 0, (11)

pP̃nq � pPnq ô lim sup
n

nÿ
k“1

r1 ´ Hpα;Pk, P̃kqs “ 8. (12)

Example. Let pΩk,Fkq “ pR,BpRqq, ak P r0, 1q,

Pkpdxq “ Ir0,1spxq dx, P̃kpdxq “ 1

1 ´ ak
Irak,1spxq dx.

Since here Hpα;Pk, P̃kq “ p1 ´ akqα, α P p0, 1q, from (11) and the fact that
Hpα;Pk, P̃kq “ Hp1 ´ α; P̃k, Pkq, we obtain

pP̃nq � pPnq ô lim sup
n

nan ă 8, i.e., an “ O

ˆ
1

n

˙
,

pPnq � pP̃nq ô lim sup
n

nan “ 0, i.e., an “ o

ˆ
1

n

˙
,

pP̃nq � pPnq ô lim sup
n

nan “ 8.

4. PROBLEMS

1. Let Pn “ Pn
1 ˆ ¨ ¨ ¨ ˆ Pn

n, P̃n “ P̃n
1 ˆ ¨ ¨ ¨ ˆ P̃n

n, n ≥ 1, where Pn
k and P̃n

k
are Gaussian measures with parameters pan

k , 1q and pãn
k , 1q. Find conditions on

pan
kq and pãn

kq under which pP̃nq � pPnq and pP̃nq � pPnq.
2. Let Pn “ Pn

1 ˆ ¨ ¨ ¨ ˆ Pn
n and P̃n “ P̃n

1 ˆ ¨ ¨ ¨ ˆ P̃n
n, where Pn

k and P̃n
k

are probability measures on pR,BpRqq for which Pn
k pdxq “ Ir0,1spxq dx and

P̃n
k pdxq “ Iran,1`anspxq dx, 0 ≤ an ≤ 1. Show that Hpα;Pn

k , P̃n
kq “ 1 ´ an and

pP̃nq � pPnq ô pPnq � pP̃nq ô lim sup
n

nan “ 0,

pP̃nq � pPnq ô lim sup
n

nan “ 8.

3. Let pΩ,F , pFnqn≥0q be a filtered measurable space, i.e., a measurable space
pΩ,F q with a flow of σ-algebras pFnqn≥0 such that F0 Ď F1 Ď ¨ ¨ ¨ Ď F .
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Assume that F “ σpŤ
n Fnq. Let P and rP be two probability measures on

pΩ,F q and Pn “ P |Fn, rPn “ rP |Fn be their restrictions to Fn. Show that

prPnq � pPnq ô rP ! P,

prPnq ��pPnq ô rP „ P,

prPnq � pPnq ô rP K P.

11 Rate of Convergence in the Central Limit Theorem

1. Let ξn1, . . . , ξnn be independent random variables, Sn “ ξn1 ` ¨ ¨ ¨ ` ξnn, Fnpxq “
PpSn ≤ xq. If Sn

dÑ N p0, 1q, then Fnpxq Ñ Φpxq for every x P R. Since Φpxq is
continuous, the convergence here is actually uniform (Problem 5 in Sect. 1):

sup
x

|Fnpxq ´ Φpxq| Ñ 0, n Ñ 8. (1)

It is natural to ask how rapid the convergence in (1) is. We shall establish a result
for the case when

Sn “ ξ1 ` ¨ ¨ ¨ ` ξn

σ
?

n
, n ≥ 1,

where ξ1, ξ2, . . . is a sequence of independent identically distributed random vari-
ables with E ξk “ 0, Var ξk “ σ2 and E |ξ1|3 ă 8.

Theorem (Berry–Esseen). We have the bound

sup
x

|Fnpxq ´ Φpxq| ≤ C E |ξ1|3
σ3

?
n

, (2)

where C is an absolute constant.

PROOF. For simplicity, let σ2 “ 1 and β3 “ E |ξ1|3. By Esseen’s inequality (Sub-
section 10 of Sect. 12, Chap. 2)

sup
x

|Fnpxq ´ Φpxq| ≤ 2

π

ż T

0

ˇ̌̌
ˇ fnptq ´ ϕptq

t

ˇ̌̌
ˇ dt ` 24

πT
1?
2π

, (3)

where ϕptq “ e´t2{2 and

fnptq “ rf pt{?
nqsn

with f ptq “ E eitξ1 .
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In (3) we may take T arbitrarily. Let us choose

T “ ?
n{p5β3q.

We are going to show that for this T ,

|fnptq ´ ϕptq| ≤ 7

6

β3?
n

|t|3e´t2{4, |t| ≤ T. (4)

The required estimate (2), with C an absolute constant, will follow immediately
from (3) by means of (4). (A more sophisticated analysis gives 0.4097 ă C ă
0.469, see Remark 2 in Sect. 4.)

We now turn to the proof of (4). By formula (18) in Sect. 2, Chap. 2 pn “
3, E ξ1 “ 0, E ξ21 “ 1, E |ξ1|3 ă 8q we obtain

f ptq “ E eitξ1 “ 1 ´ t2

2
` pitq3

6
rE ξ31pcos θ1tξ1 ` i sin θ2tξ1qs, (5)

where |θ1| ≤ 1, |θ2| ≤ 1. Consequently,

f

ˆ
t?
n

˙
“ 1 ´ t2

2n
` pitq3

6n3{2

„
E ξ31

ˆ
cos θ1

t?
n
ξ1 ` i sin θ2

t?
n
ξ1

˙j
.

If |t| ≤ T “ ?
n{5β3, we find, by using the inequality β3 ≥ σ3 “ 1 (see (28),

Sect. 6, Chap. 2), that

1 ´
ˇ̌
ˇ̌f

ˆ
t?
n

˙ˇ̌
ˇ̌ ≤

ˇ̌
ˇ̌1 ´ f

ˆ
t?
n

˙ˇ̌
ˇ̌ ≤ t2

2n
` |t|3β3

3n3{2 ≤ 1

25
.

Consequently, for |t| ≤ T it is possible to have the representation

„
f

ˆ
t?
n

˙jn

“ en log f pt{?
nq, (6)

where log z means the principal value of the logarithm of the complex number z
plog z “ log |z| ` i arg z, ´π ă arg z ≤ πq.

Since β3 ă 8, we obtain from Taylor’s theorem with the Lagrange remainder
(compare (35) in Sect. 12, Chap. 2)

log f

ˆ
t?
n

˙
“ it?

n
sp1q
ξ1

` pitq2
2n

sp2q
ξ1

` pitq3
6n3{2 plog f q3

ˆ
θ

t?
n

˙

“ ´ t2

2n
` pitq3

6n3{2 plog f q3
ˆ
θ

t?
n

˙
, |θ| ≤ 1, (7)

since the semi-invariants are sp1q
ξ1

“ E ξ1 “ 0, sp2q
ξ1

“ σ2 “ 1.
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In addition,

plog f psqq3 “ f 3psq ¨ f 2psq ´ 3f 2psqf 1psqf psq ` 2pf 1psqq3
f 3psq

“ Erpiξ1q3eiξ1ss f 2psq ´ 3Erpiξ1q2eiξ1ss Erpiξ1qeiξ1ss f psq ` 2Erpiξ1qeiξ1ss3
f 3psq .

From this, taking into account that |f pt{?
nq| ≥ 24{25 for |t| ≤ T and |f psq| ≤ 1,

we obtain ˇ̌
ˇ̌plog f q3

ˆ
θ

t?
n

˙ˇ̌
ˇ̌ ≤ β3 ` 3β1 ¨ β2 ` 2β3

1

p 24
25 q3 ≤ 7β3 (8)

(βk “ E |ξ1|k, k “ 1, 2, 3; β1 ≤ β
1{2
2 ≤ β

1{3
3 ; see (28), Sect. 6, Chap. 2).

From (6)–(8), using the inequality |ez´1| ≤ |z|e|z|, we find for |t| ≤ T “ ?
n{5β3

thatˇ̌
ˇ̌„f

ˆ
t?
n

˙jn

´ e´t2{2
ˇ̌
ˇ̌ “ |en log f pt{?

nq ´ e´t2{2|

≤
ˆ
7

6

˙
β3|t|3?

n
exp

"
´ t2

2
`

ˆ
7

6

˙
|t|3 β3?

n

*
≤7

6

β3|t|3?
n

e´t2{4.

This completes the proof of the theorem.
[\

Remark. We observe that unless we make some supplementary hypothesis about
the behavior of the random variables that are added, (2) cannot be improved. In fact,
let ξ1, ξ2, . . . be independent identically distributed Bernoulli random variables with

Ppξk “ 1q “ Ppξk “ ´1q “ 1
2 .

It is evident by symmetry that

2P

˜
2nÿ

k“1

ξk ă 0

¸
` P

˜
2nÿ

k“1

ξk “ 0

¸
“ 1,

and hence, by Stirling’s formula ((6), Sect. 2, Chap. 1)
ˇ̌̌
ˇ̌P

˜
2nÿ

k“1

ξk ă 0

¸
´ 1

2

ˇ̌̌
ˇ̌ “ 1

2
P

˜
2nÿ

k“1

ξk “ 0

¸

“ 1

2
Cn
2n ¨ 2´2n „ 1

2
?
πn

“ 1ap2πqp2nq .

It follows, in particular, that the constant C in (2) cannot be less than p2πq´1{2 and
that Ppř2n

k“1 ξk “ 0q „ pπnq´1{2.
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2. PROBLEMS

1. Prove (8).
2. Let ξ1, ξ2, . . . be independent identically distributed random variables with

E ξ1 “ 0, Var ξ1 “ σ2 and E |ξ1|3 ă 8. It is known that the following
nonuniform inequality holds: for all x P R,

|Fnpxq ´ Φpxq| ≤ C E |ξ1|3
σ3

?
n

¨ 1

p1 ` |x|q3 .

Prove this, at least for Bernoulli random variables.
3. Let pξkqk≥1 be a sequence of independent identically distributed random vari-

ables, taking values ˘1 with probabilities 1{2, and let Sk “ ξ1 ` ¨ ¨ ¨ ` ξk. Let
ϕ2ptq “ E eitξ1 “ 1

2 peit ` e´itq. Show (in accordance with Laplace), that

PtS2n “ 0u “ 1

π

ż π

0

ϕn
2ptq dt „ 1?

πn
, n Ñ 8.

4. Let pξkqk≥0 be a sequence of independent identically distributed random vari-
ables, taking 2a ` 1 integer values 0,˘1, . . . ,˘a with equal probabilities. Let
ϕ2a`1ptq “ E eitξ1 “ 1

1`2a

`
1 ` 2

řa
k“1 cos tk

˘
.

Show (again in accordance with Laplace) that

PtSn “ 0u “ 1

π

ż π

0

ϕn
2a`1ptq dt „

?
3a

2πpa ` 1qn
, n Ñ 8.

In particular, for a “ 1, i.e., for the case, where ξk’s take three values ´1, 0, 1,

PtSn “ 0u „
?
3

2
?
πn

, n Ñ 8.

12 Rate of Convergence in Poisson’s Theorem

1. Let ξ1, ξ2, . . . , ξn be independent Bernoulli random variables that take the val-
ues 1 and 0 with probabilities

Ppξk “ 1q “ pk, Ppξk “ 0q “ qkp“ 1 ´ pkq, 1 ≤ k ≤ n.

We set S “ ξ1`¨ ¨ ¨`ξn; let B “ pB0, B1, . . . , Bnq be the probability distribution
of the sum S, where Bk “ PpS “ kq. Also let Π “ pπ0, π1, . . .q be the Poisson
distribution with parameter λ, where

πk “ e´λλk

k!
, k ≥ 0.
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We noticed in Subsection 4 of Sect. 6, Chap. 1 that if

p1 “ ¨ ¨ ¨ “ pn, λ “ np, (1)

there is the following estimate (Prokhorov [75]) for the distance in variation be-
tween the measures B and Π pBn`1 “ Bn`2 “ ¨ ¨ ¨ “ 0q:

}B ´ Π} “
8ÿ

k“0

|Bk ´ πk| ≤ C1pλqp “ C1pλq ¨ λ
n
, (2)

where
C1pλq “ 2minp2, λq. (3)

For the case when pk are not necessarily equal, but satisfy
řn

k“1 pk “ λ,
Le Cam [57] showed that

}B ´ Π} “
8ÿ

k“0

|Bk ´ πk| ≤ C2pλq max
1≤k≤n

pk, (4)

where
C2pλq “ 2minp9, λq. (5)

A theorem to be presented below will imply the estimate

}B ´ Π} ≤ C3pλq max
1≤k≤n

pk, (6)

in which
C3pλq “ 2λ. (7)

Although C2pλq ă C3pλq for λ ą 9, i.e., (6) is worse than (4), we neverthe-
less have preferred to give a proof of (6), since this proof is essentially elementary,
whereas an emphasis on obtaining a “good” constant C2pλq in (4) greatly compli-
cates the proof.

2. Theorem. Let λ “ řn
k“1 pk. Then

}B ´ Π} “
8ÿ

k“0

|Bk ´ πk| ≤ 2
nÿ

k“1

p2k . (8)

PROOF. We use the fact that each of the distributions B and Π is a convolution of
distributions:

B “ Bpp1q ˚ Bpp2q ˚ ¨ ¨ ¨ ˚ Bppnq,
Π “ Πpp1q ˚ Πpp2q ˚ ¨ ¨ ¨ ˚ Πppnq, (9)
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understood as a convolution of the corresponding distribution functions (see Subsec-
tion 4, Sect. 8, Chap. 2), where Bppkq “ p1´ pk, pkq is the Bernoulli distribution on
the points 0 and 1, and Πppkq is the Poisson distribution with parameter pk supported
on the points 0, 1, . . . .

It is easy to show that the difference B ´ Π can be represented in the form

B ´ Π “ R1 ` ¨ ¨ ¨ ` Rn, (10)

where
Rk “ pBppkq ´ Πppkqq ˚ Fk (11)

with

F1 “ Πpp2q ˚ ¨ ¨ ¨ ˚ Πppnq,
Fk “ Bpp1q ˚ ¨ ¨ ¨ ˚ Bppk´1q ˚ Πppk`1q ˚ ¨ ¨ ¨ ˚ Πppnq, 2 ≤ k ≤ n ´ 1,
Fn “ Bpp1q ˚ ¨ ¨ ¨ ˚ Bppn´1q.

By problem 6 in Sect. 9, we have }Rk} ≤ }Bppkq ´Πppkq}. Consequently, we see
immediately from (10) that

}B ´ Π} ≤
nÿ

k“1

}Bppkq ´ Πppkq}. (12)

By formula (12) in Sect. 9, we see that there is no difficulty in calculating the varia-
tion }Bppkq ´ Πppkq}:

}Bppkq ´ Πppkq}
“ |p1 ´ pkq ´ e´pk | ` |pk ´ pke´pk | `

ÿ
j≥2

pj
ke´pk

j!

“ |p1 ´ pkq ´ e´pk | ` |pk ´ pke´pk | ` 1 ´ e´pk ´ pke´pk

“ 2pkp1 ´ e´pk q ≤ 2p2k .

From this, together with (12), we obtain the required inequality (8).
This completes the proof of the theorem.
[\

Corollary. Since
řn

k“1 p2k ≤ λmax1≤k≤n pk, we obtain (6).

3. PROBLEMS

1. Show that, if λk “ ´ logp1 ´ pkq,

}Bppkq ´ Πpλkq} “ 2p1 ´ e´λk ´ λke´λk q ≤ λ2
k

and consequently, }B ´ Π} ≤ ř
n
k“1λ

2
k .

2. Establish the representations (9) and (10).
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13 Fundamental Theorems of Mathematical Statistics

1. In Sect. 7, Chap. 1, we considered some problems of estimation and constructing
confidence intervals for the probability of “success” from observations of random
variables in Bernoulli trials. These are typical problems of mathematical statistics,
which deals with in a certain sense inverse problems of probability theory. Indeed,
whereas probability theory is mainly interested in computation, for a given prob-
ability model, of some probabilistic quantities (probabilities of events, probability
distributions of random elements and their characteristics, and so on), in mathemat-
ical statistics we are interested to reveal (with certain degree of reliability), based on
available statistical data, the probabilistic model for which the statistical properties
of the empirical data agree best of all with probabilistic properties of the random
mechanism generating these data.

The results given below (due to Glivenko, Cantelli, Kolmogorov, and Smirnov)
may be rightly named fundamental theorems of mathematical statistics because they
not only establish the principal possibility of extracting probabilistic information
(about the distribution function of the observed random variables) from statistical
raw material, but also make it possible to estimate the goodness of fit between sta-
tistical data and one or another probability model.
2. Let ξ1, ξ2, . . . be a sequence of independent identically distributed random vari-
ables defined on a probability space pΩ,F ,Pq and let F “ Fpxq, x P R, be their
distribution function, Fpxq “ Ptξk ≤ xu. Define for any N ≥ 1 the empirical distri-
bution function

FNpx;ωq “ 1

N

Nÿ
k“1

Ipξkpωq ≤ xq, x P R. (1)

By the law of large numbers (Sect. 3, Theorem 2) for any x P R

FNpx;ωq PÝÑ Fpxq, N Ñ 8, (2)

i.e., FNpxq converges to Fpxq in P-probability.
Moreover, it follows from Theorems 1 and 2 of Sect. 3, Chap. 4, Vol. 2 that for

any x P R this convergence holds with probability one: as N Ñ 8,

FNpx;ωq Ñ Fpxq (P-a. s.). (3)

Remarkably, a stronger result on uniform convergence in (3) also holds.

Theorem 1 (Glivenko–Cantelli). Under the above conditions the random variables

DNpωq “ sup
xPR

|FNpx;ωq ´ Fpxq| (4)

converge to zero with probability one:

Pplim
N

DNpωq “ 0q “ 1. (5)
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PROOF. Let Q be the set of rational numbers in R. Clearly,

sup
rPQ

|FNpr;ωq ´ Fprq|

is a random variable. And since

DNpωq “ sup
xPR

|FNpx;ωq ´ Fpxq| “ sup
rPQ

|FNpr;ωq ´ Fprq|,

the statistic DNpωq is also a random variable, so that we can speak of its distribution.
Let M ≥ 2 be an integer and k “ 1, 2, . . . ,M´1. Define the sequence of numbers

xM,k “ mintx P R : k{M ≤ Fpxqu,
setting also xM,0 “ ´8, xM,M “ `8.

Take an interval rxM,k, xM,k`1q ‰ ∅ and let x belong to this interval. Then obvi-
ously

FNpx;ωq ´ Fpxq ≤ FNpxM,k`1 ´ 0q ´ FpxM,kq
“ rFNpxM,k`1 ´ 0q ´ FpxM,k`1 ´ 0qs ` rFpxM,k`1 ´ 0q ´ FpxM,kqs

≤ FNpxM,k`1 ´ 0q ´ FpxM,k`1 ´ 0q ` 1{M.

In a similar way, assuming again that x P rxM,k, xM,k`1q, we find that

FNpx;ωq ´ Fpxq ≥ FNpxM,k;ωq ´ FpxM,kq ´ 1{M.

Therefore, for any x P R

|FNpx;ωq ´ Fpxq|
≤ max

1≤k≤M´1
1≤l≤M´1

t|FNpxM,k;ωq ´ FpxM,kq|, |FNpxM,l ´ 0;ωq ´ FpxM,l ´ 0q|u ` 1{M,

hence
lim

nÑ8 sup
x

|FNpx;ωq ´ Fpxq| ≤ 1{M pP-a. s.).

Since M is arbitrary, this implies (5).
[\
The Glivenko–Cantelli theorem, which is one of the fundamental theorems of

mathematical statistics, states, as we pointed out, the principal possibility to ver-
ify, based on observations of (independent identically distributed) random variables
ξ1, ξ2, . . . that the distribution function of these variables is precisely F “ Fpxq.
In other words, this theorem guarantees the possibility to establish an agreement
between the “theory and experiment.”

3. As is seen from (1), FNpxq for each x P R is the relative frequency of events
tξi ≤ xu, i “ 1, . . . ,N, in N Bernoulli trials. This implies (2) and (3) by the
Law of Large Numbers (LLN) and the Strong Law of Large Numbers (SLLN)
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respectively. But a much deeper information about the distribution of the frequency
in the Bernoulli scheme is given by the de Moivre–Laplace theorem, which in this
case states that for any fixed x P R

?
NpFNpxq ´ Fpxqq lawÝÝÑ N p0,Fpxqr1 ´ Fpxqsq, (6)

i.e., that the distribution of
?

N pFNpxq ´ Fpxqq converges to the normal one with
zero mean and variance σ2pxq “ Fpxq p1 ´ Fpxqq. (See Sect. 6, Chap. 1.) From this,
one can easily derive the limit distribution of

?
N|FNpxq ´ Fpxq| using the fact that

Pp|ξ| ą xq “ 2Ppξ ą xq for any ξ „ N p0, σ2q due to symmetry of the normal
distribution. Namely, restating (6) as

P
´?

NpFNpxq ´ Fpxqq
σpxq ą x

¯
Ñ 1 ´ Φpxq, x P R,

we can write our statement about
?

N|FNpxq ´ Fpxq| as

P
´?

N|FNpxq ´ Fpxq|
σpxq ą x

¯
Ñ 2p1 ´ Φpxqq, x ≥ 0,

where Φp¨q is the standard normal distribution function.
However, like in the case of the Glivenko–Cantelli theorem, we will be interested

in the maximal deviation of FNpxq from Fpxq, more precisely, in the distribution of
DN defined by (4) and

D`
N “ sup

x
pFNpxq ´ Fpxqq (7)

describing the maximum of the one-sided deviation of FNpxq from Fpxq.
Now we will formulate a theorem on the limit distributions of DN and D`

N . This
theorem shows, in particular, that these limit distributions hold with the same nor-
malization as in (6), i.e., with multiplying these quantities by

?
N (which is by

no means obvious a priori), and that these limit distributions are essentially dif-
ferent, in contrast to the simple relation between those of

?
N pFNpxq ´ Fpxqq and?

N|FNpxq ´ Fpxq| for a fixed x P R. The result (8) is due to Smirnov [94] and the
result (9), (10) to Kolmogorov [48].

Theorem 2. Assume that Fpxq is continuous. With the above notation, we have

Pp?
ND`

N ≤ yq Ñ 1 ´ e´2y2 , y ≥ 0, (8)

Pp?
NDN ≤ yq Ñ Kpyq, (9)

where

Kpyq “
8ÿ

k“´8
p´1qke´2k2y2 , y ≥ 0. (10)
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The rigorous proof of this theorem goes beyond the scope of this book. It can
be found in Billingsley [9], Sect. 13. Here we give an outline of the proof and a
heuristic derivation of the formulas in (8) and (10).

The following observation (A. N. Kolmogorov) is of key importance for obtain-
ing the limit distributions of these statistics.

Lemma 1. Let F be the class of continuous distribution functions F “ Fpxq. For
any N ≥ 1 the probability distribution of DNpωq is the same for all F P F. The same
is true also for D`

N pωq.

PROOF. Let η1, η2, . . . be a sequence of independent identically distributed ran-
dom variables with uniform distribution on r0, 1s, i.e., having distribution function
Upxq “ Ptη1 ≤ xu “ x, 0 ≤ x ≤ 1.

To prove the lemma we will show that for any continuous function F “ Fpxq the
distribution of the statistic supx |FNpx;ωq ´ Fpxq| coincides with the distribution of
supx |UNpx;ωq ´ Upxq|, where

UNpx;ωq “ N´1
Nÿ

k“1

Ipηkpωq ≤ xq

is the empirical distribution function of the variables η1, . . . , ηN .
Denote by A the union of intervals I “ ra, bs, ´8 ă a ă b ă 8, on which the

distribution function F “ Fpxq is constant, so that Ptξ1 P Iu “ 0.
Then

DNpωq “ sup
xPR

|FNpx;ωq ´ Fpxq| “ sup
xPA

|FNpx;ωq ´ Fpxq|.

Introduce the variables η̃k “ Fpξkq and empirical distribution functions

UNpx;ωq “ 1

N

Nÿ
k“1

Ipη̃kpωq ≤ xq.

Then we find that for x P A

UNpFpxq;ωq “ 1

N

Nÿ
k“1

IpFpξkpωqq ≤ Fpxqq “ 1

N

Nÿ
k“1

Ipξkpωq ≤ xq “ FNpx;ωq,

since for such x we have tω : ξkpωq ≤ xu “ tω : Fpξkpωqq ≤ Fpxqu. Thus

DNpωq “ sup
xPA

|FNpx;ωq ´ Fpxq| “ sup
xPA

|UNpFpxq;ωq ´ Fpxq|

“ sup
xPR

|UNpFpxq;ωq ´ Fpxq| “ sup
yPp0,1q

|UNpy;ωq ´ y| P-a. s.“ sup
yPr0,1s

|UNpy;ωq ´ y|,
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where the last equality (P-a. s.“ ) is a consequence of

Ptη̃1 “ 0u “ Ptη̃1 “ 1u “ 0. (11)

Now we will show that the random variables η̃k are uniformly distributed on r0, 1s.
To this end denote (for y P p0, 1q)

xpyq “ inftx P R : Fpxq ≥ yu.
Then Fpxpyqq “ y, y P p0, 1q, and

Ptη̃1 ≤ yu “ PtFpξ1q ≤ yu
“ PtFpξ1q ≤ Fpxpyqqu “ Ptξ1 ≤ xpyqu “ Fpxpyqq “ y.

Combined with (11) this proves that the random variable η̃1 (and hence each of
η̃2, η̃3, . . . ) is uniformly distributed on r0, 1s.

[\
4˚. This lemma shows that for obtaining limit distributions of DN and D`

N (based
on independent observations ξ1, ξ2, . . . with a continuous distribution function F “
Fpxq P F) we may assume from the outset that ξ1, ξ2, . . . are independent random
variables uniformly distributed on r0, 1s.

Setting

UNptq “ 1

N

Nÿ
i“1

Ipξi ≤ tq (12)

and
wNptq “ ?

NpUNptq ´ tq, (13)

we have
D`

N “ sup
tPp0,1q

wNptq, DN “ sup
tPp0,1q

|wNptq|. (14)

The proof of Theorem 2 consists of two steps:
(i) The proof of weak convergence

wN̊p¨q wÑ w0p¨q, (15)

where wN̊p¨q is a continuous random function approximating wNp¨q (e.g., by linear
interpolation) so that suptPp0,1q |wNptq ´ wN̊ptq| Ñ 0 as N Ñ 8, and w0 is the
conditional Wiener process (see Subsection 7 of Sect. 13). For ease of notation, we
henceforth often write sup without indicating that t P p0, 1q. The convergence (15)
is understood as weak convergence of the corresponding distributions in the space
C of continuous functions on r0, 1s. (See Subsection 6 of Sect. 2, Chap. 2. See also
Sect. 1, Chap. 3 for the concept of weak convergence. Recall that C is endowed with
distance ρpx1p¨q, x2p¨qq “ sup |x1ptq ´ x2ptq|, x1p¨q, x2p¨q P C.)

˚ Subsections 4 and 5 are written by D.M. Chibisov.
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Then (15) implies that the distributions of ρ-continuous functionals of wN̊ (and
hence of the same functionals of wN) converge to the distributions of these func-
tionals of w0. It is easily seen that if we change a function xptq P C less than by ε
uniformly in t P r0, 1s then sup xptq and sup |xptq| will change less than by ε. This
means that these are ρ-continuous functionals of xp¨q P C and therefore by (15)

sup
tPp0,1q

wNptq dÑ sup
tPp0,1q

w0ptq, sup
tPp0,1q

|wNptq| dÑ sup
tPp0,1q

|w0ptq|. (16)

(ii) The proof that the distributions of suptPp0,1q w0ptq and suptPp0,1q |w0ptq| are
given by the right-hand sides of (8) and (9).

For the proof of (i) we have to establish convergence of the finite-dimensional
distributions of wN̊p¨q to those of w0 and tightness of the sequence of distributions
of wN̊p¨q in the space C. For the proof of tightness the reader is referred to [9].

Here we will only show the convergence of finite-dimensional distributions. The
aim of introducing wN̊ was to replace wN by a random element in the space C of
continuous functions. (Or else wN could be treated as an element of D, see [9].
See also [9] for difficulties which arise when trying to consider wN in the space of
discontinuous functions with metric ρ.) The fact that the functions wN̊p¨q and wNp¨q
approach each other implies that their finite-dimensional distributions converge to
the same limits, so that in this part of the proof we may deal directly with wN instead
of wN̊ .

Recall that w0ptq, t P r0, 1s, is the Gaussian process with covariance function

r0ps, tq “ minps, tq ´ st, s, t P r0, 1s, (17)

see Example 2 in Sect. 13, Chapter 2. Therefore to prove the convergence of interest
we have to prove that for any 0 ă t1 ă ¨ ¨ ¨ ă tk ă 1 the joint distribution of
pwNpt1q, . . . ,wNptkqq converges to the k-dimensional normal distribution with zero
mean and covariance matrix }minpti, tjq ´ titj}k

i,j“1.
Notice that for k “ 1 this is just the statement of the de Moivre–Laplace theorem.

Indeed, by (12) UNptq is the relative frequency of the events pξi ≤ tq, i “ 1, . . . ,N,
having the probability t of occurrence, in N Bernoulli trials, and by (13) wNptq is
this frequency properly centered and normalized to obey the integral de Moivre–
Laplace theorem saying that its distribution converges to N p0, tp1 ´ tqq, where
tp1 ´ tq is the variance of a single Bernoulli variable Ipξi ă tq. Since Varw0ptq “
r0pt, tq “ tp1 ´ tq by (17), this conforms with the above statement on convergence

wNptq dÑ w0ptq for a single t P p0, 1q.
To prove a similar result for arbitrary 0 ă t1 ă ¨ ¨ ¨ ă tk ă 1, we will use the

following multidimensional version of Theorem 3, Sect. 3, Chap. 3 (it is stated as
Problem 5 therein; the proof can be found, e.g., in [15]). Let Xi “ pXi1, . . . ,Xikq,
i “ 1, 2, . . ., be independent identically distributed k-dimensional random vectors.

Theorem. Suppose Xi’s have a (common) finite covariance matrix R. Denote by PN

the distribution of SN “ pSN1, . . . , SNkq, where
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SNj “ 1?
N

Nÿ
i“1

pXij ´ E X1jq, j “ 1, . . . , k. (18)

Then
PN

wÑ N p0,Rq as N Ñ 8, (19)

where N p0,Rq is the k-dimensional normal distribution with zero mean and co-
variance matrix R.

To apply this theorem to pwNpt1q, . . . ,wNptkqq, let Xij “ Ipξi ≤ tjq, i “ 1, . . . ,N,
j “ 1, . . . , k. Then by (12), (13) wNptjq “ SNj as in (18), and to obtain the required
convergence, we only need to check that

CovpIpξ1 ≤ sq, Ipξ1 ≤ tqq “ minps, tq ´ st for any 0 ă s, t ă 1. (20)

Using the formulas Covpξ, ηq “ Epξηq ´ E ξ E η and E Ipξ1 ≤ tq “ t, we see
that (20) follows from the fact that Ipξ1 ≤ sqIpξ1 ≤ tq “ Ipξ1 ≤ minps, tqq.

Thus we have established the “finite-dimensional convergence” part of the proof
of (15) (or of step (i)). As we said above, for the remaining part, the proof of tight-
ness, the reader is referred to [9].

5. Now we turn to the statement (ii). Reversing the inequalities in (8) and (9) this
statement can be written as

P
`

sup
tPp0,1q

w0ptq ą y
˘ “ e´2y2 , y ≥ 0, (21)

P
`

sup
tPp0,1q

|w0ptq| ą y
˘ “ 2

8ÿ
k“1

p´1qk`1e´2k2y2 , y ≥ 0. (22)

For the detailed rigorous proof of (21) and (22) we again refer to [9]. Here we give
a heuristic version of that proof.

First, let us check that the conditional Wiener process w0p¨q introduced in Ex-
ample 2, Sect. 13, Chapter 2, is indeed the Wiener process wp¨q conditioned on
twp1q “ 0u. For that we show that the conditional finite-dimensional distribu-
tions of wp¨q given that wp1q “ 0 are the same as the finite-dimensional distri-
butions of w0. We will check this for wptq at a single point t, 0 ă t ă 1. A
general statement for 0 ă t1 ă . . . ă tk ă 1, k ≥ 1, can be proved in a simi-
lar way. Recall that the Wiener process wp¨q is the Gaussian process with covari-
ance function rps, tq “ minps, tq, s, t ≥ 0. Let ξ “ wp1q and η “ wptq. Then
E ξ “ E η “ 0, Var ξ “ 1, Var η “ t, and Covpξ, ηq “ E ξη “ t, hence
Covpξ, η´ tξq “ 0. (This holds because Epη | ξq “ tξ, see (12) in Sect. 13, Chap. 2,
and in general Epξpη´Epη | ξqqq “ 0.) Since pξ, ηq are jointly normally distributed,
this implies that ξ “ wp1q and η ´ tξ “ wptq ´ twp1q are independent. Now
Covpwpsq ´ swp1q,wptq ´ twp1qq “ minps, tq ´ 2st ` st “ r0ps, tq as in (17),
hence we may set w0ptq “ wptq ´ twp1q, 0 ≤ t ≤ 1. Then the conditional distribu-
tion of pwptq | wp1q “ 0q equals that of pwptq ´ twp1q | wp1q “ 0q, which is equal
to the unconditional distribution of w0ptq due to independence of w0ptq and wp1q
shown above.
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Now the left-hand sides of (21) and (22) can be replaced by

P
`

sup
tPp0,1q

wptq ą y | wp1q “ 0
˘

and P
`

sup
tPp0,1q

|wptq| ą y | wp1q “ 0
˘

(23)

respectively. Rewrite the first of these probabilities as

lim
δÑ0

P
`tsuptPp0,1q wptq ą yu X twp1q P Uδu˘

Ppwp1q P Uδq , (24)

where Uδ “ p´δ,`δq. (Of course, it is a heuristic step, but the formula (24) for the
above conditional probability is in fact correct, see [9].) Let τ “ mintt : wptq “ yu.
This is a stopping time defined on the first event in the numerator of (24). For a
fixed τ the event under P in the numerator occurs if the increment of wptq on pτ, 1q
equals ´y up to ˘δ, i.e., lies within p´y ´ δ,´y ` δq. By symmetry, the probability
of this event equals the probability that this increment lies in py´δ, y`δq. Therefore
the probability in the numerator of (24) equals

P
`t sup

tPp0,1q
wptq ą yu X twp1q P 2y ` Uδu˘

.

But for small δ the second event implies the first, so that this probability is Ppwp1q P
2y ` Uδq. Taking the limit as δ Ñ 0, we obtain that

P
`

sup
tPp0,1q

wptq ą y | wp1q “ 0
˘ “ ϕp2yq

ϕp0q “ e´2y2 ,

where ϕpyq is the density of N p0, 1q, which proves (21).
To prove (22) we represent its left-hand side as the second probability in (23)

and use the arguments in the above derivation of (21). The event in the numerator
of (24) with wptq replaced by |wptq| describes two possibilities for the path of wp¨q
to leave the stripe between the ˘y lines, viz. by crossing the upper (`y) or the
lower (´y) boundary. This apparently implies that the probability in (22) is twice
the one in (21). But in this way some paths are counted twice, namely, those which
cross both boundaries, so that the probability of crossing two boundaries has to
be subtracted. This reasoning continuous by the principle of inclusion–exclusion to
give the formula in (22). A detailed derivation of this formula can again be found in
[9].

6. Let us consider how the knowledge, say, of relation (9), where Kpyq is given
by (10), enables us to provide a test for agreement between experiment and theory
or a goodness-of-fit test. To this end we first give a short table of the distribution
function Kpyq:
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y Kpyq y Kpyq y Kpyq
1.10 0.822282 2.10 0.999705

0.28 0.000001 1.20 0.887750 2.20 0.999874
0.30 0.000009 1.30 0.931908 2.30 0.999949
0.40 0.002808 1.40 0.960318 2.40 0.999980
0.50 0.036055 1.50 0.977782 2.50 0.9999925
0.60 0.135718 1.60 0.988048 2.60 0.9999974
0.70 0.288765 1.70 0.993828 2.70 0.9999990
0.80 0.455857 1.80 0.996932 2.80 0.9999997
0.90 0.607270 1.90 0.998536 2.90 0.99999990
1.00 0.730000 2.00 0.999329 3.00 0.99999997

If N is sufficiently large, we may assume that Kpyq provides an accurate enough
approximation for Pt?

NDNpωq ≤ yu.
Naturally, if the value

?
NDNpωq computed on the basis of empirical data

ξ1pωq, . . . , ξNpωq turns out to be large, then the hypothesis that the (hypothesized)
distribution function of these variables is just the (continuous) function F “ Fpxq
has to be rejected.

The above table enables us to get an idea about the degree of reliability of our
conclusions. If, say,

?
NDNpωq ą 1.80, then (since Kp1.80q “ 0.996932) we know

that this event has probability approximately equal to 0.0031 (“ 1.0000 ´ 0.9969).
If we think of events with such a small probability (“ 0.0031) as practically almost
impossible, we conclude that the hypothesis that the distribution function Ptξ1 ≤
xu is Fpxq, where Fpxq is the function used in the formula for DNpωq, should be
rejected. On the contrary, if, say,

?
NDNpωq ≤ 1.80, then we can say (invoking the

law of large numbers) that agreement between “experiment and theory” will hold in
9 969 such cases out of 10 000.

Remark. It is important to stress that when applying goodness-of-fit tests using
Kolmogorov’s or Smirnov’s distributions, the distribution function F “ Fpxq to be
tested has to be completely specified. These tests “do not work” if the hypothesis
assumes only that the distribution function F “ Fpxq belongs to a parametric family
G “ tG “ Gpx; θq; θ P Θu of distribution functions Gpx; θq depending on a param-
eter θ P Θ. (Although for each θ the function Gpx; θq is supposed to be uniquely
determined.) In this case the following way of testing the agreement between em-
pirical data and the hypothesis F P G comes to mind: first, to estimate θ based on N
observations by means of some estimator θ̂N “ θ̂Npωq and then to make a decision
using the quantity

?
N supxPR |FNpx;ωq ´ Gpx; θ̂Npωqq| as it was done in the above

example. Unfortunately, the distribution function Gpx; θ̂Npωqq will be random and
the distribution of the statistic

?
N supxPR |FNpx;ωq ´ Gpx; θ̂Npωqq| will not be, in

general, given by Kolmogorov’s distribution K “ Kpyq.
Concerning the problem of testing the hypothesis that F P G see, e.g., [45].
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in Gnedenko [32]. For the origin of much of the terminology of the subject see
Aleksandrova [2].

For the basic concepts see Kolmogorov [51], Gnedenko [32], Borovkov [12],
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A useful source for many applications, where statistical tables are needed, is
Tablicy Matematicheskoy Statistiki (Tables of Mathematical Statistics) by Bol’shev
and Smirnov [11]. Nowadays statistical computations are mostly performed using
computer packages.

Chapter 2

Section 1. Concerning the construction of probabilistic models see Kolmogorov [49]
and Gnedenko [32]. For further material on problems of distributing objects among
boxes see, e.g., Kolchin, Sevastyanov, and Chistyakov [47].
Section 2. For other probabilistic models (in particular, the one-dimensional Ising
model) that are used in statistical physics, see Isihara [42].
Section 3. Bayes’s formula and theorem form the basis for the “Bayesian approach”
to mathematical statistics. See, for example, De Groot [20] and Zacks [98].
Section 4. A variety of problems about random variables and their probabilistic
description can be found in Meshalkin [68], Shiryayev [90], Shiryayev, Erlich and
Yaskov [91], Grimmet and Stirzaker [38].
Section 6. For sharper forms of the local and integral theorems, and of Poisson’s
theorem, see Borovkov [12] and Prokhorov [75].
Section 7. The examples of Bernoulli schemes illustrate some of the basic concepts
and methods of mathematical statistics. For more detailed treatment of mathematical
statistics see, for example, Lehmann [59] and Lehmann and Romano [60] among
many others.
Section 8. Conditional probability and conditional expectation with respect to a de-
composition will help the reader understand the concepts of conditional probability
and conditional expectation with respect to σ-algebras, which will be introduced
later.
Section 9. The ruin problem was considered in essentially the present form by
Laplace. See Gnedenko and Sheinin in [53]. Feller [30] contains extensive mate-
rial from the same circle of ideas.
Section 10. Our presentation essentially follows Feller [30]. The method of proving
(10) and (11) is taken from Doherty [21].
Section 11. Martingale theory is thoroughly covered in Doob [22]. A different proof
of the ballot theorem is given, for instance, in Feller [30].
Section 12. There is extensive material on Markov chains in the books by Feller [30],
Dynkin [26], Dynkin and Yushkevich [27], Chung [18, 19], Revuz [81], Kemeny
and Snell [44], Sarymsakov [84], and Sirazhdinov [93]. The theory of branching
processes is discussed by Sevastyanov [85].
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Chapter 2

Section 1. Kolmogorov’s axioms are presented in his book [51].
Section 2. Further material on algebras and σ-algebras can be found in, for example,
Kolmogorov and Fomin [52], Neveu [69], Breiman [14], and Ash [4].
Section 3. For a proof of Carathéodory’s theorem see Loève [64] or Halmos [39].
Sections 4–5. More material on measurable functions is available in Halmos [39].
Section 6. See also Kolmogorov and Fomin [51], Halmos [39], and Ash [4]. The
Radon–Nikodým theorem is proved in these books.

Inequality (23) was first stated without proof by Bienaymé [8] in 1853 and proved
by Chebyshev [16] in 1867. Inequality (21) and the proof given here are due to
Markov [67] (1884). This inequality together with its corollaries (22), (23) is usually
referred to as Chebyshev’s inequality. However sometimes inequality (21) is called
Markov’s inequality, whereas Chebyshev’s name is attributed to inequality (23).
Section 7. The definitions of conditional probability and conditional expectation
with respect to a σ-algebra were given by Kolmogorov [51]. For additional material
see Breiman [14] and Ash [4].
Section 8. See also Borovkov [12], Ash [4], Cramér [17], and Gnedenko [32].
Section 9. Kolmogorov’s theorem on the existence of a process with given finite-
dimensional distributions is in his book [51]. For Ionescu-Tulcea’s theorem see also
Neveu [69] and Ash [4]. The proof in the text follows [4].
Sections 10–11. See also Kolmogorov and Fomin [52], Ash [4], Doob [22], and
Loève [64].
Section 12. The theory of characteristic functions is presented in many books. See,
for example, Gnedenko [32], Gnedenko and Kolmogorov [34], and Ramachan-
dran [79]. Our presentation of the connection between moments and semi-invariants
follows Leonov and Shiryaev [61].
Section 13. See also Ibragimov and Rozanov [41], Breiman [14], Liptser and Shi-
ryaev [62], Grimmet and Stirzaker [37], and Lamperti [56].

Chapter 3

Section 1. Detailed investigations of problems on weak convergence of probability
measures are given in Gnedenko and Kolmogorov [34] and Billingsley [9].
Section 2. Prokhorov’s theorem appears in his paper [76].
Section 3. The monograph [34] by Gnedenko and Kolmogorov studies the limit
theorems of probability theory by the method of characteristic functions. See also
Billingsley [9]. Problem 2 includes both Bernoulli’s law of large numbers and
Poisson’s law of large numbers (which assumes that ξ1, ξ2, . . . are independent
and take only two values (1 and 0), but in general are differently distributed:
Ppξi “ 1q “ pi, Ppξi “ 0q “ 1 ´ pi, i ≥ 1q.
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Section 4. Here we give the standard proof of the central limit theorem for sums
of independent random variables under the Lindeberg condition. Compare [34]
and [72].
Section 5. Questions of the validity of the central limit theorem without the hypoth-
esis of asymptotic negligibility have already attracted the attention of P. Lévy. A
detailed account of the current state of the theory of limit theorems in the nonclas-
sical setting is contained in Zolotarev [99]. The statement and proof of Theorem 1
were given by Rotar [82].
Section 6. The presentation uses material from Gnedenko and Kolmogorov [34],
Ash [4], and Petrov [71, 72].
Section 7. The Lévy–Prohorov metric was introduced in the well-known paper by
Prohorov [76], to whom the results on metrizability of weak convergence of mea-
sures given on metric spaces are also due. Concerning the metric }P ´ P̃}B̊L, see
Dudley [23] and Pollard [73].
Section 8. Theorem 1 is due to Skorokhod. Useful material on the method of a single
probability space may be found in Borovkov [12] and in Pollard [73].
Sections 9–10. A number of books contain a great deal of material touching on these
questions: Jacod and Shiryaev [43], LeCam [58], Greenwood and Shiryaev [36].
Section 11. Petrov [72] contains a lot of material on estimates of the rate of con-
vergence in the central limit theorem. The proof of the Berry–Esseen theorem given
here is contained in Gnedenko and Kolmogorov [34].
Section 12. The proof follows Presman [74].
Section 13. For additional material on fundamental theorems of mathematical statis-
tics, see Breiman [14], Cramér [17], Rényi [80], Billingsley [10], and Borovkov [13].
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Symbols
λ-system, 171
Λ (condition), 407
π-λ-system, 171
π-system, 170

A
absolute continuity with respect to P,

232
Absolute moment, 220, 230
Absolutely continuous

distribution function, 190
distributions, 189
measures, 189
probability measures, 232
random variables, 207

Algebra, 8, 160
generated by a set, 167
induced by a decomposition, 8,

168
of sets (events), 8, 160, 167
smallest, 168
trivial, 8

Allocation of objects among cells, 4
Almost everywhere (a.e.), 221
Almost surely (a.s.), 221
Appropriate set of functions, 175
Arcsine law, 94, 103
Arrangements

with repetitions, 2
without repetitions, 3

Asymptotic negligibility, 407
Atom, 316

of a decomposition, 8
Axioms, 164

B
Backward equation, 119

matrix form, 119
Ballot Theorem, 108
Banach space, 315
Basis, orthonormal, 323
Bayes

formula, 24
theorem, 24

generalized, 272
Bernoulli, J., 44

distribution, 189
law of large numbers, 46
random variable, 32, 45
scheme, 28, 34, 44, 54, 69

Bernstein, S. N., 52, 369
inequality, 54
polynomials, 52
proof of Weierstrass theorem, 52

Berry–Esseen theorem, 62, 446
Bienaymé–Chebyshev inequality, 228
Binary expansion, 160
Binomial distribution, 14, 15, 189

negative, 189
Bochner–Khinchin theorem, 343
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Borel, E.
σ-algebra, 175
function, 175, 206
inequality, 370
sets, 175
space, 271

Borel–Cantelli lemma, 308
Bose–Einstein, 5
Bounded variation, 246
Branching process, 117
Brownian

bridge, 367, 370
motion, 366, 370

construction, 367
Buffon’s needle, 266
Bunyakovskii, V. Ya., 37

C
Canonical

probability space, 299
Cantelli, F. P., 452
Cantor, G.

diagonal process, 386
function, 191

Carathéodory theorem, 185
Carleman’s test, 353
Cauchy

criterion for
almost sure convergence , 311
convergence in mean-p, 314
convergence in probability, 313

distribution, 190
sequence, 306

Cauchy–Bunyakovskii inequality, 229
Central Limit Theorem, 388, 407

Lindeberg condition, 395, 401
non-classical conditions for, 406
rate of convergence, 446

Cesàro summation, 316
Change of variable in integral, 234
Chapman, D. G., 118, 300
Characteristic function, 331

examples of, 353

inversion formula, 340
Marcinkiewicz’s theorem, 344
of a set, 31
of distribution, 332
of random vector, 332
Pólya’s theorem, 344
properties, 332, 334

Charlier, C. V. L., 325
Chebyshev, P. L., 388

inequality, 46, 53, 227, 228, 388
Classical

distributions, 14
method, 11
models, 14
probability, 11

Closed linear manifold, 328
Coin tossing, 1, 14, 31, 83, 159
Combinations

with repetitions, 2
without repetitions, 3

Combinatorics, 11
Compact

relatively, 384
sequentially, 385

Complement, 7, 160
Complete

function space, 314, 315
probability measure, 188
probability space, 188

Completion of a probability space, 188
Composition, 136
Concentration function, 356
Conditional distribution

density of, 264
existence, 271

Conditional expectation, 75
in the wide sense, 320, 330
properties, 257
with respect to
σ-algebra, 255
decomposition, 78
event, 254, 262
random variable, 256, 262
set of random variables, 81
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Conditional probability, 22, 75, 254
regular, 268
with respect to
σ-algebra, 256
decomposition, 76, 254
random variable, 77, 256

Conditional variance, 256
Confidence interval, 69, 73
Consistency of finite-dimensional

distributions, 197, 298
Consistent estimator, 70
Construction of a process, 297
Contiguity of probability measures, 441
Continuity theorem, 389
Continuous at zero (∅), 186, 199
Continuous from above or below, 162
Continuous time, 214
Convergence

of distributions, 373
in general, 375, 376, 381
in variation, 432
weak, 375, 376

of random elements
in distribution, 425
in law, 425
in probability, 425
with probability one, 425

of random variables
almost everywhere, 306
almost surely, 306, 420
in distribution, 306, 392
in mean, 306
in mean of order p, 306
in mean square, 306
in probability, 305, 420
with probability 1, 306

Convergence in measure, 306
Convergence-determining class, 380
Convolution, 291
Coordinate method, 299
Correlation

coefficient, 40, 284
maximal, 294

Counting measure, 274

Covariance, 40, 284, 350
function, 366
matrix, 285

Cumulant, 346
Curve

U-shaped, 103
Cylinder sets, 178

D
De Moivre, A., 47, 60
De Moivre–Laplace integral theorem,

60
Decomposition, 8

of Ω, 8
countable, 168

of set, 8, 349
trivial, 9

Degenerate random variable, 345
Delta function, 358
Delta, Kronecker, 324
Density, 190, 207

n-dimensional, 195
normal (Gaussian), 65, 190, 195,

284
n-dimensional, 358
two-dimensional, 286

of measure with respect to a
measure, 233

Derivative, Radon–Nikodým, 233
Determining class, 380
De Morgan’s laws, 13, 151, 160
Difference of sets, 7, 164
Direct product

of σ-algebras, 176
of measurable spaces, 176, 183
of probability spaces, 28

Dirichlet’s function, 250
Discrete

measure, 188
random variable, 206
time, 214
uniform distribution, 189

Discrimination between two
hypotheses, 433
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Disjoint, 7, 161
Distance in variation, 431, 436
Distribution

F, 190
Bernoulli, 32, 189
Beta, 190
bilateral exponential, 190
binomial, 14, 15, 189
Cauchy, 190, 415
chi, 293
chi-square, 190, 293
conditional

regular, 269, 281
discrete uniform, 189
double exponential, 296
entropy of, 49
ergodic, 121
exponential, 190
Gamma, 190
geometric, 189
hypergeometric, 19

multivariate, 18
infinitely divisible, 411
initial, 115, 300
invariant, 123
lognormal, 290
multinomial, 18
multivariate, 34
negative binomial, 189, 205
normal (Gaussian), 65, 190

n-dimensional, 358
density of, 65, 195
semi-invariants, 350

Pascal, 189
Poisson, 62, 189
polynomial, 18
Rayleigh, 293
singular, 192
stable, 416
stationary, 123
Student’s, t, 293
Student, t, 190
uniform, 190
Weibull, 295

Distribution function, 32, 185, 206
n-dimensional, 194
absolutely continuous, 190, 204
discrete, 204
empirical, 452
finite-dimensional, 298
generalized, 192
of a random vector, 34
of function of random variables,

34, 289
of sum, 34, 291
singular continuous, 204

Dominated convergence, 224
Doubling stakes, 89
Dynkin’s d-system, 171

E
Electric circuit, 30
Elementary

events, 1, 164
probability theory, Chapter I, 1

Empty set, 7, 164
Entropy, 49
Ergodic theorem, 121
Ergodicity, 121
Error

function, 65
mean-square, 42

Errors of 1st and 2nd kind, 433
Esseen’s inequality, 353
Essential supremum, 315
Estimation, 69, 287

of success probability, 69
Estimator, 41, 70, 287

best (optimal), 83
in mean-square, 41, 83, 287, 363

best linear, 41, 320, 330
consistent, 70
efficient, 70
maximum likelihood, 21
unbiased, 70, 280

Events, 1, 5, 160, 164
certain, 7, 164
elementary, 1, 164
impossible, 7, 164
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independent, 26
mutually exclusive, 164

Expectation, 36, 217–219
conditional

of function, 83
with respect to σ-algebra, 254
with respect to decomposition,

78
inequalities for, 220, 228
properties, 36, 220

Expected (mean) value, 36
Exponential distribution, 190
Exponential family, 279
Exponential random variable, 190, 294
Extended random variable, 208
Extension of a measure, 186, 197, 301

F
Factorization theorem, 277
Family

of probability measures
relatively compact, 384
tight, 384

Fatou’s lemma, 223
for conditional expectations, 283

Fermi–Dirac, 5
Fibonacci numbers, 134, 140
Finer decomposition, 80
Finite second moment, 318
Finite-dimensional distributions, 214,

297
First

arrival, 132
exit, 126
return, 94, 132

Fisher information, 71
Formula

Bayes, 24
for total probability, 23, 76, 79
multiplication of probabilities, 24

Forward equation, 119
matrix form, 119

Fourier transform, 332
Frequency, 45

Fubini’s Theorem, 235
Fundamental sequence, 306

G
Galton–Watson model, 117, 145

extinction, 145
Gamma

distribution, 190
Gauss–Markov

process, 368
Gaussian

density, 65, 190, 195, 284, 358
multidimensional, 195

distribution, 65, 190, 195, 284
multidimensional, 358
two-dimensional, 286
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Kolmogorov–Lévy–Khinchin
representation, 415
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